267 research outputs found

    Taking Stock of Insurer Financial Performance in the Individual Health Insurance Market Through 2017

    Get PDF
    The Affordable Care Act (ACA) implemented wide-ranging reforms to the individual health insurance market starting in 2014, most importantly by barring insurers from denying coverage or varying premiums based on health status, requiring all plans to cover certain services and provide a basic level of financial protection, providing subsidies to help low- and moderate-income people afford coverage, and requiring all individuals to have coverage or pay a penalty. In "Taking Stock of Insurer Financial Performance in the Individual Health Insurance Market Through 2017," (PDF) Matthew Fiedler takes a detailed look at insurers' financial performance in this new institutional environment, as well the economic forces that have shaped that performance. The report finds that insurers were on track to break even or make modest profits on ACA-compliant individual market policies in 2017, on average, before the Trump Administration's decision to end cost-sharing reduction payments. The sharp improvement for 2017 were the result of the significant premium increases insurers implemented for 2017, together with continued subdued claims growth in the ACA-compliant individual market. That progress should have set the stage for comparatively moderate premium increases in 2018, likely in the mid-to-high-single digits. The higher premium increases occurring in reality likely reflect a range of threatened and actual changes in federal policy

    Post-Pandemic Estate Planning: Analyzing the Recent Changes in Remote Notarization Laws

    Get PDF
    This Note explores estate planning in the post-pandemic landscape. Part I of this Note discusses how the resistance to remote technology in estate planning is rooted in traditional notions of formalism. Part II introduces a discussion regarding the use of remote technology, including its benefits and drawbacks. Part III articulates the current legal requirements to validly notarize signatures on various estate planning documents in Washington state. This part also discusses the extent of electronic or remote notarization allowed in the wake of emergency orders issued by Washington State Governor Jay Inslee in response to the spread of COVID-19. Additionally, Part III analyzes approaches taken by other states and discusses a possible response currently under consideration by the federal government. Part IV of this Comment includes a discussion of the general trend towards digitization in estate planning law as shown by both the adoption of remote notarization laws in at least twenty-three states and the promulgation of the Uniform Electronic Wills Act by many states. Finally, Part IV highlights how the emergency orders resulting from COVID-19 may provide greater impetus for lawmakers to make permanent changes to remote notarization

    Influence of Sensory Dependence on Postural Control

    Get PDF
    The current project is part of an NSBRI funded project, "Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long-Duration Spaceflight." The development of this countermeasure is based on the use of imperceptible levels of electrical stimulation to the balance organs of the inner ear to assist and enhance the response of a person s sensorimotor function. These countermeasures could be used to increase an astronaut s re-adaptation rate to Earth s gravity following long-duration space flight. The focus of my project is to evaluate and examine the correlation of sensory preferences for vision and vestibular systems. Disruption of the sensorimotor functions following space flight affects posture, locomotion and spatial orientation tasks in astronauts. The Group Embedded Figures Test (GEFT), the Rod and Frame Test (RFT) and the Computerized Dynamic Posturography Test (CDP) are measurements used to examine subjects visual and vestibular sensory preferences. The analysis of data from these tasks will assist in relating the visual dependence measures recognized in the GEFT and RFT with vestibular dependence measures recognized in the stability measures obtained during CDP. Studying the impact of sensory dependence on the performance in varied tasks will help in the development of targeted countermeasures to help astronauts readapt to gravitational changes after long duration space flight

    Detrimental effects of malaria, toxoplasmosis, leishmaniosis and Chagas disease on cardiac and skeletal muscles

    Get PDF
    The pathogenic mechanisms of several diseases triggered by protozoan parasites, such as the causative agents of Chagas disease, toxoplasmosis, leishmaniosis, and malaria, have demonstrated to cause direct detrimental effect on cardiac and skeletal muscle. These are amongst the most prevalent and epidemiologically relevant protozoan infections worldwide and infecting millions of people per year. As such, this review focuses on the current knowledge on the pathogenic mechanisms of these diseases on muscles. Case studies and original research addressing the mechanisms of action for direct and indirect damage to cardiac and skeletal muscle were analyzed and the main findings summarized. Importantly, all diseases reviewed here produce an intense inflammatory response, with the associated oxidative stress and pro-inflammatory cytokine production leading to or furthering these detrimental effects. Critically, the disruption of cardiac muscle function can lead to minor arrhythmias and even death, and skeletal muscle damage can result in homeostatic imbalances serving to further morbidity and mortality. Strategies for preventing complications and determining the effectiveness of interventions designed with antioxidant and anti-inflammatory molecules to minimize muscle injury and help the millions of people with these diseases are an urgent need

