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Abstract

This dissertation consists of three essays that investigate the determinants of hospital and physician

decisions and the consequences of those decisions for social welfare.

Chapter 1 examines how physicians combine their own experience with evidence from the clinical

literature to form beliefs about the probability of rare complications. Focusing on a particular

obstetric context, I present event study evidence that physicians respond to their own idiosyncratic

experience. I combine this event study evidence with an analysis of the available clinical literature

in order to calibrate a model of physician learning. I find that the calibrated model can account

for much of the cross-sectional variation in practice patterns in this setting and may be able to

account for the dramatic changes in practice patterns in this setting over the last three decades.

Chapter 2 (which is co-authored with Amitabh Chandra) examines the welfare implications of

hospital adoption of percutaneous coronary intervention (PCI) since the early 1990s. We find that

PCI adoption over this period was approximately welfare neutral, but would likely have generated

positive net benefits if utilization had been limited to high-benefit patients. We also find that

hospitals’ profits on high-benefit patients are not sufficient to cover the fixed costs of adoption.

Achieving the efficient outcome would therefore require policy changes that both discourage uti-

lization among low-benefit patients and allow hospitals to capture more of the surplus generated

among high-benefit patients.

Chapter 3 exploits day-to-day fluctuations in patient demand to estimate the marginal return to

increasing per-patient hospital resources. Such estimates can shed light on the benefits of additional

hospital capacity and on theories about the cross-sectional pattern of productivity in medicine. I

find that patients arriving when a hospital has a large number of patients in its intensive care unit

are less likely to be admitted to intensive care beds and more likely to face delays in the receipt of
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time-sensitive care. The hospital responses are consistent with a model in which hospitals ration

care based on expected clinical benefit. There is no evidence that hospital congestion adversely

affects health outcomes, but firm conclusions will require more data.
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Chapter 1

Physician Learning and Physician

Practice Patterns: Evidence from

Obstetrics

Standard models of physician behavior posit that improving patient well-being is a major objective

for physicians, either on its own (e.g. Chandra and Staiger (2007)) or in combination with other,

typically financial, objectives (e.g. Ellis and McGuire (1986)). With a small number of notable

exceptions (Frank and Zeckhauser, 2007; Dickstein, 2012), however, these models assume that

the physician knows the medical production function with certainty. Such an assumption grossly

simplifies the reality physicians actually face. In practice, physicians confront a formal clinical

literature that is frequently incomplete and sometimes contradictory, and they must integrate this

formal evidence with informal evidence from their own experience with patients. In this paper, I

show that an explicit focus on physician learning provides important insights into physician behavior

that models that abstract from physician learning cannot provide.

I examine physician learning in a particular medical context: the choice between elective repeat

cesarean section and “trial of labor after cesarean” (TOLAC) for a pregnant woman with a prior

cesarean delivery. This choice requires physicians and patients to trade off the reduced maternal

morbidity associated with a successful “vaginal birth after cesarean” (VBAC) against the risk that

attempting labor will lead to a rare, but serious complication known as uterine rupture. Rupture
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occurs when the uterine wall tears along the scar left by the prior cesarean incision, and it can have

serious consequences for both the mother and the baby, including the possibility of perinatal death.

Two characteristics of this medical setting make it ideally suited to a study of provider learning.

First, the debate among obstetricians over appropriate care for this category of patients focuses

on a single, observable, high-salience risk of uncertain magnitude: uterine rupture. As stated in a

recent editorial by the editor-in-chief of Obstetrics and Gynecology, a leading journal in the field,

“VBAC is essentially a uterine rupture issue” (Scott, 2010). Second, any practicing obstetrician

routinely attends both vaginal and cesarean deliveries, so changing practice style in response to

new information requires no investment in new skills or equipment.

Meanwhile, this setting exhibits in microcosm two puzzling stylized facts from the general

literature on physician practice. First, the share of women undergoing TOLAC varies widely across

hospitals. After purging small-sample variation, the hospital at the 75th percentile of the TOLAC

rate distribution had a rate at least 50 percent higher than the hospital at the 25th percentile

of the distribution over the entirety of the period for which data are available. This mirrors a

broad literature inside and outside of economics that documents large cross-sectional variations

in physician practice across regions (Fisher et al., 2003), across hospitals and physicians within a

region (Epstein and Nicholson, 2009), and even across physicians within a single hospital (Doyle et

al., 2010). Second, TOLAC rates have followed a dramatic up-then-down path in recent decades,

as shown in Figure 1.1. The VBAC rate in 1979 was virtually zero and had been for decades.

By 1995, the VBAC rate had gradually risen to almost 30 percent, after which it reversed and

gradually fell back below 10 percent by the mid-2000s. This pattern of slow diffusion, followed by

slow “un-diffusion” of TOLAC is a case study of unresolved general questions about what forces

drive diffusion of medical technology (Phelps, 2000; Skinner and Staiger, 2009).

In this setting, I develop and calibrate a model in which physician decisions are driven by beliefs

about the risk of uterine rupture. In forming these beliefs, physicians rationally combine two types

of information: (1) formal evidence on the risk of uterine rupture from the published clinical

literature; and (2) informal experience with patients, their own and potentially those of colleagues.

In this model, changes in average practice over time can arise either from changes in the published

evidence or, to the extent that published evidence on the risk of rupture is inconsistent with the

true risk, accumulating physician experience. This model can generate rich cross-sectional variation
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in practice, arising both from systematic differences in the experience accumulated by physicians

who face different risks of rupture (a mechanism related to that studied by Chandra and Staiger

(2007)) and from random differences in experience among physicians facing a common risk.

I analyze this model empirically in three steps. I first use an event study design to estimate

the effect of physicians’ idiosyncratic experience with uterine rupture on practice patterns. I then

examine what a rational physician should believe about the risk of rupture on the basis of the

clinical literature; I use this analysis to gain insight into whether the event study results can be

reconciled with rational learning behavior. Finally, I combine the event study results and evidence

from the clinical literature to calibrate and simulate the learning model.

I start by using an event study design to examine how idiosyncratic experiences with uterine

rupture affect the behavior of medical providers. In brief, I identify the effect of a uterine rupture

event on subsequent practice by comparing the evolution of TOLAC rates at hospitals at which a

patient experiences a uterine rupture event to hospitals in the same state of similar size at which

no patient experiences such an event. I implement this approach in a database that contains the

the universe of hospital discharges records for several large states over a combined 106 state-years

stretching from 1993 to 2010. I estimate that delivering a patient who experiences uterine rupture

during an attempt of labor immediately reduces the hospital’s TOLAC rate by 0.5 percentage

points, growing to 0.7 percentage points by 6 quarters later. After scaling this estimate up to

account for measurement error, I estimate that experiencing a uterine rupture event reduces a

hospital’s trial of labor rate by 1.1 percentage points in the medium run. I then repeat the event

study at the physician level. I find that only a small share of the hospital-wide response can

be accounted for by the particular physician who experienced the event, which implies that the

learning processes at work operate at the hospital level (or above). I also present evidence that the

common trends assumption underlying the event study is valid, that the event does not lead to any

important changes in hospital case mix, and that my estimate is far out in the tail of a distribution

of “placebo” event study estimates, all of which support a causal interpretation of the results.

These event study results are consistent with research from other settings finding that physicians

respond to their own experience. Choudhry et al. (2006) show that physicians reduce the rate at

which they prescribe the blood-thinning drug warfarin to patients with atrial fibrillation after

a patient experiences a possibly warfarin-induced bleeding complication. Dranove and Watanbe

3



(2009) show that obstetricians who are sued for malpractice modestly increase their cesarean section

rates over the ensuing quarters. As discussed below, however, my interpretation of these responses

differs sharply from that advanced by Choudhry et al. (2006).

As a byproduct of my event study, I also make a contribution to the econometrics literature

on event studies. In particular, I derive an event study estimator that extends the conditional

difference-in-differences framework of Abadie (2005) to the event study context. The resulting

event study estimator is similar to that used by Hilger (2012) in his study of parental layoffs on

child college enrollment, and the identification results in this paper provide a formal justification

for his approach. Relative to the distributed lag regression estimators frequently used for event

studies (e.g. Jacobson et al. (1993)), this estimator has several advantages, most importantly: the

resulting estimates are interpretable as treatment effects on the treated, even in the presence of

treatment effect heterogeneity; and there is no need for the various ad hoc approaches to handling

units that experience multiple events commonly used in this literature (Sandler and Sandler, 2012).

In the next part of the paper, I turn to understanding what beliefs a rational physician should

hold about the risk of uterine rupture based on the clinical literature. Via a comprehensive review

of this literature, I identify more than 100 studies that report experience with trial of labor and

uterine rupture. By analyzing this literature, I obtain an important insight: different studies

provide very different estimates of the risk of rupture. After accounting for small sample variation,

the cross-study standard deviation in the estimated risk is 70 log points. I then show that, if

even one-quarter of this variation arises from true cross-provider heterogeneity in risk rather than

study-specific measurement error, a rational physician should be quite uncertain about her own risk

of rupture even after reviewing the entirety of the literature. Under that assumption, I calculate

that the information encompassed by the entire literature available as of 2010 is equivalent to the

information obtained from observing fewer than 1,400 attempts of labor by a single physician’s

patients, despite the fact that the full clinical literature encompasses more than 400,000 attempts

of labor.

This fact has important implications for the interpretation of the event study results. In par-

ticular, using this estimate of the information contained in the clinical literature and the structure

provided by the learning model, I calculate that a rational physician who has seen 1,000 deliveries

by women with a prior cesarean section and experiences a uterine rupture event should update her
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beliefs about the risk of rupture by 7.6 percent of the baseline risk of rupture. This change in the

estimated risk of rupture is substantial, and it implies that rationalizing the event study estimate

that a single uterine rupture event leads to a 1.1 percentage point reduction in TOLAC rates does

not require absurd assumptions about the sensitivity of patient preferences to changes in risk. This

conclusion is contrary to that of Choudhry et al. (2006), who argue that physician responses to

personal experience of this kind are prima facie evidence of irrationality in physician learning.

I close my analysis of the learning model by calibrating it using the event study estimate and

estimates of what a rational physician would believe based on the clinical literature. I then simulate

the model in order to study its ability to explain the striking cross-sectional and time series variation

in TOLAC rates discussed earlier. This analysis has three important findings.

