3,445 research outputs found

    The Stability study: a protocol for a multicenter randomized clinical trial comparing anterior cruciate ligament reconstruction with and without Lateral Extra-articular Tenodesis in individuals who are at high risk of graft failure

    Get PDF
    BackgroundThe purpose of anterior cruciate ligament reconstruction (ACLR) is to restore stability to the knee. Persistent rotational laxity following ACLR has been correlated with poor outcome and graft failure. We hypothesize that anterolateral complex reconstruction by way of a Modified Lemaire Lateral Extra-articular Tenodesis (LET) in combination with single bundle ACLR would reduce the risk of persistent rotatory laxity in young individuals who are deemed as being at high risk of failure. We will conduct a pragmatic, multicenter, randomized clinical trial comparing standard single bundle hamstring ACLR with combined ACLR and LET.MethodsSix-hundred patients (300 per group) aged 25years or less with an ACL deficient knee that meet two of the following three criteria will be included: 1) Grade 2 pivot shift or greater; 2) Returning to high risk cutting or pivoting sports; 3) Generalized ligamentous laxity. Participants will be seen at 3-months, 6-months, 12-months and 24-months post-operatively. The primary outcome measure is graft failure requiring revision ACLR or symptomatic instability associated with a positive asymmetric pivot shift indicating persistent rotational laxity. Patients will complete secondary outcome measures at each follow-up visit including patient-reported outcome measures, functional and biomechanical testing, and magnetic resonance imaging.DiscussionThis protocol is the first adequately powered randomized clinical trial investigating the effects of augmenting ACLR with an LET in patients at high-risk of graft failure. The successful completion of this trial has the potential to change surgical practice and provide evidence for the role of the LET in ACLR.Trial registrationThe trial is registered at ClinicalTrials.gov: NCT02018354, 23-12-2013

    Optical pattern formation with a 2-level nonlinearity

    Get PDF
    We present an experimental and theoretical investigation of spontaneous pattern formation in the transverse section of a single retro-reflected laser beam passing through a cloud of cold Rubidium atoms. In contrast to previously investigated systems, the nonlinearity at work here is that of a 2-level atom, which realizes the paradigmatic situation considered in many theoretical studies of optical pattern formation. In particular, we are able to observe the disappearance of the patterns at high intensity due to the intrinsic saturable character of 2-level atomic transitions.Comment: 5 pages, 4 figure

    Spatial correlations in hexagons generated via a Kerr nonlinearity

    Get PDF
    We consider the hexagonal pattern forming in the cross-section of an optical beam produced by a Kerr cavity, and we study the quantum correlations characterizing this structure. By using arguments related to the symmetry broken by the pattern formation, we identify a complete scenario of six-mode entanglement. Five independent phase quadratures combinations, connecting the hexagonal modes, are shown to exhibit sub-shot-noise fluctuations. By means of a non-linear quantum calculation technique, quantum correlations among the mode photon numbers are demonstrated and calculated.Comment: ReVTeX file, 20 pages, 7 eps figure

    Large optical gain from four-wave mixing instabilities in semiconductor quantum wells

    Full text link
    Based on a microscopic many-particle theory, we predict large optical gain in the probe and background-free four-wave mixing directions caused by excitonic instabilities in semiconductor quantum wells. For a single quantum well with radiative-decay limited dephasing in a typical pump-probe setup we discuss the microscopic driving mechanisms and polarization and frequency dependence of these instabilities

    Fluctuations and correlations in hexagonal optical patterns

    Get PDF
    We analyze the influence of noise in transverse hexagonal patterns in nonlinear Kerr cavities. The near field fluctuations are determined by the neutrally stable Goldstone modes associated to translational invariance and by the weakly damped soft modes. However these modes do not contribute to the far field intensity fluctuations which are dominated by damped perturbations with the same wave vectors than the pattern. We find strong correlations between the intensity fluctuations of any arbitrary pair of wave vectors of the pattern. Correlation between pairs forming 120 degrees is larger than between pairs forming 180 degrees, contrary to what a naive interpretation of emission in terms of twin photons would suggest.Comment: 10 pages, 13 figure

    Steps towards a map of the nearby universe

    Get PDF
    We present a new analysis of the Sloan Digital Sky Survey data aimed at producing a detailed map of the nearby (z < 0.5) universe. Using neural networks trained on the available spectroscopic base of knowledge we derived distance estimates for about 30 million galaxies distributed over ca. 8,000 sq. deg. We also used unsupervised clustering tools developed in the framework of the VO-Tech project, to investigate the possibility to understand the nature of each object present in the field and, in particular, to produce a list of candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed

    The Rising Light Curves of Type Ia Supernovae

    Get PDF
    We present an analysis of the early, rising light curves of 18 Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the La Silla-QUEST variability survey (LSQ). We fit these early data flux using a simple power-law (f(t)=α×tn)(f(t) = {\alpha\times t^n}) to determine the time of first light (t0)({t_0}), and hence the rise-time (trise)({t_{rise}}) from first light to peak luminosity, and the exponent of the power-law rise (nn). We find a mean uncorrected rise time of 18.98±0.5418.98 {\pm} 0.54 days, with individual SN rise-times ranging from 15.9815.98 to 24.724.7 days. The exponent n shows significant departures from the simple 'fireball model' of n=2n = 2 (or f(t)t2{f(t) \propto t^2}) usually assumed in the literature. With a mean value of n=2.44±0.13n = 2.44 {\pm} 0.13, our data also show significant diversity from event to event. This deviation has implications for the distribution of 56Ni throughout the SN ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The range of n found also confirms that the 56Ni distribution is not standard throughout the population of SNe Ia, in agreement with earlier work measuring such abundances through spectral modelling. We also show that the duration of the very early light curve, before the luminosity has reached half of its maximal value, does not correlate with the light curve shape or stretch used to standardise SNe Ia in cosmological applications. This has implications for the cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA

    Mpemba Effect, Shechtman's Quasicrystals and Students' Exploring Activities

    Full text link
    In the 1960s, Tanzanian student Erasto Mpemba and his teacher published an article with the title "Cool" in the journal Physics Education (Mpemba, E. B. - Osborne, D. G.: Cool?. In: Physics Education, vol.4, 1969, pp. 172-175.). In this article they claimed that hot water freezes faster than cold water. The article raised not only a wave of discussions, and other articles about this topic, but also a whole series of new experiments, which should verify this apparent thermodynamic absurdity and find an adequate explanation. Here we give a review with references to explanations and we bring some proposals for experimental student work in this area. We introduce Mpemba Effect not only as a paradoxical physics phenomenon, but we shall present a strong educational message that the Mpemba story brings to the teachers and their students. This message also creates a bridge between this phenomenon and the discovery for which the 2011 Nobel Prize in Chemistry was awarded. It leads to critical adoption of traditional knowledge and encourages resilience in investigative exploration of new things
    corecore