34 research outputs found

    Healable Supramolecular Polymer Solids

    Get PDF
    The reversible nature of non-covalent interactions between constituting building blocks permits one to temporarily disassemble supramolecular polymers through the application of an appropriate external stimulus “on command”. This framework has recently emerged as a general design strategy for the development of healable polymer systems. The approach exploits that the temporary disassembly decreases the molecular weight and in the case of cross-linked polymers the cross-link density, and thereby causes an increase of the chain mobility and a reduction of the viscosity of the material. The transformation thus enables the disassembled material to flow and fill defects, before the original supramolecular polymer is re-assembled. Focusing on recent progress in the area of healable supramolecular polymer solids based on hydrogen-bonding, metal-ligand and π–π interactions, as well as supramolecular nanocomposites, this review article summarizes the development and current state of the field

    Mechanochemistry with Metallosupramolecular Polymers

    Get PDF
    The transduction of mechanical force into useful chemical reactions is an emerging design approach to impart soft materials with new functions. Here, we report that mechanochemical transductions can be achieved in metallo-supramolecular polymers. We show that both reversible and irreversible reactions are possible and useful to create me-chanically responsive materials that display new functions. The metallopolymer studied was a crosslinked network assembled from a europium salt and a telechelic poly(ethylene-co-butylene) with 2,6-bis(1′- methylbenzimidazolyl)pyridine (Mebip) ligands at the termini. The Eu3+ complexes serve both as mechanically responsive binding motifs and built-in optical probes that can monitor the extent of (dis)assembly due to their characteristic photoluminescent properties. Indeed, dose-dependent and reversible metal-ligand dissociation occurs upon exposure to ultrasound in solution. The absence of ultrasound-induced dissociation of a low-molecular weight model complex and in-depth studies of temperature effects confirm that the dissociation is indeed the result of mechanical activation. The influence of the strength of the metal-ligand interactions on the mechanically induced dissociation was also explored. Metallopolymers in which the Mebip ligands were substituted with more strongly coordinating dipicolinate (dpa) ligands do not dissociate upon exposure to ultrasound. Finally we show that mechanochemical transduction in metallosupramolecular polymers is also possible in the solid state. We demonstrate mending of damaged objects through ultrasound as well as mechanochromic behavior based on metal-exchange reactions in metallopolymers imbibed with an auxiliary metal salt

    A guide to investigating colloidal nanoparticles by cryogenic transmission electron microscopy: pitfalls and benefits

    Get PDF
    Synthetic colloidal nanoparticles are nowadays omnipresent. Nonetheless, adequately characterizing them and interpreting the data is challenging, as their surrounding environment, e.g. the medium they are dispersed in, is often an active contributor to their size, morphology and structural integrity. In this regard, cryo-transmission electron microscopy (cryo-TEM) is an ideal methodology. This article provides a general guidance for beginners and experts encountering this technique on the common benefits and pitfalls when characterizing synthetic nanoparticles. Illustrative experimental examples are presented which cover the importance of water as a supportive and structural component, along with contrast generation and electron beam damage
    corecore