First, I find that my event study estimate of how hospitals respond to idiosyncratic experience

with uterine rupture implies the existence of substantial and long-lived cross-sectional variation in

practice. Surprisingly, this can be true even if there is no true heterogeneity in the risk of rupture

across hospitals. In particular, if physician learning occurs at the “community” level (defined,

for these purposes, as among a group of four average-sized hospitals), idiosyncratic differences in

experience with uterine rupture can explain at least one-quarter of the cross-hospital variation in

TOLAC rates in all years through 2010. Meanwhile, if I assume that providers also differ in the

their true risk of rupture, I can approximately match the overall level of cross-hospital variation in

TOLAC rates.

Second, I find that the rational learning model cannot account for the time series pattern of

TOLAC rates. While it can rationalize the rapid rise in TOLAC rates during the 1980s as being

the result of accumulating medical evidence showing that the risk of uterine rupture was lower than

previously thought, it cannot explain the late-1990s decline. Its failure in the late 1990s occurs

because there is little change in the average message of the clinical literature over this period.

Third, however, I show that a modified version of the model in which physicians exhibit “se-

lective memory” can explain the time series pattern. In particular, I modify the model so that

physicians always remember attempts of labor that end in rupture but frequently forget attempts

that end without rupture. In light of the severity and rarity of uterine rupture events, such a

pattern is plausible if physicians assess their own experience using the “availability heuristic” of

Tversky and Kahneman (1973). The fact that most hospitals institutionalize a focus on adverse
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events through regular “morbidity and mortality” conferences could also help generate this pattern.

Once extended in this fashion, the model can account for virtually all of the decline in TOLAC rates

relative to their peak. Intuitively, with this modification, physicians now underweight successful

instances of TOLAC and, as a result, gradually come to believe that rupture is a far more common

outcome than it actually is, leading TOLAC rates to fall accordingly. While this finding suggests

that Choudhry et al. (2006) may indeed have been correct that irrationality is an important fea-

ture of physician learning, the pattern of irrationality assumed here is precisely the opposite of that

proposed by Choudhry et al. (2006). Choudhry et al. argue that physicians overweight their own

experience with rare adverse events. In this model, physicians respond completely rationally to

adverse events; the irrationality arises because they under-react to run-of-the-mill good outcomes.

In the final section of the paper, I examine an alternative theory for the evolution of TOLAC

rates over the last three decades, which emphasizes the role of a small number of high-profile events:

the publication of clinical guidelines by the American College of Obstetricians and Gynecologists

(ACOG); and the publication of a small number of high-profile articles in major medical journals.

The role of events of this kind has been emphasized in the medical and epidemiological literature

by, for example, Zinberg (2001), Guise et al. (2010b), and MacDorman et al. (2011). To assess

the role of these events, I undertake a regression discontinuity analysis around publication of eight

ACOG guidelines and five highly-cited research articles to see what, if any, effect these events had

on vaginal birth after cesarean (VBAC) rates. I find evidence that only one of these events, the

publication of Lydon-Rochelle et al. (2001), had a significant effect on practice. Even this event,

however, reduced the VBAC rate by only 2 percentage points, which is a tiny fraction of the overall

change in practice patters over the period studied. I also examine whether any of these events

causes a change in the trend (as opposed to the level) of the VBAC rate. While these analyses

have more limited power, I find no evidence of such changes in trend. I conclude that high-profile

events of this kind cannot account for the observed changes in practice.

The remainder of the paper proceeds as follows. Section 1 briefly introduces my medical setting.

Section 2 presents the model of physician learning. Section 3 describes my data. Section 4 presents

the event study results on the effect of uterine rupture on subsequent practice decisions. Section 5

examines the evolution of the clinical literature. Section 6 calibrates the learning model. Section

7 presents evidence on the effect of a small number of high-profile events, and the final section
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concludes.

1.1 Medical setting

I explore the research questions of this paper in an obstetric context: the choice of an appropriate

mode of delivery for pregnant women with a history of cesarean section. Women with a prior

cesarean delivery have two options in subsequent pregnancies: delivery by elective repeat cesarean

section; or a “trial of labor after cesarean” (TOLAC) with the goal of achieving a “vaginal birth after

cesarean” (VBAC).1 Successful vaginal delivery has the same advantages over cesarean delivery in

this group as in women with no history of cesarean section; a cesarean section is major abdominal

surgery and so typically entails a longer recovery and a greater risk of complications for the mother.

On average, women with a prior cesarean delivery who attempt labor have a vaginal delivery roughly

three-quarters of the time. However, for women in this group, labor also carries with it a 1 in 200

risk of a complication known as uterine rupture, which occurs when the uterine wall tears along

the scar left by the prior cesarean incision. Women who deliver by elective cesarean section face a

negligible risk of rupture, as do women without a history of cesarean delivery (Zwart et al., 2009).

When uterine rupture occurs, it is an emergency and can have serious consequences, particularly

for the neonate. Uterine rupture brings with it an approximately 1 in 20 risk of perinatal death

and is believed to carry a considerably larger risk of serious neurological damage to the neonate,

although the precise magnitude of this risk is uncertain.

The decision problem for patients with a prior cesarean section therefore trades off the risk

of uterine rupture against the possibility that attempting labor will lead to a successful vaginal

delivery. Different patients are likely to evaluate this tradeoff differently, due both to variation

in maternal preferences over different birth outcomes (see, for example, Emmett et al. (2010)

and Grytten et al. (2013)) and to variation in the relevant probabilities. There is, in particular,

substantial cross-patient heterogeneity in the probability that an attempt of labor will lead to a

vaginal delivery. Women with a prior vaginal delivery and a non-recurring indication for the prior

cesarean section (e.g. breech presentation) are much more likely to have a successful VBAC, while

1Unless otherwise indicated, the ensuing discussion of the risk and benefits of these two delivery options is based
upon the conference statement produced by a recent National Institutes of Health Consensus Development Conference
on this topic (NIH, 2010) and the evidence report on which that statement is based (Guise et al., 2010b).
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the success rate falls with maternal BMI, fetal size, and maternal age. White race and various

indicators of higher socioeconomic status are also predictive of a successful VBAC. By contrast,

there are few known predictors of uterine rupture. A short time since the prior cesarean section,

multiple prior cesarean sections, and a type of prior uterine incision other than a low transverse

incision all raise the risk of rupture, but these risk factors are relevant for only small groups of

women. The only aspect of the management of labor known to have an effect on the risk of rupture

is inducing labor; induced labor has a risk of rupture roughly twice that of spontaneous labor. It

is not known whether the paucity of strong predictors of uterine rupture indicates that the risk is,

in fact, relatively homogeneous across the population or instead simply a reflection of the limits of

current knowledge.

Recent decades have seen dramatic swings in VBAC rates.2 In light of the very high risk of

uterine rupture associated with the “classical” cesarean incision then in use, obstetric practice in

the early 20th century came to be dominated by the dictum “once a cesarean, always a cesarean,”

which is conventionally attributed to Cragin (1916). Cragin’s dictum remained the dominant view

until the final decades of the 20th century. As depicted in Figure 1.1, however, practice began

to depart from this traditional view in the early 1980s and VBAC rates began to rise. Most

accounts attribute this change in practice to the overall rise in cesarean section rates during the

1970s, which spurred interest in reducing overall cesarean delivery rates, while simultaneously

focusing attention on appropriate care for the growing share of deliveries in which the mother had

a history of cesarean section. Citing these trends in cesarean delivery and a limited body of evidence

suggesting that VBAC was safe for many categories of women, the National Institutes of Health

Consensus Conference on Cesarean Delivery held in 1980 endorsed wider adoption of VBAC (NIH,

1980). VBAC rates rose steadily over the ensuing 15 years, accompanied by additional evidence

confirming that the risk of uterine rupture was modest and several rounds of guideline revisions by

the American College of Obstetricians and Gynecologists (ACOG) that supported trial of labor for

progressively broader patient populations.

The rise in VBAC rates abruptly halted and reversed itself in the mid-1990s. A variety of hy-

2The trends discussed below are discussed in greater detail in Flamm (1997), Zinberg (2001), Korst et al. (2011),
and MacDorman et al. (2011). Unless otherwise indicated, the statements in this section are attributable to those
sources.
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Figure 1.1: Vaginal birth after cesarean rates over time
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Notes: This figure plots the vaginal birth rate for deliveries in which the mother had a prior cesarean delivery.
NHDS refers to for the National Hospital Discharge Survey. NVSS natality file refers to the National Vital
Statistics System Natality Public Use File, which provides information derived from birth certificates for the
universe of US births. Both data sources are described in detail in section 1.3. Data for 2003 and later are
adjusted for the gradual adoption of the 2003 certificate of live birth as described in Section 1.3. Monthly
data from the natality file are plotted such that the month YYYYM1 is plotted at YYYY.00. For visual
consistency, annual data from the NHDS are plotted halfway between YYYYM1 and YYYYM12.
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potheses for this reversal have been advanced. One hypothesis is that an increase in experience with

uterine rupture – a necessary concomitant of rising VBAC rates – placed a damper on enthusiasm

for VBAC, perhaps by increasing the perceived risk of rupture and thereby increasing the perceived

level of monitoring appropriate for patients undergoing TOLAC (Pitkin, 1991), which would have

increased the obstetrician’s cost of attending a TOLAC.

Several other factors are also commonly cited as playing a role in the recent decline in VBAC

rates. Many sources ascribe an important role to an increased salience of malpractice liability

due variously to high profile judgments in cases of uterine rupture, the late-1990’s “crisis” in

malpractice premiums, and direct pressure from malpractice insurers to reduce VBAC rates. Also

commonly cited in this literature are publication of certain high-profile research articles and the

ACOG guideline revisions in October 1998 and November 1999, which placed a greater weight

on the risk of rupture and recommended that hospitals offering VBACs should have anesthesia

capabilities on hand at all times.

Variation in VBAC rates is not limited to the time series, and there is also considerable cross-

sectional variation in VBAC rates. In order to obtain estimates of cross-sectional variation in VBAC

rates that are purged of small-sample variation, I estimate a simple model in which each hospital

has a “latent” VBAC rate drawn from an underlying beta distribution and its realized VBAC rate

is the result of a binomial draw based on that underlying rate. The details of this beta-binomial

mixture model are provided in Appendix A.1. I estimate the model using data from the Nationwide

Inpatient Sample for 1988-2010 that are described in Section 1.3. Figure 1.2 depicts the estimated

cross-hospital distribution of latent VBAC rates. It is evident that the cross-sectional variation is

substantial in all years.

