5,994 research outputs found

    Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    Get PDF
    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight

    Report of Auditing Committee

    Get PDF

    Dipolar and scalar 3^3He and 129^{129}Xe frequency shifts in mm-sized cells

    Full text link
    We describe a 3^{3}He-129^{129}Xe comagnetometer operating in stemless anodically bonded cells with a 6 mm3^3 volume and a 129^{129}Xe spin coherence time of 300 sec. We use a 87^{87}Rb pulse-train magnetometer with co-linear pump and probe beams to study the nuclear spin frequency shifts caused by spin polarization of 3^{3}He. By systematically varying the cell geometry in a batch cell fabrication process we can separately measure the cell shape dependent and independent frequency shifts. We find that a certain aspect ratio of the cylindrical cell can cancel the effects of 3^3He magnetization that limit the stability of vapor-cell comagnetometers. Using this control we also observe for the first time a scalar 3^{3}He-129^{129}Xe collisional frequency shift characterized by an enhancement factor κHeXe=0.011±0.001\kappa_{\text{HeXe}} = -0.011\pm0.001.Comment: 4 pages, 4 figure

    NALNET book system: Cost benefit study

    Get PDF
    The goals of the NASA's library network system, NALNET, the functions of the current book system, the products and services of a book system required by NASA Center libraries, and the characteristics of a system that would best supply those products and services were assessed. Emphasis was placed on determining the most cost effective means of meeting NASA's requirements for an automated book system. Various operating modes were examined including the current STIMS file, the PUBFILE, developing software improvements for products as appropriate to the Center needs, and obtaining cataloging and products from the bibliographic utilities including at least OCLC, RLIN, BNA, and STIF. It is recommended that NALNET operate under the STIMS file mode and obtain cataloging and products from the bibliographic utilities. The recommendations are based on the premise that given the current state of the art in library automation it is not cost effective for NASA to maintain a full range of cataloging services on its own system. The bibliographic utilities can support higher quality systems with a greater range of services at a lower total cost

    Heading errors in all-optical alkali-vapor magnetometers in geomagnetic fields

    Full text link
    Alkali-metal atomic magnetometers suffer from heading errors in geomagnetic fields as the measured magnetic field depends on the orientation of the sensor with respect to the field. In addition to the nonlinear Zeeman splitting, the difference between Zeeman resonances in the two hyperfine ground states can also generate heading errors depending on initial spin polarization. We examine heading errors in an all-optical scalar magnetometer that uses free precession of polarized 87Rb^{87}\text{Rb} atoms by varying the direction and magnitude of the magnetic field at different spin polarization regimes. In the high polarization limit where the lower hyperfine ground state F=1F = 1 is almost depopulated, we show that heading errors can be corrected with an analytical expression, reducing the errors by two orders of magnitude in Earth's field. We also verify the linearity of the measured Zeeman precession frequency with the magnetic field. With lower spin polarization, we find that the splitting of the Zeeman resonances for the two hyperfine states causes beating in the precession signals and nonlinearity of the measured precession frequency with the magnetic field. We correct for the frequency shifts by using the unique probe geometry where two orthogonal probe beams measure opposite relative phases between the two hyperfine states during the spin precession

    Blood sugar level in normal and dwarf beef cattle before and after insulin injections

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (pages 30-31)

    Leucocyte numbers in normal and dwarf beef cattle before and after insulin injection

    Get PDF
    This bulletin reports on Missouri Agricultural Experiment Station research project 198, Cattle Improvement--P. [2].Includes bibliographical references (page 31)

    Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds

    Get PDF
    Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic

    The Core of the Participatory Budgeting Problem

    Full text link
    In participatory budgeting, communities collectively decide on the allocation of public tax dollars for local public projects. In this work, we consider the question of fairly aggregating the preferences of community members to determine an allocation of funds to projects. This problem is different from standard fair resource allocation because of public goods: The allocated goods benefit all users simultaneously. Fairness is crucial in participatory decision making, since generating equitable outcomes is an important goal of these processes. We argue that the classic game theoretic notion of core captures fairness in the setting. To compute the core, we first develop a novel characterization of a public goods market equilibrium called the Lindahl equilibrium, which is always a core solution. We then provide the first (to our knowledge) polynomial time algorithm for computing such an equilibrium for a broad set of utility functions; our algorithm also generalizes (in a non-trivial way) the well-known concept of proportional fairness. We use our theoretical insights to perform experiments on real participatory budgeting voting data. We empirically show that the core can be efficiently computed for utility functions that naturally model our practical setting, and examine the relation of the core with the familiar welfare objective. Finally, we address concerns of incentives and mechanism design by developing a randomized approximately dominant-strategy truthful mechanism building on the exponential mechanism from differential privacy
    corecore