    Standardised empirical dispersal kernels emphasise the pervasiveness of long‐distance dispersal in European birds

    Get PDF
    1. Dispersal is a key life-history trait for most species and is essential to ensure connectivity and gene flow between populations and facilitate population viability in variable environments. Despite the increasing importance of range shifts due to global change, dispersal has proved difficult to quantify, limiting empirical understanding of this phenotypic trait and wider synthesis. 2. Here, we introduce a statistical framework to estimate standardised dispersal kernels from biased data. Based on this, we compare empirical dispersal kernels for European breeding birds considering age (average dispersal; natal, before first breeding; and breeding dispersal, between subsequent breeding attempts) and sex (females and males) and test whether different dispersal properties are phylogenetically conserved. 3. We standardised and analysed data from an extensive volunteer-based bird ring-recoveries database in Europe (EURING) by accounting for biases related to different censoring thresholds in reporting between countries and to migratory movements. Then, we fitted four widely used probability density functions in a Bayesian framework to compare and provide the best statistical descriptions of the different age and sex-specific dispersal kernels for each bird species. 4. The dispersal movements of the 234 European bird species analysed were statistically best explained by heavy-tailed kernels, meaning that while most individuals disperse over short distances, long-distance dispersal is a prevalent phenomenon in almost all bird species. The phylogenetic signal in both median and long dispersal distances estimated from the best-fitted kernel was low (Pagel's λ 0.7) when comparing dispersal distance estimates for fat-tailed dispersal kernels. As expected in birds, natal dispersal was on average 5 km greater than breeding dispersal, but sex-biased dispersal was not detected. 5. Our robust analytical framework allows sound use of widely available mark-recapture data in standardised dispersal estimates. We found strong evidence that long-distance dispersal is common among European breeding bird species and across life stages. The dispersal estimates offer a first guide to selecting appropriate dispersal kernels in range expansion studies and provide new avenues to improve our understanding of the mechanisms and rules underlying dispersal events.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Trends in Human Spaceflight: Failure Tolerance, High Reliability and Correlated Failure History

    Get PDF
    In a half century of human spaceflight, NASA has continuously refined agency safety and reliability requirements in response to mission demands, critical failures, and technology development. Early spacecraft, including Mercury, Gemini and Apollo vehicles, were highly reliant on dissimilar redundancy and demonstrated test margins. Later programs, such as the reusable Space Transportation System (STS) and International Space Station (ISS), introduced probabilistic studies and isolated two-failure tolerance to improve robustness at the expense of added complexity. More recently, the Orion Multi-Program Crew Vehicle (MPCV) program adopted universal single-failure tolerance with two categorical exceptions; Zero-Failure Tolerant (0FT) and Design for Minimum Risk (DFMR) hardware. Failure tolerance variances are defined and managed in accordance with agency human-rating requirements, and require concurrence from program Technical Authorities (TA) as well as the MPCV Safety and Mission Assurance Safety and Engineering Review Panel (MSERP). To understand and reaffirm standards applied to Apollo, Space Shuttle and Orion vehicles, Orion and Deep Space Gateway Safety and Mission Assurance (S&MA) representatives conducted accelerated research to compare unique safety and reliability criteria against ground and flight anomalies, based on information contained in post-mission reports and the Problem Reporting and Corrective Action (PRACA) database. In some cases, high-profile failures and narrow escapes have reinforced decisions to maintain or adapt safety requirements. In others, empirical trends have highlighted the need for vigilance and innovative safety guidelines. Given the inability to achieve absolute compliance with evolving safety and reliability requirements, the team conducted a targeted review of DFMR and 0FT propulsion elements within the framework of changing system design, inspection, materials and process developments to formulate conclusions on technological maturity, failure density, and net changes in safety risk. Based on the aggregate performance of high-reliability and failure-tolerant systems, the authors have attempted to establish best practices and guidelines to inform future program decisions. On a somewhat cautionary note, this study is not intended to direct a universal set of requirements for future missions based on prior lessons learned. Spacecraft safety is a multi-variable problem, and attempts to mitigate past failures will not guarantee future success. However, this assessment offers a retrospective review of policy changes, implementation and effectiveness. In the future, NASA, European Space Agency (ESA) and industry partners may benefit from a more robust correlation between requirements and performance, as space-faring nations work toward more challenging, complex and long-duration commercial and deep-space ventures