1.2 Learning model

I start my analysis by presenting a simple model of how medical providers (e.g. physicians and

hospitals) form beliefs about the magnitude of the risk of uterine rupture and how those beliefs

affect practice decisions.3 Providers start with a common prior belief based on the published clinical

3Phelps and Mooney (1993) present a learning model that is similar in some respects to the model presented
here, notably its use of a beta-binomial learning rule. Their focus is on understanding how new physicians learn the
practice norms of their local community, not how physicians learn about the productivity of alternative treatment
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Figure 1.2: Distribution of latent hospital VBAC rates by year
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Notes: This figure plots the distribution of latent hospital VBAC rates obtained from fitting a beta-binomial
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in Section 1.3, and the beta-binomial model used to estimate these distributions are described in detail in
Appendix A.1.
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literature and gradually accumulate additional information from their own direct experience with

patients or from the experience of colleagues. I suppose that time evolves continuously and that the

common prior at time t can be summarized by a beta distribution with parameter vector (α(t), β(t))

with α(t), β(t) > 0. The uncertainty in this prior may reflect uncertainty about the population

distribution of risks, the provider’s position within that population distribution, or both. I denote

the number of patients who provider h has observed attempting labor at time t by Lh(t) and the

number of uterine ruptures observed by provider h at time t by Rh(t).

Because the beta distribution will play an important role in what follows, it is worth a brief

digression to review its properties. The beta distribution is the conjugate prior distribution for the

Bernoulli distribution. In particular, starting from a prior belief that the probability of some event

is represented by beta distribution with parameters (α, β), the posterior belief after observing a

single random realization X of that event is a beta distribution with parameters (α+X,β+1−X).

Since the uniform distribution is a beta distribution with α = β = 1, this conjugacy property

means that the beta distribution with parameter vector (α, β) can be interpreted as the posterior

distribution arising from observing α− 1 “hits” and β− 1 “misses” starting from a state of perfect

ignorance. For this reason, I will refer to the sum φ = α + β as the “notional sample size” of

the corresponding beta distribution. The beta distribution has mean µ = α/(α + β) and variance

µ(1−µ)/(φ+ 1); note that the variance goes to zero as φ→∞. It will frequently be convenient to

work in terms of the alternative parametrization (µ, φ), and I will switch back and forth freely.

I suppose that each provider faces a true risk of rupture ph drawn according to some distribution

function G(p) and that rupture outcomes are independent across births within a provider (condi-

tional on ph).4 Assuming that the provider combines information using Bayes rule, the conjugacy

property described above implies that the beliefs of provider h at time t follow a beta distribution

with parameter vector (α(t) + Rh(t), β(t) + Lh(t) − Rh(t)). The posterior mean, which I denote

p̃h(t), therefore takes the intuitive form

p̃h(t) =
α(t) +Rh(t)

α(t) + β(t) + Lh(t)
, (1.1)

options.

4The population distribution of risks need not coincide with the providers’ prior beliefs, as the evidence on which
those beliefs are based may be flawed or simply include some sampling error.
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which combines the prior information with the provider’s own experience. Observe that the oc-

currence of a rupture at any time before t increases the estimated risk of rupture at time t by an

amount

∆̃h(t) =
1

α(t) + β(t) + Lh(t)
, (1.2)

relative to the counterfactual in which that delivery proceeded without rupture. Equation (1.2)

shows that the effect of an earlier event on beliefs at time t is inversely proportional to the sum of the

notional sample size of the common prior and accumulated experience. Since this formula applies

to events occurring at any time before t, it implies that the effect of any given event diminishes only

gradually as the provider acquires additional experience or as additional clinical evidence increases

the precision of the common prior.

Patients with a prior cesarean delivery arrive according to a Poisson process with continuously-

varying rate λ(t), and I assume λ(t) ≥
¯
λ > 0 for all t. I assume that the provider truthfully reports

her current estimate of the risk of rupture to each patient. Each patient has a distinct threshold risk

p∗ such that the patient prefers to labor if p̃h(t) < p∗ and elects repeat cesarean delivery otherwise.5

The distribution of thresholds is identical across providers and follows a cumulative distribution

function F (p∗) with support on the full interval [0, 1].6,7 Per the discussion in the last section,

variation in the risk threshold could arise from a variety of sources, including differences in maternal

preferences over different birth outcomes or differences in the likelihood that an attempt of labor is

successful. The trial of labor rate of provider h at time t is therefore given by yh(t) = 1−F (p̃h(t)).

In this model, therefore, a provider’s current beliefs about the risk of uterine rupture is a sufficient

statistic for the provider’s practice style.

I turn now to understanding what the model implies about the core questions of interest in

5Note that, provided that the patient maximizes expected utility, it does not matter whether the provider reports
only the mean of her posterior belief or the full distribution.

6The full support assumption ensures that even providers that get an arbitrarily long sequence of bad outcomes
will never have their trial of labor rates drop all the way to zero. It is mathematically convenient and unlikely to be
particularly restrictive in practice.

7The assumptions made here imply that the learning process is inefficient since the provider-patient dyad does not
take account of the additional information generated by an attempt of labor when choosing a delivery mode. Optimal
learning would involve requiring some patients who actually prefer cesarean delivery to undergo a trial of labor and
to do so to a greater degree when uncertainty is greater. Experimentation of this kind is not the main focus on the,
but would add substantial mathematical calculation for little gain for understanding the present questions. Frank
and Zeckhauser (2007) and Dickstein (2012) explore these incentives for experimentation in detail in the context of
anti-depressant prescribing behavior.
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this paper: the sources of changes in practice patterns over time and of cross-provider variation in

practice patterns at a point in time. Changes in practice patterns over time can come from two

basic sources in the model: (1) changes the clinical literature that change the providers’ common

prior; and (2) experience with the individual patients. Proposition 1 formally characterizes the

model’s dynamics:

Proposition 1. Suppose that the prior belief parameters (µ(t), φ(t)) are everywhere differentiable.
Then the rate of change in the expected beliefs of provider h at time t, conditional on the provider’s
current experience vector and risk type, is

d

ds
E[p̃h(s)|Rh(t), Lh(t), ph]|s=t =

φ(t)∆̃h(t)µ′(t)︸ ︷︷ ︸
change in prior mean

+ (µ(t)− p̃h(t))∆̃h(t)φ′(t)︸ ︷︷ ︸
change in prior “sample size”

+λ(t)yh(t)∆̃+1
h (t)[ph − p̃h(t)]︸ ︷︷ ︸

experiential learning

, (1.3)

where ∆̃+1
h (t) ≡ (φ(t)+Lh(t)+1)−1. The corresponding rate of change in the expected trial of labor

rate is given by

d

ds
E[yh(s)|Rh(t), Lh(t), ph]|s=t = −f(p̃h(t))[φ(t)∆̃h(t)µ′(t) + (µ(t)− p̃h(t))∆̃h(t)φ′(t)]

+ λ(t)yh(t)[ph{1− F (p̃h(t)− p̃h(t)∆̃+1
h (t))}

+ (1− ph){1− F (p̃h(t)− (1− p̃h(t))∆̃+1
h (t))} − {1− F (p̃h(t)}],

where f(·) is the density function associated with the distribution function F (·).

It is instructive to examine each term of equation (1.3) in turn. The first term captures the

effect of changes in mean of the prior distribution. As the prior mean increases, the posterior mean

increases as well; the factors multiplying µ′(t) indicate that this effect is more important when the

notional sample size of the prior is large relative to total experience. The second term illustrates the

effect of increasing the precision of the prior distribution, which is to “shrink” the distribution of

beliefs toward the mean of the prior distribution. The third term captures the effect of experiential

learning, which, on average, shifts the provider’s beliefs toward the true risk; this effect is larger

for providers with high trial of labor rates and when the patient arrival rate is larger.

While all three of these effects may drive changes in beliefs for any particular provider at a

particular point in time, the second two will frequently average to zero across the population. In

particular, the second effect will be zero in the aggregate if E[∆̃h(t) · {p̃h(t)− µ(t)}] = 0, while the

third effect will be zero if E[yh(t)∆̃+1
h (t) · {ph − p̃h(t)}] = 0. Neglecting the covariance between the
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terms in curly braces and the terms multiplying them, we see that these equalities will fail only

when the common prior distribution is “mis-calibrated,” that is, if the mean of the common prior

differs from the the actual population average risk.

Turning to cross-sectional variation, one driver of variation in beliefs and practice is true dis-

persion in the risk of rupture. This source of variation in practice is similar to that studied by

Chandra and Staiger (2007); here, the source of variation in productivity is underlying heterogene-

ity in the risk of rupture.8 Proposition 2 demonstrates that, in the long-run, this is the only source

of cross-sectional variation present in the model. Intuitively, providers ultimately learn their true

risk levels and, as a result, the steady state distribution of practice patterns exactly follows the

population distribution of risks.9

Proposition 2. Suppose that the prior belief parameters (α(t), β(t)) meet the following conditions:

(i) φ(t) >
¯
c for some constant

¯
c > 0 for all t;

(ii) µ(t) < µ̄ for some constant µ̄ < 1 for all t; and

(iii) one of the following holds: (1) φ(t) is bounded above; or (2) G(p) places mass on a single
point p0 and µ(t)→ p0 as t→∞.

Then p̃h(t)
a.s.−→ ph as t → ∞, and the steady state distribution of the trial of labor rate yh has a

distribution function G(F−1(1− y)).

In the short-run, however, there is a second potentially important source of cross-sectional

variation: idiosyncratic differences in experience across providers. Unfortunately, analyzing the

cross-sectional distribution of beliefs at any given point in time is complicated by the fact that

providers that experience a larger-than-average number of ruptures will respond by making fewer

attempts of labor. This behavior introduces correlation of unknown form between Rh(t) and Lh(t)

that makes the model very difficult to analyze. To get around this problem, I instead study the

cross-sectional distribution of beliefs among providers with the same cumulative number of attempts

8The role of productivity variation in this model obviously differs in important ways from Chandra and Staiger
(2007). Notably, there are no productivity spillovers in this model. Also, crucially, in this model, providers learn
their productivity from experience, so differences in productivity will come to affect behavior only gradually.

