3,623 research outputs found

    Transit Timing Observations from Kepler: VI. Potentially interesting candidate systems from Fourier-based statistical tests

    Get PDF
    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.Comment: 32 pages, 6 of text and one long table, Accepted to Ap

    Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation

    Get PDF
    We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Levy alpha-stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler function is the natural survival probability leading to time-fractional diffusion equations. Transformation methods for Mittag-Leffler random variables were found later than the well-known transformation method by Chambers, Mallows, and Stuck for Levy alpha-stable random variables and so far have not received as much attention; nor have they been used together with the latter in spite of their mathematical relationship due to the geometric stability of the Mittag-Leffler distribution. Combining the two methods, we obtain an accurate approximation of space- and time-fractional diffusion processes almost as easy and fast to compute as for standard diffusion processes.Comment: 7 pages, 5 figures, 1 table. Presented at the Conference on Computing in Economics and Finance in Montreal, 14-16 June 2007; at the conference "Modelling anomalous diffusion and relaxation" in Jerusalem, 23-28 March 2008; et

    The HST Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

    Full text link
    Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc

    Chandra Observations of Candidate Subparsec Binary Supermassive Black Holes

    Get PDF
    We present analysis of Chandra X-ray observations of seven quasars that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on the apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs, including harder or softer X-ray spectra, ripple-like profiles in the Fe K-α line, and distinct peaks in the spectrum due to the separation of the accretion disk into a circumbinary disk and mini disks around each SMBH. We obtained Chandra observations to test these models and assess whether these quasars could contain binary SMBHs. We instead find that the quasar spectra are all well fit by simple absorbed power-law models, with the rest-frame 2–10 keV photon indices, Γ, and the X-ray-to-optical power slopes, α_(OX), indistinguishable from those of the larger quasar population. This may indicate that these seven quasars are not truly subparsec binary SMBH systems, or it may simply reflect that our sample size was too small to robustly detect any differences. Alternatively, the X-ray spectral changes might only be evident at energies higher than probed by Chandra. Given the available models and current data, no firm conclusions are drawn. These observations will help motivate and direct further work on theoretical models of binary SMBH systems, such as modeling systems with thinner accretion disks and larger binary separations

    Chandra Observations of Candidate Subparsec Binary Supermassive Black Holes

    Get PDF
    We present analysis of Chandra X-ray observations of seven quasars that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on the apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs, including harder or softer X-ray spectra, ripple-like profiles in the Fe K-α line, and distinct peaks in the spectrum due to the separation of the accretion disk into a circumbinary disk and mini disks around each SMBH. We obtained Chandra observations to test these models and assess whether these quasars could contain binary SMBHs. We instead find that the quasar spectra are all well fit by simple absorbed power-law models, with the rest-frame 2–10 keV photon indices, Γ, and the X-ray-to-optical power slopes, α_(OX), indistinguishable from those of the larger quasar population. This may indicate that these seven quasars are not truly subparsec binary SMBH systems, or it may simply reflect that our sample size was too small to robustly detect any differences. Alternatively, the X-ray spectral changes might only be evident at energies higher than probed by Chandra. Given the available models and current data, no firm conclusions are drawn. These observations will help motivate and direct further work on theoretical models of binary SMBH systems, such as modeling systems with thinner accretion disks and larger binary separations

    A Wide-Field Study of the z~0.8 Cluster RX J0152.7-1357: the Role of Environment in the Formation of the Red-Sequence

    Get PDF
    [ABRIDGED] We present the first results from the largest spectroscopic survey to date of an intermediate redshift galaxy cluster, the z=0.834 cluster RX J0152.7-1357. We use the colors of galaxies, assembled from a D~12 Mpc region centered on the cluster, to investigate the properties of the red-sequence as a function of density and clustercentric radius. Our wide-field multi-slit survey with a low-dispersion prism in the IMACS spectrograph at Magellan allowed us to identify 475 new members of the cluster and its surrounding large scale structure with a redshift accuracy of dz/(1+z)~1% and a contamination rate of ~2% for galaxies with i<23.75 mag. We combine these new members with the 279 previously known spectroscopic members to give a total of 754 galaxies from which we obtain a mass-limited sample of 300 galaxies with stellar masses M>4x10^{10} M_sun. We find that the red galaxy fraction is 93+/-3% in the two merging cores of the cluster and declines to a level of 64+/-3% at projected clustercentric radii R>~3 Mpc. At these large projected distances, the correlation between clustercentric radius and local density is nonexistent. This allows an assessment of the influence of the local environment on galaxy evolution, as opposed to mechanisms that operate on cluster scales. Even beyond R>3 Mpc we find an increasing fraction of red galaxies with increasing local density. The red fraction at the highest local densities in two groups at R>3 Mpc matches the red fraction found in the two cores. Strikingly, galaxies at intermediate densities at R>3 Mpc, that are not group members, also show signs of an enhanced red fraction. Our results point to such intermediate density regions and the groups in the outskirts of the cluster, as sites where the local environment influences the transition of galaxies onto the red-sequence.Comment: 15 pages, 10 figures, 1 table, accepted for publication in ApJ, expanded introduction and additional references adde
    • …
    corecore