742 research outputs found
Effects of polydispersity on the phase coexistence diagrams in multiblock copolymers with Laser block length distribution
Phase behavior of AB-multiblock copolymer melts which consists of chains with
Laser distribution of A and B blocks have been investigated in the framework of
the mean-field theory, where the polydispersity of copolymer is a function of
two parameters K and M. The influence of the Laser distribution on higher order
correlation functions (up to sixth order) are computed for various values of K
and M, and their contributions on the phase diagrams and phase coexistence are
presented. It is shown that, with increasing polydispersity (decreasing K and
increasing M) the transition lines of all phases shift upwards, consequently
polydispersity destabilize the system.Comment: 15 pages, Late
Bioinformatics analysis of calcium-dependent protein kinase 4 (CDPK4) as Toxoplasma gondii vaccine target
Objectives Toxoplasma gondii (T. gondii), an obligate intracellular apicomplexan parasite, could affect numerous warm-blooded animals, such as humans. Calcium-dependent protein kinases (CDPKs) are essential Ca2+ signaling mediators and participate in parasite host cell egress, outer membrane motility, invasion, and cell division. Results Several bioinformatics online servers were employed to analyze and predict the important properties of CDPK4 protein. The findings revealed that CDPK4 peptide has 1158 amino acid residues with average molecular weight (MW) of 126.331 KDa. The aliphatic index and GRAVY for this protein were estimated at 66.82 and - 0.650, respectively. The findings revealed that the CDPK4 protein comprised 30.14 and 34.97 alpha-helix, 59.84 and 53.54 random coils, and 10.02 and 11.49 extended strand with SOPMA and GOR4 tools, respectively. Ramachandran plot output showed 87.87, 8.40, and 3.73 of amino acid residues in the favored, allowed, and outlier regions, respectively. Also, several potential B and T-cell epitopes were predicted for CDPK4 protein through different bioinformatics tools. Also, antigenicity and allergenicity evaluation demonstrated that this protein has immunogenic and non-allergenic nature. This paper presents a basis for further studies, thereby provides a fundamental basis for the development of an effective vaccine against T. gondii infection
Path-dependency of energy decomposition analysis & the elusive nature of bonding
Here, we provide evidence of the path-dependency of the energy components of the energy
decomposition analysis scheme, EDA, by studying a set of thirty-one closed-shell model systems with
the D2h symmetry point group. For each system, we computed EDA components from nine different
pathways and numerically showed that the relative magnitudes of the components differ substantially
from one path to the other. Not surprisingly, yet unfortunately, the most significant variations in the
relative magnitudes of the EDA components appear in the case of species with bonds within the grey
zone of covalency and ionicity. We further discussed that the role of anions and their effect on arbitrary
Pauli repulsion energy components affects the nature of bonding defined by EDA. The outcome
variation by the selected partitioning scheme of EDA might bring arbitrariness when a careful
comparison is overlooked
Hierarchy of piecewise non-linear maps with non-ergodicity behavior
We study the dynamics of hierarchy of piecewise maps generated by
one-parameter families of trigonometric chaotic maps and one-parameter families
of elliptic chaotic maps of and types, in detail.
We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these
maps with respect to control parameter. Non-ergodicity of these piecewise maps
is proven analytically and investigated numerically . The invariant measure of
these maps which are not equal to one or zero, appears to be characteristic of
non-ergodicity behavior. A quantity of interest is the Kolmogorov-Sinai
entropy, where for these maps are smaller than the sum of positive Lyapunov
exponents and it confirms the non-ergodicity of the maps.Comment: 18 pages, 8 figure
Sol-gel based materials for biomedical applications
Sol-gel chemistry offers a flexible approach to obtaining a diverse range of materials. It allows differing chemistries to be achieved as well as offering the ability to produce a wide range of nano-/micro-structures. The paper commences with a generalized description of the various sol-gel methods available and how these chemistries control the bulk properties of the end products. Following this, a more detailed description of the biomedical areas where sol-gel materials have been explored and found to hold significant potential. One of the interesting fields that has been developed recently relates to hybrid materials that utilize sol-gel chemistry to achieve unusual composite properties. Another intriguing feature of sol-gels is the unusual morphologies that are achievable at the micro- and nano-scale. Subsequently the ability to control pore chemistry at a number of different length scales and geometries has proven to be a fruitful area of exploitation, that provides excellent bioactivity and attracts cellular responses as well as enables the entrapment of biologically active molecules and their controllable release for therapeutic action. The approaches of fine-tuning surface chemistry and the combination with other nanomaterials have also enabled targeting of specific cell and tissue types for drug delivery with imaging capacity
Ischaemic preconditioning of the liver before transplantation