9The technical conditions on the belief parameters are straightforward. Condition (i) ensures that the prior
provides at least a modest amount of information, and condition (ii) ensures that the prior does not imply that
the risk of rupture is exactly one. Together with the full support condition on F (p∗), these conditions ensure that
providers will not get “stuck” at a trial of labor rate of zero. Condition (iii) ensures that the prior does not converge
on a single value unless that value is the true population risk.
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of labor, no matter the time at which the provider reaches that experience level.10 Focusing

on this alternative distribution eliminates the problematic dependence between Rh(t) and Lh(t).

Nevertheless, this approach still generates important insights about the phenomenon of interest.

Assuming that the prior parameter vector (α(t), β(t)) is constant as a function of time and

letting p̃h(`) denote provider beliefs after ` attempts of labor, I compute that

Var(p̃h(`)) =

(
1

α+ β + `

)2

[ (`2 − `)Var(ph)︸ ︷︷ ︸
“fundamental” variation

+ `E[ph](1− E[ph])︸ ︷︷ ︸
idiosyncratic variation

]. (1.4)

Both sources of cross-sectional variation appear in an intuitive form in equation (1.4); the first term

captures variation due to true variation in the underlying risk, while the second term captures the

variation that would exist even without any differences in fundamentals across providers. Quite

intuitively, the amount of cross-sectional variation in beliefs arising from either of these sources is

decreasing in the notional sample size of the common prior.

The two sources of cross-sectional variation exhibit differing dynamics over time. The “funda-

mental” variation grows monotonically and, consistent with the conclusion of Proposition 2, is equal

to the variance of the population distribution of risks in the limit. By contrast, the idiosyncratic

variation grows initially as providers gain experience but then begins to shrink once ` ≥ α + β,

that is, once the provider’s own experience exceeds the notional sample size of the common prior.

In the limit, therefore, this second source of variation vanishes. These long-run patterns may not,

however, be an accurate representation of the relative importance of these two sources of variation

in the short-run. In the present application E[ph] is on the order of 0.01. If the coefficient of

variation of the risk is 0.5, a relatively large figure in this context, then E[ph](1 − E[ph]) will be

approximately 400 times as large as Var(ph). This implies that, over the range of experience levels

observed in my setting, which at most stretch into the thousands, idiosyncratic variation will be of

a similar order of magnitude to variation due to dispersion in fundamentals.

As a final note, observe that equation (1.4) suggests that there will be an important interaction

between the the degree of dispersion in fundamentals and the importance of idiosyncratic experi-

ential differences in driving practice variation. In particular, it is reasonable to expect that, when

10The arguments given in the proof of Proposition 2 guarantee that every provider will eventually reach all levels
of experience ` ∈ N, which ensures that this approach is well-defined.
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Var(ph) is large, the prior information available to providers will reflect this fact, and so providers

will have a dispersed prior distribution and α+ β will be small. As a result, moving from a setting

with a small amount of fundamental dispersion to one with a larger amount will often magnify

both sources of dispersion, not just directly increase fundamental dispersion.

1.3 Data

The analyses presented in the remainder of this paper are built upon several different data sources.

This section provides a brief description of each of these data sources.

1.3.1 State hospital discharge databases

For the event study analysis presented in the next section, I make use of the California Office of

Statewide Health Planning and Development (OSHPD) Patient Discharge Databases for 1993-2010

and the Agency for Healthcare Research and Quality’s Healthcare Cost and Utilization Project

(HCUP) State Inpatient Databases (SID) for the following states and years: Arizona (1995-2010),

Colorado (2003-2007), Florida (1997-2010), Maryland (1995-2010), Massachusetts (1999-2010), New

Jersey (1995-2009), New York (1995-2009), and Washington state (1999-2009). These databases

contain records for the universe of inpatient hospital discharges during the covered state-years.

Each discharge record includes the full set of fields typically present on hospital discharge records,

including ICD-9-CM diagnosis and procedures codes, quarter and year of discharge (or of admission

in California), basic patient characteristics (like age, race, and insurance status) and – crucially for

the event study analyses – hospital identifiers.11 The SID databases for Arizona, Colorado, Florida,

Maryland, New Jersey, and New York also report an encrypted identifier for the attending and (if

applicable) the operating physician that is suitable for tracking physicians over time.12

11All SID databases report age in years. For years 1993 and 1994, California reports patient age as a range. In
later years, California reports single year of age for approximately half of records, but reports age as a range or not
at all on the remaining records for confidentiality reasons. For comparability across datasets, I impute the patient’s
age in years by using the median age for patients who fall in that age category for whom age in years is reported
during that data year. For 1993 and 1994, I impute based on the single-year age data for 1995.

12Unfortunately, the physician identifiers are not comparable over the full period that they are reported. A change
in the encryption algorithm HCUP used to encrypt the physician identifiers causes a break in comparability for all
states between 2002 and 2003. State-level encryption or data collection changes create several more state-specific
breaks. In addition, the physician identifiers for Florida in 1997 and Maryland in 2009 appear to have been corrupted
during data processing and thereby rendered unusable. As a consequence, at the physician level, each state reporting
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I identify deliveries and determine whether the mother had a prior cesarean delivery using the

appropriate ICD-9-CM diagnosis codes. The ultimate mode of delivery (vaginal or cesarean) is

identified by the presence or absence of procedure codes for a cesarean section.13 Among women

who deliver by cesarean section, I ascertain whether the woman labored using a method proposed

by Henry et al. (1995) and Gregory et al. (2002). Their method codes a cesarean delivery as

having been preceded by labor if the delivery record reports diagnosis codes for fetal distress, cord

prolapse, breech converted to vertex presentation, or certain other labor abnormalities. In the

present application, I also code women as having labored if their record reports a diagnosis code

for uterine rupture during labor, a code not included by Henry et al. (1995) and Gregory et al.

(2002); this code is discussed in greater detail below. The method proposed by Henry et al. (1995)

and Gregory et al. (2002) has been validated against data from medical records in a related context

(identification of elective primary cesarean section) and found to be highly accurate (Korst et al.,

2004). It has been applied previously in the economics literature by Epstein and Nicholson (2009)

and Epstein et al. (2010).

Uterine ruptures are identified by the presence of the diagnosis code for uterine rupture during

labor (665.1x). While uterine rupture is the main diagnosis falling under this code, Weiss et al.

(2000) note that the ICD-9-CM index also directs use of this code for various “incidental” uterine

injuries that can occur during a cesarean delivery. Based on an examination of medical charts for

Massachusetts deliveries during the years 1990-1997 in which the discharge record reported this

code, Weiss et al. (2000) confirm that 665.1 is almost always used for one of these two reasons.

Understanding the relative prevalence of the two uses of this code is important to interpreting

the event study estimates. To estimate this relative prevalence, I exploit the dramatic time series

variation in trial of labor rates over the period studied.14 If non-rupture uses of the code are rare,

physician identifiers is broken into 3-5 sub-panels.

13Specifically, delivery records are identified by presence of a diagnosis code of the form V27.x in any field. Women
with a history cesarean section are identified by the presence of the diagnosis code 654.2 in any field. Cesarean delivery
is identified by the presence of a procedure code of the form 74.x in any field.

14Weiss et al. (2000) also report an estimate that half of uses of 665.1 corresponded to true ruptures. However,
their sample included all deliveries (not just those by women with a history of cesarean section) and examined a
period and location with a trial of labor rate differing from the current sample. Since the relative probability of
rupture and non-rupture uses of the code is a function of prior cesarean status and delivery mode, this estimate is of
limited use for the present study.
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then as trial of labor rates fall, the prevalence of code 665.1 should fall approximately proportionally.

In contrast, if non-rupture uses are common, then the prevalence of code 665.1 should fall less and

potentially even rise. To operationalize this insight, I develop and estimate a statistical model for

the use of code 665.1, which I describe in detail in Appendix A.6. The model implies that the

“true positive rate” – the share of uses of code 665.1 that correspond to uterine ruptures – is 65

percent. Because the non-rupture uses of the code are unlikely to reflect events that will have

a substantial effect on subsequent physician behavior, this estimate implies that the event study

estimates presented later in the paper should be scaled up by a factor of 1.5 (≈ 1/0.65).

1.3.2 National Vital Statistics System Natality Public Use File

For analyses examining national trends in VBAC rates after 1990, I turn to the National Vital

Statistics System (NVSS) Natality Public Use Files for 1990-2010. Each year’s file contains de-

identified records for the universe of births occurring in the United States during that year. The

data are compiled from states’ birth registries by the National Center for Health Statistics. Each

individual record reports a wide variety of medical and demographic information. Most important

for the current analyses, the fields include information on the mother’s childbearing history (in-

cluding whether she has had a prior cesarean delivery), the mode of delivery, and the year and

month of the birth. It is, unfortunately, not possible to observe in these data whether a cesarean

section was preceded by labor, so analyses using these data are restricted to examining trends in

the VBAC rate, rather than both the VBAC rate and the TOLAC rate.

The NVSS data have one important downside for examining trends in VBAC rates in the mid-

2000s. Starting in 2003, states began adopting a revised Standard Certificate of Live Birth that

changed the wording and format of the questions used to report mode of delivery and the mother’s

prior cesarean status. These changes appear to have caused slight increases in reported VBAC rates

in the NVSS natality file (CDC, 2012). To address this problem, I exploit the fact that adoption

of the revised certificate was staggered across states and estimate a simple difference-in-differences

model of the effect of the certificate version used on the reported VBAC rate. In estimating this

specification, I can use data only from 2004 and earlier because the public use file does not report

state of birth after 2004. During this period, eight states plus part of New York adopted the

revised certificate; these areas together account for approximately one-fifth of births nationwide
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(CDC, 2006). The resulting estimates demonstrate that adoption increased the reported VBAC

rate by 2.3 percentage points. I use this estimate to make an appropriate adjustment in analyses

that use data from these years.

1.3.3 National Hospital Discharge Survey

Because the birth certificate in use in the United States did not report information on the mode of

delivery or the mother’s prior cesarean section status prior to 1990, I cannot use the NVSS data

for analyses that require information on practice trends prior to that year. I turn instead to the

National Hospital Discharge Survey (NHDS), which is available for the years 1979-2010.15 The

NHDS reports a sample of inpatient discharge records from a national stratified random sample of

hospitals. The NHDS provides sampling weights to compute nationally-representative estimates.

Each discharge record in the NHDS includes most of the information included on the records in

the state discharge databases described above. As such, I identify deliveries and determine delivery

mode, maternal prior cesarean status, and whether a mother labored using the same algorithms

used for the state discharge databases.

