84 research outputs found

    High-speed laser image analysis of plume angles for pressurised metered dose inhalers: the effect of nozzle geometry

    Get PDF
    The aim of this study is to investigate aerosol plume geometries of pressurised metered dose inhalers (pMDIs) using a high-speed laser image system with different actuator nozzle materials and designs. Actuators made from aluminium, PET and PTFE were manufactured with four different nozzle designs: cone, flat, curved cone and curved flat. Plume angles and spans generated using the designed actuator nozzles with four solution-based pMDI formulations were imaged using Oxford Lasers EnVision system and analysed using EnVision Patternate software. Reduced plume angles for all actuator materials and nozzle designs were observed with pMDI formulations containing drug with high co-solvent concentration (ethanol) due to the reduced vapour pressure. Significantly higher plume angles were observed with the PTFE flat nozzle across all formulations, which could be a result of the nozzle geometry and material’s hydrophobicity. The plume geometry of pMDI aerosols can be influenced by the vapour pressure of the formulation, nozzle geometries and actuator material physiochemical properties

    The effect of active pharmaceutical ingredients on aerosol electrostatic charges from pressurized metered dose inhalers

    Get PDF
    Purpose. This study investigated the effect of different active pharmaceutical ingredients (API) on aerosol electrostatic charges and aerosol performances for pressurized metered dose inhalers (pMDIs), using both insulating and conducting actuators. Methods. Five solution-based pMDIs containing different API ingredients including: beclomethasone dipropionate (BDP), budesonide (BUD), flunisolide (FS), salbutamol base (SB) and ipratropium bromide (IPBr) were prepared using pressure filling technique. Actuator blocks made from nylon, polytetrafluoroethylene (PTFE) and aluminium were manufactured with 0.3 mm nominal orifice diameter and cone nozzle shape. Aerosol electrostatics for each pMDI formulation and actuator were evaluated using the electrical low-pressure impactor (ELPI) and drug depositions were analysed using high performance liquid chromatography (HPLC). Results. All three actuator materials showed the same net charge trend across the five active drug ingredients, with BDP, BUD and FS showing positive net charges for both nylon and PTFE actuators, respectively. While SB and IPBr had significantly negative net charges across the three different actuators, which correlates to the ionic functional groups present on the drug molecule structures. Conclusions. The API present in a pMDI has a dominant effect on the electrostatic properties of the formulation, overcoming the charge effect arising from the actuator materials. Results have shown that the electrostatic charges for a solution-based pMDI could be related to the interactions of the chemical ingredients and change in the work function for the overall formulation

    The effect of actuator nozzle designs on the electrostatic charge generated in pressurised metered dose inhaler aerosols

    Get PDF
    Purpose To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Methods Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Results Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. Conclusions This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant

    Granular cell tumors of the urinary bladder

    Get PDF
    BACKGROUND: Granular cell tumors (GCTs) are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. MATERIALS AND METHODS: We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. RESULTS: Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100) and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13), neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin) and sarcoma (desmin, vimentin) markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. CONCLUSION: We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore