

Volume 2, Issue 3, 245-258. DOI: 10.3934/biophy.2015.3.245 Received date 26 February 2015, Accepted date 16 June 2015, Published date 28 June 2015

http://www.aimspress.com/

Research article

A guide to investigating colloidal nanoparticles by cryogenic

transmission electron microscopy: pitfalls and benefits

Christophe A. Monnier¹, David C. Th évenaz¹, Sandor Balog¹, Gina L. Fiore¹, Dimitri Vanhecke¹, Barbara Rothen-Rutishauser¹, and Alke Petri-Fink^{1,2,*}

- ¹ Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- ² Chemistry Department, University of Fribourg, Chemin du Mus é 9, 1700 Fribourg, Switzerland
- * Correspondence: Email: alke.fink@unifr.ch.

Supplementary information

Dynamic light scattering—Calculations

The field auto-correlation function $g_1(t)$ from uniform particles follows a negative exponential trend as a function of time (R. Pecora, *Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy*, Plenum Press, New York, 1985):

$$g_1(t) = e^{-\Gamma_T t}, \qquad (1)$$

where Γ_T is the relaxation time corresponding to translational Brownian motion of the suspended particle. The relaxation time is a function of particle size:

$$\Gamma_{\rm T} = q^2 \frac{k_{\rm B}T}{6\pi\eta} \frac{1}{\rm R},\tag{2}$$

where R is the hydrodynamic radius, k_B the Boltzmann constant, T the temperature, η the viscosity of the solvent, q the momentum transfer $q = \frac{4\pi}{\lambda} n \sin\left(\frac{\theta}{2}\right)$, θ the scattering angle, λ the wavelength of the laser, and n the refractive index of the solution. Equation 1 can be extended for polydisperse particles, by considering that in a given sample each particle contributes to the scattering intensity, depending on its size. The intensity-weighted correlation function then can be approximated as

$$g_1(t) \cong \frac{\sum_{j=1}^{N} V_j^2 g_{1j}(t)}{\sum_{j=1}^{N} V_j^2}$$
(3)

where

$$V_{j} = \frac{4\pi}{3} R_{j}^{3}$$
 (4)

is the volume of the jth particle, and $g_{1j}(t)$ the correlation function (Equation 1) corresponding to the size of this particle (Equation 2), and N is the number of counted particles.

Ice—a common artefact found in cryo-TEM

Suppl. Figure 1. Ice contaminants are constant acquaintances in cryo-TEM. Depending on the sample mounting procedure or the surroundings (*e.g.* humidity), water can freeze on the vitreous layer. Some classic appearances are shown in A/B. Ethane contamination from the plunge-freezing process may also be found (B, upper left).