1.3.4 Nationwide Inpatient Sample

To characterize the degree of cross-hospital variation in VBAC and TOLAC rates at the national

level, I use the HCUP Nationwide Inpatient Sample (NIS) for 1988-2010. The state inpatient

databases are not available in all years or for all states, and the NHDS and NVSS do not report

hospital identifiers, making them unsuitable for such analyses. The NIS contains the universe

of inpatient discharge records from a sample of hospitals that aims to approximates a 20-percent

stratified random sample of all hospitals in the United States. Because not all states participate, the

resulting sample cannot be fully nationally representative, and HCUP provides sampling weights

intended to account for the differences between the states included in the NIS states and the nation

(HCUP, 2012). In addition, HCUP recommends caution in interpreting trends for the years 1988-

1993, when the number of states participating was relatively small and growing rapidly (HCUP,

2006). In practice, however, it appears that these concerns about incomplete state coverage are not

15For years 1979-2006, the NHDS data files were obtained from the the Inter-university Consortium for Political
and Social Research, study number 24281.
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relevant to the present analyses. Annual VBAC rates computed using the NIS are very similar to

those computed using the NHDS, which, as noted above, is nationally representative in all years.

Each discharge record in the NIS reports the same information that appears on the records in

the state discharge databases described above, including a hospital identifier.16 As such, I identify

deliveries and determine delivery mode, maternal prior cesarean status, and whether a mother

labored using the same algorithms used for the state discharge databases.

1.3.5 Database of VBAC/TOLAC publications

For analyses aimed at understanding how providers’ prior beliefs about the incidence of uterine

rupture should have changed over time, I build a comprehensive database of publications on the

topic. I started by identifying English-language articles that use the terms “vaginal birth after

cesarean,” “trial of labor after cesarean,” “uterine rupture,” or their variants in the Thomson

Reuters Web of Science database. The precise set of search terms used is adapted from those used

by Guise et al. (2010b) in their comprehensive review of this literature; I report the the full set of

search terms in Appendix A.2.

The initial search identified 1,159 articles. I reviewed abstracts for all of these articles to

determine which ones potentially included relevant information; 235 articles made it through this

initial screen. I then reviewed the full text of each of these articles to determine whether each met

the following set of inclusion criteria, again patterned after Guise et al. (2010b): (1) the article

reports information on the incidence of uterine rupture from an original case series containing at

least 50 trials of labor; (2) the study sample was drawn from the general population of women

with a prior cesarean section, rather than a specialized subgroup (e.g. women with multiple prior

cesarean sections); (3) the article reports experience from a country in which standards of medical

practice are broadly similar to those in the United States, defined herein as Australia, Canada, all

of Europe, Israel, Japan, New Zealand, or the United States.17 A total of 104 such articles were

identified.

From each article identified, I extracted the total number of attempts of labor reported as well

16The similarity is not just coincidental. The NIS is typically drawn directly from the underlying state databases.

17In practice, the vast majority of articles are from the United States or Canada, and most of the rest were from
the United Kingdom or Australia.
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as the total number of uterine ruptures. In general, this was straightforward, but the definition

of “uterine rupture” used merits further comment. As discussed in detail by Guise et al. (2003),

different studies use different terminology to categorize separations of the uterine wall. Many studies

apply the term “uterine rupture” to separations of the uterine wall that are major, symptomatic,

or require surgical intervention and apply the term “uterine dehiscence” to smaller, asymptomatic

separations that are discovered incidentally. Other authors, however, describe all separations of

the uterine wall as “ruptures” or “dehiscences,” but distinguish more important events using an

adjective like “symptomatic,” “complete,” or (in the case of rupture) “true.” Unfortunately, none

of these terms have standard definitions, and authors are typically do not explicitly define how they

are using these terms.

This variation in terminology across studies raises the question of what information should be

extracted from each study. The goal of the analyses in this paper is to understand how each piece

of clinical evidence should have affected a physician’s estimate of the risk of serious complications

resulting from separation of the uterine wall during a trial of labor. Guided by this goal, from

articles reporting both the number of “ruptures” and the number of “dehiscences,” I extracted

the number of ruptures. From articles that report only the number of “ruptures” and provide

no subcategorization, I also extracted the number of ruptures. From articles that use the term

“rupture” or “dehiscence” and identify a subset of the events as serious, I extracted the number of

serious events. In cases where each event is described in narrative form, I counted any event that

was symptomatic. I excluded a small number of studies that report only the number of incidents

of “uterine dehiscence” or the combined number of dehiscences and ruptures.

In several cases, multiple articles were published based on the same underlying case series, with

later publications typically including additional cases. In any given analysis, I include only the most

complete version of each case series that had been published by the time to which that analysis

corresponds.

1.4 Provider learning from experience: event study evidence

I turn first to the question of whether and how physicians and hospitals change their practice

styles in response to their own idiosyncratic experiences, focusing specifically on how experiencing a
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uterine rupture with a patient with a history of cesearean section affects management of subsequent

deliveries. In this section, I first derive the event study estimator I use to investigate this question.

I then discuss how I implement the estimator in my context and present my results.

1.4.1 Event study econometric framework

I use an event study approach to estimate the effect of uterine rupture events on subsequent

provider decisions. In brief, I identify the effect of an event by comparing the practice style trends

of providers who do not experience an event at a given point in time to providers who do experience

an event but would have been expected to follow similar trends in the absence of the event.

My approach extends the conditional difference-in-differences framework of Abadie (2005) (which

built in turn upon Heckman et al. (1997) and Heckman et al. (1998)) to the event study setting.

The key complication of the event study setting is that treatments (i.e. events) occur at multiple

points in time and each unit can be treated multiple times (i.e. experience multiple events). In

contrast, the Abadie (2005) framework envisions a setting in which all units are treated at most

once and all treated units receive treatment at the same time. My approach also explicitly address

the hierarchical structure of this setting (in which births are nested within providers). From an

applied perspective, the resulting estimator may be viewed as a formalization of the event-study

approach taken in Hilger (2012).

The approach taken here has several important advantages relative to dynamic difference-in-

differences specifications in the spirit of Jacobson et al. (1993) that regress the outcome of interest

on a set of leads and lags of event occurrence, a set of time effects, and a set of unit fixed effects.

First, I show that my approach estimates a precisely-defined average treatment effect, even in the

presence of arbitrary treatment effect heterogeneity; outside of constant coefficients models, pre-

cisely characterizing what dynamic difference-in-differences models estimate is frequently difficult.

Second, the approach taken herein provides a computationally simple and conceptually straight-

forward method of accounting for trend differences across different (observed) categories of units.

Finally, the framework prescribes an single, unambiguous method of handling units that experience

multiple events, a problem that is typically handled through various ad hoc approaches (Sandler

and Sandler, 2012).

The approach taken here does have one potential disadvantage relative to standard dynamic
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difference-in-differences specifications: it estimates the effect of an event inclusive of the effect on

the probability of future events, rather than the effect of an event holding the path of future events

constant. In the present context, the effect of an event on the probability of future events is modest,

so these two quantities will be similar and, in any case, it is not clear that the “partial” effect of

an event (i.e. the effect excluding any effect on the probability of future events) is the quantity

of interest. There are context, however, where this estimator will be inappropriate. This will be

the case, for example, in contexts where all units will eventually experience a single event and the

only difference is timing, as in studies of the effects of technology adoption (e.g. McClellan and

Newhouse (1997)) or the staggered roll-out of a new program (e.g. Almond et al. (2011)).

In the remainder of this subsection, I first present my econometric framework, then discuss iden-

tification and estimation in this framework, and finally describe the application of this framework

to my particular question.

Basic setup

Consider a setting with a general hierarchical structure. There exists a population of top-level

units indexed by i. Any given top-level unit i may have multiple associated sub-units, which are

indexed by j. For the sake of concreteness, I will refer to the top-level units as medical providers

(e.g. hospitals or physicians) and the sub-units as births or deliveries. Events occur at the level

of providers, but I am interested in estimating (average) causal effects at the level of deliveries. I

observe the universe of deliveries j associated with some random sample of providers i. Throughout,

expectation and probability operators will be defined with respect to the population birth-level

marginal distributions induced by this provider-level sampling scheme.18

To formally define the relevant causal estimands and derive an estimator, I develop a potential

outcomes framework in the spirit of Rubin (1974), Rubin (1977), Holland (1986). Each delivery

occurs at some time Tij and has a set of potential outcome pairs {(Y q
ij(0), Y q

ij(1))}q∈Z, where the

potential outcome Y q
ij(1) (resp. Y q

ij(0)) is the outcome realized by delivery j if provider i did (resp.

did not) experience an event at time Tij − q. Naturally, I refer to q as “time since event.” For

18Note that if provider size or volume patterns are informative about patient characteristics, this distribution can
differ from the expected marginal distribution for any particular number of clusters (Nevalainen et al., 2013). In
general, these differences should disappear quickly as the number of sampled clusters grows. The implications of this
issue for estimation in small samples are discussed in detail in Appendix A.5.
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convenience, I define the event time Eqij = Tij − q. In practice, I focus on some restricted set of

time-since-event values H = {
¯
q,

¯
q − 1, . . . , q̄ − 1, q̄} for some integers

¯
q < 0 and q̄ > 0.

The causal effects of interest are the differences Y q
ij(1) − Y q

ij(0) for values q > 0. For each

delivery j, however, only the the realized outcome Yij = Y q
ij(D

q
ij) is observed, where Dq

ij = 1 if

provider i experienced at event at time Tij−q and is zero otherwise.19 The counterfactual outcome

Y q
ij(1−D

q
ij) is not observed. As a consequence, it is not possible to directly compute causal effects

for individual deliveries; this is “the fundamental problem of causal inference” (Holland, 1986).

The goal, therefore, is to make assumptions that make it possible to impute the missing potential

outcome Y q
ij(1−D

q
ij) on average for a defined population of deliveries. It is then possible to estimate

the average causal effect Y q
ij(1)− Y q

ij(0) for that defined population of deliveries.

To facilitate construction of a suitable comparison group, I suppose that some set of character-

istics {Xq
ij}q∈H are observed for each delivery and time-since-event q. The vector Xq

ij could include

characteristics of the provider (e.g. hospital volume) or the delivery (e.g. the mother’s insurance

status), and these characteristics could in principle vary depending on the time horizon. In general,

I will focus on some appropriate subset C of the set of all possible event time and characteristic

tuples (Eqij , X
q
ij) such that the identifying assumptions are particularly plausible for tuples in C.

