215 research outputs found

    Surgical versus non-surgical interventions for treating patellar dislocation

    Get PDF
    Background: Patellar dislocation occurs when the patella disengages completely from the trochlear (femoral) groove. Following reduction of the dislocation, conservative (non-surgical) rehabilitation with physiotherapy may be used. Since recurrence of dislocation is common, some surgeons have advocated surgical intervention rather than non-surgical interventions. This is an update of a Cochrane review first published in 2011. Objectives: To assess the effects (benefits and harms) of surgical versus non-surgical interventions for treating people with primary or recurrent patellar dislocation. Search methods: We searched the Cochrane Bone, Joint and Muscle Trauma Group's Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library), MEDLINE, EMBASE, AMED, CINAHL, ZETOC, Physiotherapy Evidence Database (PEDro) and a variety of other literature databases and trial registries. Corresponding authors were contacted to identify additional studies. The last search was carried out in October 2014. Selection criteria: We included randomised and quasi-randomised controlled clinical trials evaluating surgical versus non-surgical interventions for treating lateral patellar dislocation. Data collection and analysis: Two review authors independently examined titles and abstracts of each identified study to assess study eligibility, extract data and assess risk of bias. The primary outcomes we assessed were the frequency of recurrent dislocation, and validated patient-rated knee or physical function scores. We calculated risk ratios (RR) for dichotomous outcomes and mean differences MD) for continuous outcomes. When appropriate, we pooled data. Main results: We included five randomised studies and one quasi-randomised study. These recruited a total of 344 people with primary (first-time) patellar dislocation. The mean ages in the individual studies ranged from 19.3 to 25.7 years, with four studies including children, mainly adolescents, as well as adults. Follow-up for the full study populations ranged from two to nine years across the six studies. The quality of the evidence is very low as assessed by GRADE (Grading of Recommendations Assessment, Development and Evaluation Working Group) criteria, with all studies being at high risk of performance and detection biases, relating to the lack of blinding. There was very low quality but consistent evidence that participants managed surgically had a significantly lower risk of recurrent dislocation following primary patellar dislocation at two to five years follow-up (21/162 versus 32/136; RR 0.53 favouring surgery, 95% confidence interval (CI) 0.33 to 0.87; five studies, 294 participants). Based on an illustrative risk of recurrent dislocation in 222 people per 1000 in the non-surgical group, these data equate to 104 fewer (95% CI 149 fewer to 28 fewer) people per 1000 having recurrent dislocation after surgery. Similarly, there is evidence of a lower risk of recurrent dislocation after surgery at six to nine years (RR 0.67 favouring surgery, 95% CI 0.42 to 1.08; two studies, 165 participants), but a small increase cannot be ruled out. Based on an illustrative risk of recurrent dislocation in 336 people per 1000 in the non-surgical group, these data equate to 110 fewer (95% CI 195 fewer to 27 more) people per 1000 having recurrent dislocation after surgery. The very low quality evidence available from single trials only for four validated patient-rated knee and physical function scores (the Tegner activity scale, KOOS, Lysholm and Hughston VAS (visual analogue scale) score) did not show significant differences between the two treatment groups. The results for the Kujala patellofemoral disorders score (0 to 100: best outcome) differed in direction of effect at two to five years follow-up, which favoured the surgery group (MD 13.93 points higher, 95% CI 5.33 points higher to 22.53 points higher; four studies, 171 participants) and the six to nine years follow-up, which favoured the non-surgical treatment group (MD 3.25 points lower, 95% CI 10.61 points lower to 4.11 points higher; two studies, 167 participants). However, only the two to five years follow-up included the clear possibility of a clinically important effect (putative minimal clinically important difference for this outcome is 10 points). Adverse effects of treatment were reported in one trial only; all four major complications were attributed to the surgical treatment group. Slightly more people in the surgery group had subsequent surgery six to nine years after their primary dislocation (20/87 versus 16/78; RR 1.06, 95% CI 0.59 to 1.89, two studies, 165 participants). Based on an illustrative risk of subsequent surgery in 186 people per 1000 in the non-surgical group, these data equate to 11 more (95% CI 76 fewer to 171 more) people per 1000 having subsequent surgery after primary surgery. Authors' conclusions: Although there is some evidence to support surgical over non-surgical management of primary patellar dislocation in the short term, the quality of this evidence is very low because of the high risk of bias and the imprecision in the effect estimates. We are therefore very uncertain about the estimate of effect. No trials examined people with recurrent patellar dislocation. Adequately powered, multi-centre, randomised controlled trials, conducted and reported to contemporary standards, are needed. To inform the design and conduct of these trials, expert consensus should be achieved on the minimal description of both surgical and non-surgical interventions, and the anatomical or pathological variations that may be relevant to both choice of these interventions and the natural history of patellar instability. Furthermore, well-designed studies recording adverse events and long-term outcomes are needed

    The mechanism of primary patellar dislocation: Trauma history of 126 patients

    Get PDF
    Background and purpose Several mechanisms are responsible for patellar dislocation. We investigated how the primary pathomechanism relates to patient characteristics and the outcome

    Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study

    Get PDF
    BACKGROUND: A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. METHODS: A matched case-control study design was employed. Twenty-two basketball players aged 14–16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. RESULTS: The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p < 0.01). CONCLUSION: The findings of the study indicate that players with a history of knee injuries had biomechanically compromised landing techniques when compared with uninjured players matched for gender, age and club. Descriptions (norms) of expected levels of knee control, proprioceptive acuity and eccentric strength relative to landing from a jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage

    The clinical relevance of PCL index on the reconstruction of anterior cruciate ligament with hamstring tendon autograft

    Get PDF
    The posterior cruciate ligament index (PCL index) has been reported as a diagnostic and prognostic marker for anterior cruciate ligament (ACL) reconstruction. The clinical relevance of PCL index on the reconstruction of ACL with hamstring tendon autograft has not been described in the literature. The objective of this study is to evaluate the importance of the PCL index as a marker of anatomic reconstruction and of functional improvement of patients undergoing ACL reconstruction with HT autograft. Twenty-four patients were submitted to ACL reconstruction with HT autograft. The PCL index was assessed by magnetic resonance imaging before and after surgery. The functional evaluation was performed through the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form© and Knee Society Knee Scoring System© (IKS). Patients presented a significant positive variation of the PCL index, IKDC and IKS scores. There is no significant correlation between PCL index variation and IKDC and IKS scores (p > 0.05). Unlike other studies reporting a relationship between the PCL index, control of rotational kinematics, and functional improvement in patients undergoing ACL reconstruction with bone-patellar tendon-bone autograft, this study does not demonstrate this association. There is evidence in this study to show that the PCL index may be used as an anatomic reconstructive marker of ACL but not to predict the clinical outcome in this type of reconstruction.(undefined

    Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions

    Full text link
    corecore