We present a numerical method for the Monte Carlo simulation of uncoupled
continuous-time random walks with a Levy alpha-stable distribution of jumps in
space and a Mittag-Leffler distribution of waiting times, and apply it to the
stochastic solution of the Cauchy problem for a partial differential equation
with fractional derivatives both in space and in time. The one-parameter
Mittag-Leffler function is the natural survival probability leading to
time-fractional diffusion equations. Transformation methods for Mittag-Leffler
random variables were found later than the well-known transformation method by
Chambers, Mallows, and Stuck for Levy alpha-stable random variables and so far
have not received as much attention; nor have they been used together with the
latter in spite of their mathematical relationship due to the geometric
stability of the Mittag-Leffler distribution. Combining the two methods, we
obtain an accurate approximation of space- and time-fractional diffusion
processes almost as easy and fast to compute as for standard diffusion
processes.Comment: 7 pages, 5 figures, 1 table. Presented at the Conference on Computing
in Economics and Finance in Montreal, 14-16 June 2007; at the conference
"Modelling anomalous diffusion and relaxation" in Jerusalem, 23-28 March
2008; et