Identification

To identify the effects of interest, I apply a difference-in-differences approach around each event time

e conditional on delivery characteristics x. The two substantive conditions that permit identification

follow:

Condition NPE (No pre-event effects). For all values q < 0, Y q(1) = Y q(0).

Condition CT (Common trends). For all event time and characteristic tuples (e, x) ∈ C and
times-since-event q, r ∈ H, the following holds:

E[Y q(0) |Eq = e,Xq = x,Dq = 1]− E[Y r(0) |Er = e,Xr = x,Dr = 1]

= E[Y q(0) |Eq = e,Xq = x,Dq = 0]− E[Y r(0) |Er = e,Xr = x,Dr = 0].

19Consistency, of course, requires that Y q
ij(D

q
ij) is the same for all q.
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Condition NPE states that events that will occur in the future have no effect on current out-

comes.20 This is a particularly reasonable assumption when events are difficult to predict, as is the

case in my context.

Condition CT is the adaptation of the standard (conditional) difference-in-differences common

trends assumption to the event study context.21 The quantity E[Y q(0) |Eq = e,Xq = x,Dq =

1] is the average counterfactual (hence, unobserved) outcome for deliveries by a provider who

experienced an event q quarters earlier at time e, restricted to those deliveries with characteristics

x. The quantity E[Y q(0)|Eq = e,Xq = x,Dq = 0] is the average observed outcome for deliveries

by a provider who did not experience an event q quarters earlier at time e, restricted to those

deliveries with characteristics x. The assumption states that, for any given event time and set of

characteristics, the counterfactual average for event units trends identically to the observed average

for non-event units as we vary time-since-event.

To ensure that the relevant conditional expectations are estimable, I also impose the following

technical condition:

Condition OO (Overlap and observability). For all event time and characteristic tuples (e, x) ∈ C
and all q ∈ H, the following hold:

(i) (Observability) P(Eq = e,Xq = x) > 0; and

(ii) (Overlap) 0 < P(Dq = 1 |Eq = e,Xq = x) < 1.

The first part of this condition ensures that deliveries are observed for all time horizons q ∈ H

for each event time and characteristic tuple (e, x) ∈ C. Note that this implies that Xq is discrete.

It is conceptually straightforward to accommodate continuous Xq, but since doing so complicates

the exposition and my application uses discrete Xq, I eschew those complications here. The second

part of this condition is a standard overlap condition. It ensures that for any event time and

characteristic tuple (e, x) ∈ C, we can find suitable non-event (i.e control) observations at any

time-since-event q ∈ H.

20In stating an explicit no-anticipation condition, my exposition follows that of Miquel (2003). This assumption
is stated implicitly in Abadie (2005), Heckman et al. (1997), and Heckman et al. (1998).

21In principle, one could fold Eq
ij into Xq

ij . In practice, conditioning on event time Eq
ij is such a crucial portion of

the identification strategy, that is is worth the modestly more burdensome notation to emphasize time’s role.
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As in the standard difference-in-differences setting, Conditions NPE and CT imply that the

average counterfactual outcome for units that do experience events can be written in terms of

observed quantities. For q > 0 and r < 0, these assumptions imply that

E[Y q(0) |Eq = e,Xq = x,Dq = 1]

= E[Y r(0) |Er = e,Xr = x,Dr = 1]

+ {E[Y q(0) |Eq = e,Xq = x,Dq = 0]− E[Y r(0) |Er = e,Xr = x,Dr = 0]}

= E[Y r(1)|Er = e,Xr = x,Dr = 1]

+ {E[Y q(0)|Eq = e,Xq = x,Dq = 0]− E[Y r(0) |Er = e,Xr = x,Dr = 0]}

= E[Y |Er = e,Xr = x,Dr = 1]

+ {E[Y |Eq = e,Xq = x,Dq = 0]− E[Y |Er = e,Xr = x,Dr = 0]},

where the first equality follows from Condition CT and the second equality follows from Condi-

tion NPE. Since E[Y q(1) |Eq = e,Xq = x,Dq = 1] is also observed, the conditional treatment

effect on the treated E[Y q(1)− Y q(0) |Eq = e,Xq = x,Dq = 1] is identified for all q > 0 as

E[Y q(1)− Y q(0)|Eq = e,Xq = x,Dq = 1]

= {E[Y |Eq = e,Xq = x,Dq = 1]− E[Y |Eq = e,Xq = x,Dq = 0]}

− {E[Y |Er = e,Xr = x,Dr = 1]− E[Y |Er = e,Xr = x,Dr = 0]},

the usual difference in differences.

Conditions NPE and CT also have a set of testable implications. In particular, it is trivial to

show that for any two values q, r ∈ H with q, r < 0, it must hold that

E[Y |Eq = e,Xq = x,Dq = 1]− E[Y |Eq = e,Xq = x,Dq = 0]

= E[Y |Er = e,Xr = x,Dr = 0]− E[Y |Er = e,Xr = x,Dr = 0].

That is, under the identifying assumptions, the difference between event and non-event outcomes is

constant in the pre-period. These restrictions permit a formal test of the identifying assumptions,

the formal counterpart of the standard “graphical test” of common trends.

In practice, there is rarely enough power to precisely estimate a treatment effect for any par-
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ticular tuple (e, x) ∈ C, and so it will be desirable to average over (e, x) ∈ C. The discussion of

identification given above carries over directly, and, as shown in the following lemma, this approach

then identifies a (weighted) average treatment effect on the treated:

Lemma 1. For any chosen probability measure W on C, define for each q ∈ H

∆q ≡
∫
C
E[Y |Eq, Xq, Dq = 1]− E[Y |Eq, Xq, Dq = 0]dW (Eq, Xq).

If Conditions NPE, CT, and OO hold, then

∆q −∆r =

∫
C
E[Y q(1)− Y q(0) |Eq, Xq, Dq = 1]dW (Eq, Xq)

for all q, r ∈ H with q > 0 and r < 0. In addition, ∆q = ∆r for all q, r ∈ H with q, r < 0.

Applying the estimator requires choosing some particular weighting function W (e, x). If the

goal is to estimate a treatment effect at a single post-event point in time q > 0, then one option

with considerable appeal is to use the weighting function

WTOT(e, x) = P(Eq = e,Xq = x |Dq = 1, (Eq, Xq) ∈ C).

In this case, it is straightforward to see that the resulting weighted average treatment effect is

E[Y q(1) − Y q(0) |Dq = 1, (Eq, Xq) ∈ C], the average effect of treatment on the treated q quarters

after the event. Unfortunately, this choice of weight is not well-suited to settings in which treatment

effect dynamics are of interest because it prescribes a different weighting function for each q > 0

and thus renders the estimated treatment effects for different post-periods non-comparable. The

multiplicity of weighting schemes also complicates evaluation of the common trends assumption

in the pre-period since there are as many weighting schemes for the pre-period data as there are

post-periods. An alternative choice that avoids these problems is to use the weighting function

WWTOT(e, x) =
1

q̄

q̄∑
q=1

P(Eq = e,Xq = x |Dq = 1, (Eq, Xq) ∈ C). (1.5)

Under this weight, the natural “pooled” estimand, 1
q̄

∑q̄
q=1 ∆q − 1

¯
q

∑−1
q=

¯
q ∆q, satisfies

1

q̄

q̄∑
q=1

∆q − 1

¯
q

−1∑
q=

¯
q

∆q =
1

q̄

q̄∑
q=1

E[Y q(1)− Y q(0) |Dq1 = 1, (Eq, Xq) ∈ C].

The estimand on the right-hand-side is a simple and readily interpretable average of (weighted)
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average treatment effects on the treated.

Estimation

To define a suitable estimator, it is helpful to establish some notation. Define Sqd(e, x) = {(i, j) :

Dq
ij = d,Eqij = e, and Xq

ij = x} and N q
d (e, x) =

∣∣Sqd(e, x)
∣∣, and define a random variable B(e, x)

that equals one if N q
d (e, x) > 0 for all q ∈ H and d ∈ {0, 1} and is zero otherwise. When B(e, x) = 1,

all sample means corresponding to (e, x) will be well-defined. Letting Ŵ (e, x) be some estimator

of the chosen weighting function W (e, x), the natural estimator for each ∆q can then be written as

∆̂q =
∑

(e,x)∈C:B(e,x)=1

Ŵ (e, x)

 1

N q
1 (e, x)

∑
(i,j)∈Sq

1(e,x)

Yij −
1

N q
0 (e, x)

∑
(i,j)∈Sq

0(e,x)

Yij

 . (1.6)

Observe that a single delivery may appear in ∆̂q for multiple different times-since-event q, serving

as a control observation when Dq
ij = 0 and as a treatment observation when Dq

ij = 1. In practice,

I use the natural empirical counterpart of the choice of weighting function proposed in equation

(1.5) for Ŵ (e, x):

ŴWTOT(e, x) =
1

q̄

q̄∑
q=1

N q
1 (e, x)∑

(e′,x′)∈C:B(e′,x′)=1N
q
1 (e′, x′)

.

The following lemma shows that the resulting estimator is consistent. The proof, which is not

completely trivial on account of the hierarchical structure, is presented in Appendix A.5.

Lemma 2. Under standard regularity conditions, if Ŵ (e, x)
p−→ W (e, x) for all (e, x) ∈ C as the

sampled numbered of providers M →∞, then ∆̂q p−→ ∆q as M →∞. Furthermore, ŴWTOT(e, x)
satisfies this condition.

A concern about using Lemma 2 to justify the use of this estimator is that the the number of

births in any particular (e, x) cell may be relatively small, in which case the large-sample properties

of the estimator may not be a good guide to its behavior in the present application. One can show,

however, that under a modest strengthening of the common trends assumption, the estimators

proposed herein are (conditionally) unbiased for a weighted (conditional) average treatment effect

on the treated. Furthermore, even in small samples, failures of the identifying assumptions are

likely to show up as pre-period differential trends. Because the required arguments are somewhat

notationally burdensome but not particularly illuminating, I have confined them to Appendix A.5.

29



Computationally, it is frequently convenient to compute ∆̂q via a regression on an auxiliary

dataset that takes account of the multiplicity of roles played by individual deliveries. For each

delivery (i, j) and quarter q ∈ H such that (Eqij , X
q
ij) ∈ C and B(Eqij , X

q
ij) = 1, the auxiliary dataset

contains a separate record of the form (Ỹm, D̃m, Q̃m, φ̃m) = (Yij , D
q
ij , q, φ

q
ij), where m indexes

records in the auxiliary dataset and

φqij =
Ŵ (Eqij , X

q
ij)

N q
Dq

ij
(Eqij , X

q
ij)
.

