123 research outputs found

    Model Guided Application for Investigating Particle Number (PN) Emissions in GDI Spark Ignition Engines

    Get PDF
    &lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;Model guided application (MGA) combining physico-chemical internal combustion engine simulation with advanced analytics offers a robust framework to develop and test particle number (PN) emissions reduction strategies. The digital engineering workflow presented in this paper integrates the &lt;i&gt;k&lt;/i&gt;inetics &amp;amp; SRM Engine Suite with parameter estimation techniques applicable to the simulation of particle formation and dynamics in gasoline direct injection (GDI) spark ignition (SI) engines. The evolution of the particle population characteristics at engine-out and through the sampling system is investigated. The particle population balance model is extended beyond soot to include sulphates and soluble organic fractions (SOF). This particle model is coupled with the gas phase chemistry precursors and is solved using a sectional method. The combustion chamber is divided into a wall zone and a bulk zone and the fuel impingement on the cylinder wall is simulated. The wall zone is responsible for resolving the distribution of equivalence ratios near the wall, a factor that is essential to account for the formation of soot in GDI SI engines. In this work, a stochastic reactor model (SRM) is calibrated to a single-cylinder test engine operated at 12 steady state load-speed operating points. First, the flame propagation model is calibrated using the experimental in-cylinder pressure profiles. Then, the population balance model parameters are calibrated based on the experimental data for particle size distributions from the same operating conditions. Good agreement was obtained for the in-cylinder pressure profiles and gas phase emissions such as NO&lt;sub&gt;x&lt;/sub&gt;. The MGA also employs a reactor network approach to align with the particle sampling measurements procedure, and the influence of dilution ratios and temperature on the PN measurement is investigated. Lastly, the MGA and the measurements procedure are applied to size-resolved chemical characterisation of the emitted particles.&lt;/div&gt;&lt;/div&gt;</jats:p

    Broadband velocity modulation spectroscopy of HfF^+: towards a measurement of the electron electric dipole moment

    Get PDF
    Precision spectroscopy of trapped HfF^+ will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm^(-1) using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states including those that will be necessary for state preparation and readout in an actual eEDM experiment.Comment: 13 pages, 7 figures, 3 table

    Optical and photosensitive properties of lamellar nanocomposites obtained by Cd intercalation of GaTe

    Get PDF
    By Cd-vapor heat treatment, at temperatures from 623 to 833 K, of GaTe single crystals, GaTe-CdTe composite is formed. CdTe amount is increasing together with heat treatment temperature. Absorption, photoconductivity and photoluminescence spectra of the composite contain particularities characteristic to GaTe and CdTe components. The absorption and photoconductivity edges display two thresholds at 1.66 eV (GaTe) and 1.50 eV (CdTe). Short lifetime recombination states form at the surface of composite samples, leading to narrowing of the photoconductivity bands in the high energy region, up to 1.8 eV. Widening of the absorption and photoconductivity bands in the low energy region is determined by absorption processes taking place in both GaTe and CdTe components

    Fractal Method for Modeling the Peculiar Dynamics of Transient Carbon Plasma Generated by Excimer Laser Ablation in Vacuum

    No full text
    Carbon plasmas generated by excimer laser ablation are often applied for deposition (in vacuum or under controlled atmosphere) of high-technological interest nanostructures and thin films. For specific excimer irradiation conditions, these transient plasmas can exhibit peculiar behaviors when probed by fast time- and space-resolved optical and electrical methods. We propose here a fractal approach to simulate this peculiar dynamics. In our model, the complexity of the interactions between the transient plasma particles (in the Euclidean space) is substituted by the nondifferentiability (fractality) of the motion curves of the same particles, but in a fractal space. For plane symmetry and particular boundary conditions, stationary geodesic equations at a fractal scale resolution give a fractal velocity field with components expressed by means of nonlinear solutions (soliton type, kink type, etc.). The theoretical model successfully reproduces the (surprising) formation of V-like radiating plasma structures (consisting of two lateral arms of high optical emissivity and a fast-expanding central part of low emissivity) experimentally observed

    Oscillatory Langmuir probe ion current in laser-produced plasma expansion

    No full text
    Using the Langmuir probe method to investigate the parameters of laser-produced plasma, our experimental results show an oscillatory structure of the recorded transient ion current. The periodic behavior is analyzed for various targets and probe positions and, after extracting the continuous part, it is found to be connected with the ion frequency and the electron-ion collision frequency. We conclude that theories to describe these oscillations may provide new diagnostic techniques of laser-produced plasma
    • …
    corecore