57 research outputs found

    Smear microscopy and culture conversion rates among smear positive pulmonary tuberculosis patients by HIV status in Dar es Salaam, Tanzania

    Get PDF
    Tanzania ranks 15th among the world's 22 countries with the largest tuberculosis burden and tuberculosis has continued to be among the major public health problems in the country. Limited data, especially in patients co infected with HIV, are available to predict the duration of time required for a smear positive pulmonary tuberculosis patient to achieve sputum conversion after starting effective treatment. In this study we assessed the sputum smear and culture conversion rates among HIV positive and HIV negative smear positive pulmonary tuberculosis patients in Dar es Salaam The study was a prospective cohort study which lasted for nine months, from April to December 2008 A total of 502 smear positive pulmonary tuberculosis patients were recruited. HIV test results were obtained for 498 patients, of which 33.7% were HIV positive. After two weeks of treatment the conversion rate by standard sputum microscopy was higher in HIV positive(72.8%) than HIV negative(63.3%) patients by univariate analysis(P = 0.046), but not in multivariate analysis. Also after two weeks of treatment the conversion rate by fluorescence microscopy was higher in HIV positive (72.8%) than in HIV negative(63.2%) patients by univariate analysis (P = 0.043) but not in the multivariate analysis. The conversion rates by both methods during the rest of the treatment period (8, 12, and 20 weeks) were not significantly different between HIV positive and HIV negative patients.With regards to culture, the conversion rate during the whole period of the treatment (2, 8, 12 and 20 weeks) were not significantly different between HIV positive and HIV negative patients.\ud Conversion rates of standard smear microscopy, fluorescence microscopy and culture did not differ between HIV positive and HIV negative pulmonary tuberculosis patients

    Using the properties of Primate Motion Sensitive Neurons to extract camera motion and depth from brief 2-D Monocular Image Sequences

    Get PDF
    Humans and most animals can run/fly and navigate efficiently through cluttered environments while avoiding obstacles in their way. Replicating this advanced skill in autonomous robotic vehicles currently requires a vast array of sensors coupled with computers that are bulky, heavy and power hungry. The human eye and brain have had millions of years to develop an efficient solution to the problem of visual navigation and we believe that it is the best system to reverse engineer. Our brain and visual system appear to use a very different solution to the visual odometry problem compared to most computer vision approaches. We show how a neural-based architecture is able to extract self-motion information and depth from monocular 2-D video sequences and highlight how this approach differs from standard CV techniques. We previously demonstrated how our system works during pure translation of a camera. Here, we extend this approach to the case of combined translation and rotation

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    Beyond Implications and Applications: the Story of ‘Safety by Design’

    Get PDF
    Using long-term anthropological observations at the Center for Biological and Environmental Nanotechnology in Houston, Texas, the article demonstrates in detail the creation of new objects, new venues and new modes of veridiction which have reoriented the disciplines of materials chemistry and nanotoxicology. Beginning with the confusion surrounding the meaning of ‘implications’ and ‘applications’ the article explores the creation of new venues (CBEN and its offshoot the International Council on Nanotechnology); it then demonstrates how the demands for a responsible, safe or ethical science were translated into new research and experiment in and through these venues. Finally it shows how ‘safety by design’ emerged as a way to go beyond implications and applications, even as it introduced a whole new array of controversies concerning its viability, validity and legitimacy

    Genomic research, publics and experts in Latin America: Nation, race and body

    Get PDF
    The articles in this issue highlight contributions that studies of Latin America can make to wider debates about the effects of genomic science on public ideas about race and nation. We argue that current ideas about the power of genomics to transfigure and transform existing ways of thinking about human diversity are often overstated. If a range of social contexts are examined, the effects are uneven. Our data show that genomic knowledge can unsettle and reinforce ideas of nation and race; it can be both banal and highly politicized. In this introduction, we outline concepts of genetic knowledge in society; theories of genetics, nation and race; approaches to public understandings of science; and the Latin American contexts of transnational ideas of nation and race

    Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19

    Get PDF
    Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19

    A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus

    Get PDF
    The present study was designed to compare the responses in freshwater fish Oreochromis niloticus exposed to a synthetic pyrethroid, cypermethrin (CYP); an essential metal, copper (Cu); and a nonessential metal, lead (Pb). Fish were exposed to 0.05 μg/l CYP, 0.05 mg/l Cu, and 0.05 mg/l Pb for 4 and 21 days, and the alterations in serum enzyme activities, metabolite, and ion levels were determined. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased in response to CYP, Cu, and Pb exposures at both exposure periods. While elevations in alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities and in cholesterol level were observed in pesticide-exposed fish at 4 and 21 days, they increased in Cu- and Pb-exposed fish at 21 days. Although metal-exposed fish showed increases in cortisol and glucose levels at 4 days followed by a return to control levels at the end of the exposure period, their levels elevated in pesticide-exposed fish at both exposure periods. Total protein levels decreased in Pb- and pesticide-exposed fish at 21 days. Na+ and Cl− levels decreased in pesticide-exposed fish at both exposure periods and in Cu- and Pb-exposed fish at 21 days. The exposures of pesticide and metals caused an elevation in K+ level at the end of the exposure period. The present study showed that observed alterations in all serum biochemical parameters of fish-treated pesticide were higher than those in fish exposed to metals

    Towards screening Barrett’s Oesophagus: current guidelines, imaging modalities and future developments

    Get PDF
    Barrett’s oesophagus is the only known precursor to oesophageal adenocarcinoma (OAC). Although guidelines on the screening and surveillance exist in Barrett’s oesophagus, the current strategies are inadequate. Oesophagogastroduodenoscopy (OGD) is the gold standard method in screening for Barrett’s oesophagus. This invasive method is expensive with associated risks negating its use as a current screening tool for Barrett’s oesophagus. This review explores current definitions, epidemiology, biomarkers, surveillance, and screening in Barrett’s oesophagus. Imaging modalities applicable to this condition are discussed, in addition to future developments. There is an urgent need for an alternative non-invasive method of screening and/or surveillance which could be highly beneficial towards reducing waiting times, alleviating patient fears and reducing future costs in current healthcare services. Vibrational spectroscopy has been shown to be promising in categorising Barrett’s oesophagus through to high-grade dysplasia (HGD) and OAC. These techniques need further validation through multicentre trials

    The ubiquitin proteasome system in neuropathology

    Get PDF
    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed
    corecore