Using this auxiliary dataset, one then runs a regression of the form

Ỹm =
∑
q∈H

∑
d∈{0,1}

βqd1{Q̃m = q, D̃m = d}+ εm, (1.7)

weighted by φ̃m. It is trivial to see that ∆̂q = β̂q1 − β̂
q
0 for all q ∈ H. This regression specification

is very similar to the specification arrived at by Hilger (2012) without a formal justification.22

Standard errors may be obtained via a block bootstrap at the provider level.

It is tempting to add covariates to equation (1.7). Doing so is difficult to justify in general,

however, as the addition of covariates “re-weights” the underlying means, with the result that

β̂q1 − β̂
q
0 may no longer consistently estimate ∆q.23

1.4.2 Estimator implementation and sample construction

In this subsection, I discuss how I apply the event study estimator derived above to the question of

interest in this paper: the effect of provider experience with uterine rupture on subsequent treatment

decisions for patients with a prior cesarean delivery. In my main analyses, each provider i is an

individual hospital, but I also examine specifications in which each provider i is an individual

physician. The event indicator Dq
ij equals one if provider i experienced uterine rupture with a

patient at time Tij − q and is zero otherwise. The unit of time is a calendar quarter, and I examine

a window extending 6 quarters before and after each event. The outcomes of interest are whether

22As in Hilger (2012), it can greatly speed computation to run the regression in collapsed form, particularly for
the purposes of obtaining bootstrapped standard errors. In particular, I compute the mean for each (e, x, q, d) tuple.
A regression on this set of means weighted by Ŵ (e, x) will generate the same point estimates as the full-sample
regression.

23For a detailed discussion of this point in a related context, see the discussion in Angrist and Pischke (2009)
comparing matching estimators and regression estimators under a conditional independence assumption.
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a delivery is preceded by an attempt of labor and whether the ultimate mode of delivery is vaginal

or cesarean. I present bootstrapped standard errors based on 200 replications.

The most important implementation choice is which variables are included in the conditioning

vector Xq
itj . In all analyses, Xq

ij includes the provider’s state, and the set C of event time and

characteristic tuples (Eqij , X
q
ij) is restricted to include only state-quarter tuples for which the data

permit a full 6 quarters of follow-up and look-back. I select additional covariates so as to ensure

that I am comparing providers that are as similar as possible in their risk of experiencing an event,

thereby minimizing the differences between event and non-event units.24

For the hospital-level analyses, I also include in Xq
ij the following: an indicator for whether the

hospital had positive delivery volume at time Eqij ; and the hospital’s delivery volume quartile in its

state at time Eqij , where only women with a prior cesarean section are included in delivery volume.

I restrict the set C so as to exclude from consideration hospitals with no deliveries at time Eqij .

Thus, this event study estimator identifies the effect of an event at time e by comparing hospitals

that do experience an event at a time e to other hospitals that do not experience an event at time

e but are located in the same state and are of similar size at time e.

For the physician-level analyses, on the other hand, I also include in Xq
ij an indicator for whether

the physician attempted labor with at least one patient at time Eqij , and the set C is restricted to

include only those deliveries for which this indicator is equal to one. Thus, this event study estimator

identifies the effect of an event at time e by comparing physicians who do experience an event at a

time e to other physicians who do not experience an event at time e but are located in the same

state and had a patient who could have experienced an event at time e.

To implement these estimators, I construct a sample of births from the HCUP State Inpatient

Databases and OSHPD Patient Discharge Databases described in Section 1.3. I start by construct-

ing a sample that includes all deliveries by women with a prior cesarean delivery. I exclude a small

number of records for which the quarter of delivery is missing, the associated provider is missing,

or the provider has very low volume. In my main analyses, in which each provider i is a different

hospital, “very low volume” is defined as never exceeding 20 deliveries (by all women, regardless of

prior cesarean status) in a single quarter. In supplemental analyses, each provider i is a different

24Ideally, of course, the covariates would perfectly capture a provider’s risk of an event, in which case the effects
of interest are identified even without the common trends assumption.
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Table 1.1: Descriptive statistics for the event study samples

Provider level: Hospital Physician

Mean SD
Share

Mean SD
Share

missing missing

Delivery characteristics
Trial of labor 0.245 0.430 0.00 0.221 0.415 0.00
Vaginal delivery 0.179 0.383 0.00 0.163 0.369 0.00
Uterine rupture 0.003 0.050 0.00 0.003 0.051 0.00
Length of stay 3.05 2.19 0.00 3.16 2.15 0.00

Maternal characteristics
Age 30.38 5.60 0.02 30.63 5.68 0.00
Black 0.121 0.327 0.12 0.171 0.376 0.03
Hispanic 0.322 0.467 0.12 0.208 0.406 0.03
Medicaid 0.395 0.489 0.00 0.335 0.472 0.00

Counts
Events 5,107 1,223
Providers 995 11,828
Births 2,981,860 1,002,054

Notes: The event study samples are constructed from the HCUP State Inpatient Databases and
the OSHPD Patient Discharge Databases as described in Section 1.4.2. Means and standard
deviations are computed using all observations for which that particular field is non-missing.
Delivery characteristics other than induced labor are identified using ICD-9-CM codes as de-
scribed in the text. Most cases of missing age data are attributable to California. Most records
with missing race and ethnicity data are from Washington state.

physician, and the threshold is set at 5 deliveries.

The set of state-quarters with useable data after restricting to those permitting 6 quarters of

follow-up and look-back as described above is depicted in Figure 1.3. Table 1.1 provides descriptive

statistics on the analysis sample of births. As indicated in the table, the number of events available

for the hospital-level analyses is considerably larger, owing to the fact that hospital identifiers

are available for all states and the hospital identifiers are consistent over the full period, which

avoids the loss of state-quarter cells around breaks in those identifiers. While this larger sample

size is partially offset by the presence of a far smaller number of clusters at the hospital-level, the

hospital-level results will still be considerably more precise.
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Figure 1.3: State-quarters included in the event study analyses
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Notes: This figure depicts the state-quarters for which the HCUP State Inpatient Database or
OSHPD Patient Discharge Data are usable for each set of event study analyses. Connected state-
quarters have comparable identifiers. Births in the darkly shaded quarters fall more than 6 quarters
from the beginning or end of a segment; these quarters permit the full 6 quarters of required follow-up
and look-back and, thus, estimating the effect of events occurring during these quarters is feasible.
Births occurring during the lightly shaded quarters do not permit the necessary follow-up or look-
back, so estimating the effect of events occurring during these quarters is not feasible; these births
are used only for follow-up or look-back when estimating the effect of events occurring during the
darkly-shaded quarters.
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1.4.3 Event study results

I now present my main results and several auxiliary specifications aimed at understanding the

sources of the effects I document. After that, I turn to a variety of specification checks aimed at

ruling out plausible violations of the identifying assumptions.

Main results

I start by presenting graphical evidence from estimating equation (1.7) at the hospital level. Fig-

ure 1.4 depicts the average delivery mode for births at hospitals that will or will not experience an

event at q = 0, weighted as prescribed by equation (1.7). The plotted points therefore correspond,

respectively, to the coefficient sets {βq1} and {βq0} from equation (1.7). Examining the pre-period,

the event time series lies above the non-event series, which is to be expected since providers with

higher trial of labor rates are at higher risk of experiencing an event. Both the event and non-event

series also exhibit a significant downward trend, a reflection of the fact that these analyses use data

for a period when trial of labor and vaginal delivery rates were declining. Reassuringly, the trends

affecting the two series appear to be very similar, lending support to the common trends assumption

necessary for identification. Turning to the post-period, Figure 1.4 shows that the gap between

the event group mean and the non-event group mean narrows in the post-period, indicating that a

uterine rupture event causes the hospitals’ subsequent patients to be less likely to attempt labor.

In Figure 1.5, I present these results in differences rather than levels. Specifically, the figure plots

the difference in means between event and non-event births as a function of the time since the event.

The dashed horizontal line depicts the mean pre-period difference, and the error bars correspond

to 95 percent confidence intervals for the difference between the mean pre-period difference and

the current period difference. Failure of the 95 percent confidence interval to include the dashed

line corresponds to the existence of a statistically significant causal effect of a uterine rupture

event on practice at that time horizon. Figure 1.5 reinforces both key conclusions drawn from

Figure 1.4: mean delivery mode at event and non-event providers trends very similarly prior to

the event; and the gap between event and non-event providers narrows in the post-period. The

immediate narrowing is roughly half a percentage point, but this grows to roughly three-quarters of

a percentage point by the end of the six-quarter follow-up period, indicating that uterine rupture
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events have a causal effect on hospitals’ subsequent practice patterns.

Table 1.2 summarizes these results in tabular form. It reports separate estimated causal effects

for each individual post-period, defined (as justified earlier) as ∆̂q − 1
6

∑−1
r=−6 ∆̂r, as well as an

estimated “pooled” causal effect that corresponds to the average causal effect for births over the

full 6 quarter post-period: 1
6

∑6
q=1 ∆̂q − 1

6

∑−1
q=−6 ∆̂q. The table also reports the results of a formal

test of the hypothesis that ∆q = ∆r for all q, r ∈ H with q, r < 0, which, as shown in Lemma 1,

provides a formal test of the common trends assumption. The tabular results codify the graphical

evidence: there is no evidence against the common trends assumption; and a change in practice

starts immediately after the event and then grows modestly over the ensuing quarters. Before

proceeding, I note that, as discussed in Section 1.3 and demonstrated in detail in Appendix A.6,

approximately one-third of events identified using the ICD-9-CM code for uterine rupture appear

to be relatively minor non-rupture injuries that occur during cesarean section. The point estimates

reported in Table 1.2 and in subsequent tables should therefore be scaled up by a factor of 1.5 to

account for this measurement error.

The fact that the causal effects appear to grow over the first few quarters following an event

merits further comment. Since all the new information is revealed when the event occurs or soon

thereafter, the model presented in Section 1.2 would imply that the full response should occur

almost immediately. There are at least three things that may be missing from the model, however.

