117 research outputs found

    Acidification of lakes in Finland : regional estimates of lake chemistry and critical loads

    Get PDF
    Yhteenveto: Järvien happamoituminen Suomessa: Alueellinen vedenlaatu ja kriittinen kuormitu

    Suomen järvien alueellinen happamuustilanne

    Get PDF

    Cook-book for water ecosystem service assessment and valuation

    Get PDF
    This work proposes a methodological framework for the biophysical assessment and the economic valuation of water ecosystem services at the water body, the catchment and the European scale. It suits the intent of understanding how changes in pressures may affect the delivery and the value of these services. We integrated the existing knowledge with experience of experts and operational needs (collected through a consultation), to propose practical methodologies able to address specific objectives. This report is organized as follows. The first section analyses the objectives of an ecosystem services assessment, explains how and why we selected and designed the methodology proposed, and discusses the concepts of ecosystem services and their integrated assessment and valuation. The results of the consultation of the experts are presented in the second section. The third section (‘cook-book’) exposes, in a concise and practical way, the approach and methodologies proposed to assess and value water ecosystem services. Finally, some major issues related to this methodology are discussed in the last section.JRC.H.1-Water Resource

    Dynamic modeling and target loads of sulfur and nitrogen for surface waters in Finland, Norway, Sweden, and the United Kingdom

    Get PDF
    The target load concept is an extension of the critical load concept of air pollution inputs to ecosystems. The advantage of target loads over critical loads is that one can define the deposition and the point in time (target year) when the critical (chemical) limit is no longer violated. This information on the timing of recovery requires dynamic modelling. Using a well-documented dynamic model, target loads for acidic deposition were determined for 848 surface waters across Finland, Norway, Sweden and the United Kingdom for the target year 2050. In the majority of sites (n = 675), the critical ANC-limit was predicted to be achieved by 2050; however, for 127 sites target loads were determined. In addition, 46 sites were infeasible, i.e., even a deposition reduction to zero would not achieve the limit by 2050. The average maximum target load for sulphur was 38% lower than the respective critical load across the study lakes (n = 127). Target loads on a large regional scale can inform effects-based emission reduction policies; the current assessment suggests that reductions beyond the Gothenburg Protocol are required to ensure surface water recovery from acidification by 2050
    corecore