    Metrics of Balance Control for Use in Screening Tests of Vestibular Function

    Get PDF
    Decrements in balance control have been documented in astronauts after space flight. Reliable measures of balance control are needed for use in postflight field tests at remote landing sites. Diffusion analysis (DA) is a statistical mechanical tool that shows the average difference of the dependent variable on varying time scales. These techniques have been shown to measure differences in open-loop and closed-loop postural control in astronauts and elderly subjects. The goal of this study was to investigate the reliability of these measures of balance control. Eleven subjects were tested using the Clinical Test of Sensory Interaction on Balance: the subject stood with feet together and arms crossed on a stable or compliant surface, with eyes open or closed and with or without head movements in the pitch or yaw plane. Subjects were instrumented with inertial motion sensors attached to their trunk segment. The DA curves for linear acceleration measures were characterized by linear fits measuring open- (Ds) and closed-loop (Dl) control, and their intersection point (X-int, Y-int). Ds and Y-int showed significant differences between the test conditions. Additionally, Ds was correlated with the root mean square (RMS) of the signal, indicating that RMS was dominated by open-loop events (< 0.5 seconds). The Y-int was found to be correlated with the average linear velocity of trunk movements. Thus DA measures could be applied to derive reliable metrics of balance stability during field tests

    Reliable, Semi-Automated Wound Healing Rate Determination in Muscle

    Get PDF
    In the field of Regenerative and Sport Medicine, there is great interest in the development and validation of compounds and devices with the potential to accelerate wound healing and muscle regeneration. In vitro, this effect can be evaluated in a scratch test model, in which a pipette removes a line of cells from a confluent monolayer of cells with high regenerative capacity and the time to close this injury measured. PURPOSE: To develop a reliable, dynamic, and quantitative process with a shorter duty cycle and semi-automatic operation for the determination of wound healing rate, as compared to fully manual operation. METHODS: C2C12 murine myoblasts were cultured to confluence under standard conditions. A 200 µL pipette tip was used to make a scratch across each well, and 0 and 0.5mM of pro-myogenic Si-ions were added to the media. A Keyence BZX-710 microscope was used to capture images every 183 seconds over 36 hours at 10x magnification with 0.7 pixels/μm and 4 µm pitch. An enclosed cell culture stage contained a cell incubator system keeping cells at 37°C with a 5% CO2 humidified air. For the manual operation, one image was randomly selected from the automated images every 12hr. ImageJ Macro WH_NJ was used to quantify the percent area of the field (scratched) of interest without cells and was normalized as needed per experimental conditions. RESULTS: The manual and automatic slopes for the 0 and 0.5mM Si-ion treatments were -4.87E-06, -4.84E-06, -6.01E-06, and -5.98E-06, respectively, for the full 0-36hr. There was a high degree of correlation between the manual and semi-automatic rates for both the 0 and 0.5mM Si-ions, at r=.84 and .98, respectively. There were no statistically significant differences between healing rates (i.e., closure times) for the automatic or manual 0 or 0.5mM Si-ions, or within either method, following a two-tailed student’s t-test with alpha level of p\u3c.05. Within 12hr periods, the semi-automatic method provided greater detail for the healing rate, such as the faster initial rate seen in 0.5mM Si-ion, not discernible in 12-hour increments for the manual method. CONCLUSION: These data support the functionality of our new methodology described here. The descriptive and inferential statistics shown here demonstrate agreement between the two analyses, while the semi-automated method presented additional dynamics and kinetics information beyond the manual method in early-test behavior that could not be measured manually. Further development in this area will focus on continuing to shorten duty cycles for higher fidelity and the quantitative analysis of dynamic behaviors. Potential clinical-translational applications of our new method are to screen libraries of compounds with putative muscle regeneration capacity using human muscle cells. We also plan to test basal differences in muscle cells from biopsies of sedentary and active individuals, as well as healthy individuals vs. those with various metabolic and musculoskeletal and cardiovascular disorders, and aging sarcopenia. Our new methodology coupled with these translational studies will help advance new compounds and devices with early promise for the field of Regenerative and Sport Medicine into the pre-clinical animal phases of validation
    corecore