Purpose: Assessment of the effect of a short ischaemic time prior to liver transplantation on the liver graft. Methods: White X Landrace pigs (N=10) were subjected to liver transplantation. Before being removed from the donor animal, the livers were randomised into two groups: group 1 - pre-procurement ischaemia (15 minutes' temporary arrest of portal venous and hepatic arterial inflow to the liver, followed by reperfusion of these vessels for a period of 15 minutes); group 2 - no prior inflow occlusion (control group). In group 1 a spleno-jugular bypass was established to prevent venous congestion, portal venous hypertension, intestinal oedema and bacterial translocation. The livers were perfused with Eurocollins solution (4oC), after which they were stored on ice for a period of 3 hours' cold ischaemic time. Hepatocellular injury was assessed according to liver cell function tests (aspartate aminotransferase, AST), biochemical indicators of reperfusion injury (malondialdehyde) and histopathology. Results: There was a significant rise of AST in both groups 1 hour after transplantation (from 51+27 IU/l to 357+152 IU/l in group 1 and from 29+10 IU/l to 359+198 IU/l in group 2). AST levels were marginally lower in group 1 at 2 and 4 hours after transplantation. There was also a rise in malondialdehyde levels in both groups at 5, 20, 40 and 60 minutes after transplantation. Levels of malondialdehyde were lower in the primed group at 5, 20 and 40 minutes, while the levels at 60 minutes after transplantation were comparable. Histological changes, as measured by vacuolisation, neutrophil infiltration and hepatic cell necrosis, were less in livers transplanted after ischaemic preconditioning, although the difference was not significant. Conclusions: Ischaemic preconditioning of the donor liver seems to decrease hepatocellular damage, reperfusion injury and histological changes in the liver after transplantation. Further studies with larger numbers are indicated
The permeability and selectivity of nanocomposite membrane of PEBAx 1657/PEI/SiO2 for separation of CO2, N2, O2, CH4 gases: A data set
The poly ether-block-amide (PEBAx)/Poly-ether-imide (PEI)/SiO2 nanocomposite membranes were fabricated using the solution casting method and utilized for separation of N2, O2, CH4, and CO2 gases. The effect of SiO2 nanoparticles loading on permeability and selectivity of gases using the nanocomposite membranes was tested. The data showed that the permeability of the gases increased with increasing SiO2 nanoparticle content. dBy adding SiO2 nanoparticles (10 wt%), the permeability of N2, O2, CH4, and CO2 gases elevated from 0.39, 1, 1.83 and 11.1 to 2.01, 1.95, 2.98 and 19.83 Barrer unit, respectively (at a pressure of 2 Bar). In contrast, with increasing SiO2 content the selectivity of the studied gases decreased. The morphology, crystallinity and the functional groups of the fabricated membranes were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) techniques. The data presented confirm the influence of the nanoparticles on the membrane structure and thus on the permeability and selectivity of the membranes
Atomic-Scale Structural Characterization of Silver-Doped Phosphate-Based Glasses Prepared by Coacervation
Phosphate-based glasses (PBGs) are traditionally prepared using the high temperature melt quenching route (MQ) or via the more recent sol-gel method (SG) that requires the use of organic solvents. The coacervation method represents an excellent inexpensive and green alternative to MQ and SG, being performed in aqueous solution and at room temperature. Coacervation is particularly applicable for the production of PBGs designed for biomedical applications, because it allows for the inclusion of temperature sensitive molecules and it does not require the use of toxic solvents. Whereas the atomic structure of the melt quenched and sol-gel PBGs is known, the atomic structure of those prepared via coacervation has yet to be investigated.
In this study, a comprehensive advanced structural characterization has been performed on phosphate-based glasses in the system P2O5–CaO–Na2O–Ag2O (Ag2O mol% = 0, 1, 3, 5, 9 and 14) prepared via the coacervation method. Glasses within this system should find application as bioresorbable biomaterials thanks to their ability to release bioactive ions in a controlled manner. In particular, they possess antibacterial properties, inferred by the release of Ag+ over time.
High energy X-ray diffraction (HEXRD), 31P and 23Na solid state magic angle spinning nuclear magnetic resonance (MAS NMR) and X-ray Absorption (XAS) at the Ag K-edge were used to probe the atomic structure of the glasses after drying in vacuum and after calcination at 300 °C.
The length of the polyphosphate chains in the solid state appears to be independent of silver concentration, however, significant degradation of these chains is seen after calcination at 300 °C. Atomic-scale structure results indicate that the structure of these glasses is akin to that of other silver doped phosphate glasses prepared using the MQ and SG method. This suggests that phosphate-based glasses prepared using milder and greener conditions may have similar chemical and physical properties such as solubility, biocompatibility, and antibacterial properties
Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.
Strontium- and calcium-releasing, titanium-stabilised phosphate-based glasses with a controlled degradation rate are currently under development for orthopaedic tissue engineering applications. Ca and/or Sr were incorporated at varying concentrations in quaternary phosphate-based glasses, in order to promote osteoinduction. Ti was incorporated at a fixed concentration in order to prolong degradation. Glasses of the general formula (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) were prepared via the melt-quench technique. The materials were characterised by energy-dispersive X-ray spectroscopy, X-ray diffraction, (31)P magic angle spinning nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential thermal analysis and density determination. The dissolution rate in distilled water was determined by measuring mass loss, ion release and pH change over a two-week period. In addition, the cytocompatibility and alkaline phosphatase activity of an osteoblast-like cell line cultured on the surface of glass discs was assessed. The glasses were shown to be amorphous and contained Q(1), Q(2) and Q(3) species. Fourier transform infrared spectroscopy revealed small changes in the glass structure as Ca was substituted with Sr and differential thermal analysis confirmed a decrease in crystallisation temperature with increasing Sr content. Degradation and ion release studies also showed that mass loss was positively correlated with Sr content. These results were attributed to the lower electronegativity of Sr in comparison to Ca favouring the formation of phosphate-based mineral phases. All compositions supported cell proliferation and survival and induced at least 2.3-fold alkaline phosphatase activity relative to the control. Glass containing 17.5 mol% Sr had 3.6-fold greater alkaline phosphatase activity than the control. The gradual release of Ca and Sr supported osteoinduction, indicating their potential suitability in orthopaedic tissue engineering applications
- …