First, for this population of women, whether to attempt labor is frequently discussed in early pre-

natal visits. To the extent that obstetricians are loathe to revisit “settled” conversations, effects on

practice will phase in only gradually as the obstetrician’s panel turns over. Dranove and Watanbe

(2009) find a similar pattern in obstetricians’ responses to being sued for medical malpractice,

which they attribute to this mechanism. Second, to the extent that these responses are occurring

through hospital-level policy changes, some delay is to be expected since a process of discussion

and consultation among the hospital’s obstetricians is likely to be required. Finally, some of the

response to these events may be mediated through the malpractice claims that they generate.

Malpractice suits stemming from the rupture event may take many months to be filed, which could

also generate a delayed effect.

The pattern of results also provides some insight into the margins along which affected hospitals

are adjusting their behavior. It is clear that the occurrence of an event makes a hospital less likely
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Figure 1.4: Trends in mode of delivery for event and non-event births by time since event
with events defined at the hospital level
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Notes: This figure reports the weighted average delivery mode for women with a prior cesarean
section at hospitals that will or will not experience an event at q = 0. The reported estimates are
obtained by estimating equation (1.7) as described in the text with events defined at the hospital level
and the outcome an indicator for trial of labor (panel A) or vaginal delivery (panel B). Estimation
uses HCUP State Inpatient Databases for the states and years described in the text and the OSHPD
Patient Discharge Data for 1993-2010. The “births with rupture at q = 0” time series corresponds
to the estimates β̂q

1 , while the “births with no rupture at q = 0” time series corresponds to the

estimates β̂q
0 . The means for q = 0 are mechanically distorted due to the presence (or non-presence)

of the event itself and therefore omitted.

to make an attempt of labor with a subsequent patient. The results provide suggestive evidence,

however, that this is not the only margin of response. On average, only approximately three-

quarters of TOLACs lead to vaginal deliveries (see Table 1.1), and it is likely that the marginal

TOLAC patient is less likely to be successful than the average TOLAC patient. One would therefore

expect the effect of an event on the VBAC rate to be somewhat smaller than the effect on the

TOLAC rate if the only margin of response is the probability of initiating labor. In fact, the VBAC

point estimate is approximately the same size as the TOLAC point estimate, suggesting that the

affected hospitals may also become more likely to abandon an attempt of labor, perhaps because

they start using a lower threshold to diagnose complications.

I turn now to understanding the level at which learning is occurring. Specifically, I investigate

whether the estimated response reflects diffuse hospital-wide changes in behavior or instead reflects
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Figure 1.5: Difference in mode of delivery between event and non-event births by time since
event with events defined at the hospital level
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Notes: This figure reports the difference in delivery outcomes between births at hospitals that will or
will not experience an event at q = 0. The reported estimates are obtained by estimating equation
(1.7) as described in the text with events defined at the hospital level and the outcome an indicator
for trial of labor (panel A) or vaginal delivery (panel B). Estimation uses HCUP State Inpatient
Databases for the states and years described in the text and the OSHPD Patient Discharge Data
for 1993-2010. The reported point estimate for each time-since-event q is ∆̂q = β̂q

1 − β̂1
0 . The

difference for q = 0 is mechanically distorted due to the presence (or non-presence) of the event
itself and therefore omitted. The horizontal dashed line depicts the mean pre-period difference:
1
6

∑−1
q=−6 ∆̂q. The error bars depict 95 percent confidence intervals corresponding to a two-tailed

test of the hypothesis that the current period difference is the same as the mean pre-period difference.
Failure of the current-period confidence interval to include the pre-period mean therefore implies
existence of a statistically significant causal effect at the 5 percent level. The underlying covariance
matrix is obtained via a block bootstrap at the hospital level with 200 replications.
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Table 1.2: Effect of a uterine rupture event on management of subsequent patients (with
events defined at the hospital level)

Column: (1) (2)

Dependent variable

Post-event horizon Trial of labor Vaginal delivery

+ 1 quarter -0.0046∗∗ -0.0042∗∗

(0.0014) (0.0014)

+ 2 quarters -0.0031∗ -0.0031∗

(0.0015) (0.0014)

+ 3 quarters -0.0059∗∗∗ -0.0055∗∗

(0.0017) (0.0018)

+ 4 quarters -0.0071∗∗∗ -0.0065∗∗

(0.0020) (0.0021)

+ 5 quarters -0.0071∗∗ -0.0080∗∗∗

(0.0022) (0.0023)

+ 6 quarters -0.0072∗∗ -0.0081∗∗

(0.0024) (0.0026)

Pooled -0.0058∗∗∗ -0.0059∗∗∗

(0.0017) (0.0018)

Auxiliary information
Common trends p-value 0.383 0.688
Unique births 2,955,195 2,955,195
Nominal N 28,763,506 28,763,506

Notes: This table reports event study estimates of the effect of a uterine rupture event
on hospitals’ subsequent management of deliveries by women with a prior cesarean
delivery. The reported estimates are obtained by estimating equation (1.7) as described
in the text with events defined at the hospital level. Estimation uses HCUP State
Inpatient Databases for the states and years described in the text and the OSHPD
Patient Discharge Data for 1993-2010. The point estimate reported in the row labeled
“+q quarters” is defined as ∆̂q − 1

6

∑−1
r=−6 ∆̂r; the results in the text show that this

may be interpreted as the causal effect of an event q quarters later. The “pooled”
estimate is defined as 1

6

∑6
q=1 ∆̂q − 1

6

∑−1
q=−6 ∆̂q; this quantity may be interpreted

as the average causal effect over the first six post-event quarters. Standard errors
are obtained via a block bootstrap at the physician level using 200 replications and
displayed in parentheses. The common trends p-value is obtained from a standard χ2

test of the of the hypothesis that ∆q = ∆r for all q, r < 0. Statistical significance is
denoted as follows: + p < .1, ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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large changes in behavior by just the physician experiencing the event. To address this question,

I re-estimate equation (1.7), defining event status at the physician level rather than the hospital

level (and altering the matching strategy as described previously). Figure 1.6 and Table 1.3 report

the results; to facilitate comparison to the hospital-level results, Figure 1.6 uses the same scale as

Figure 1.5. The resulting physician-level estimates are very similar to the hospital-level estimates,

albeit considerably less precise, suggesting that the bulk of the response is due to changes in behavior

by physicians other than the physician experiencing the event. A simple calculation is instructive.

In the year an event occurs, the physician directly experiencing the event accounts for less than

10 percent of the hospital’s volume. Even taking the top end of the 95 percent confidence interval

for the effect of an event on the VBAC rate at the physician level (1.5 percentage points), this

means that the physician-level response can account for less than one-quarter of the hospital-wide

response. I conclude, therefore, that the main response mechanisms must be hospital-wide.25

The learning model implies that hospitals should respond less to events that occur later in time,

for two reasons. First, as hospitals accrue more experience, the effect of any single event on beliefs is

smaller. Second, TOLAC rates move away from 50 percent over the time period examined in these

analyses, and under most plausible assumptions about the patient risk preference distribution, this

implies that the sensitivity of treatment decisions to any particular change in beliefs will fall as

well. To test this prediction, I re-estimate equation (1.7) separately for two sets of events: those

occurring in 2002 or earlier and those occurring in 2003 or later. Figure 1.7 and Table 1.4 report

the results, which show that events have large effects in the earlier period, but little or no effect in

the later period, a pattern qualitatively consistent with the model’s predictions.26

25One caveat to this interpretation is that most obstetricians practice in multi-physician groups, as documented
in Appendix A.3. In such groups, the physician with whom a woman decides on her planned mode of delivery will
often not be the physician who attends the delivery. The physician-level estimates will miss any effects on patients
the physician counsels but does not deliver, and, thus, may understate the total effect of an event on that physician’s
practice. Even so, since a physician is much more likely to deliver the patients she counsels than a randomly selected
patient at the hospital, we should still expect the physician-level response to be considerably larger than the hospital-
level response if the main response mechanisms operate at the level of the individual physician. This does not appear
to be the case.

26One additional factor may be at work. As discussed previously, the estimates reported here are attenuated
by measurement error that arises because the ICD-9-CM code for uterine rupture during labor can also be used for
non-rupture events. As discussed in detail in Section 1.3 and Appendix A.6, the share of identified rupture events that
are actual ruptures will tend to fall as the trial of labor rate falls. Calculations based on the model in Appendix A.6
imply that 74 percent of identified ruptures are true ruptures in the earlier period, but this share falls to 50 percent
in the later period. This change would be expected to reduce the estimated effect by approximately one-third, even
without changes in true responsiveness.
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Figure 1.6: Difference in mode of delivery between event and non-event births by time since
event with events defined at the physician level
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Notes: This figure reports the difference in delivery outcomes between births attended by physicians
that will or will not experience an event at q = 0. The reported estimates are obtained by estimating
equation (1.7) as described in the text with events defined at the physician level and the outcome
an indicator for trial of labor (panel A) or vaginal delivery (panel B). Estimation uses HCUP State
Inpatient Databases for the states and years described in the text. The reported point estimate for
each time-since-event q is ∆̂q = β̂q

1 − β̂1
0 . The difference for q = 0 is mechanically distorted due to

the presence (or non-presence) of the event itself and therefore omitted. The horizontal dashed line

depicts the mean pre-period difference: 1
6

∑−1
q=−6 ∆̂q. The error bars depict 95 percent confidence

intervals corresponding to a two-tailed test of the hypothesis that the current period difference is the
same as the mean pre-period difference. Failure of the current-period confidence interval to include
the pre-period mean therefore implies existence of a statistically significant causal effect at the 5
percent level. The underlying covariance matrix is obtained via a block bootstrap at the hospital
level using 200 replications.
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Table 1.3: Effect of a uterine rupture event on management of subsequent patients (with
events defined at the physician level)

Column: (1) (2)

Dependent variable

Post-event horizon Trial of labor Vaginal delivery

+ 1 quarter -0.0059 -0.0017
(0.0064) (0.0060)

+ 2 quarters -0.0036 -0.0058
(0.0059) (0.0055)

+ 3 quarters -0.0124∗ -0.0097+

(0.0059) (0.0054)

+ 4 quarters -0.0021 -0.0050
(0.0053) (0.0051)

+ 5 quarters -0.0082 -0.0149∗

(0.0063) (0.0059)

+ 6 quarters -0.0036 -0.0071
(0.0066) (0.0063)

Pooled -0.0060 -0.0074+

(0.0040) (0.0038)

Auxiliary information
Common trends p-value 0.540 0.879
Unique births 867,811 867,811
Nominal N 3,386,723 3,386,723

Notes: This table reports event study estimates of the effect of a uterine rupture event
on physicians’ subsequent management of deliveries by women with a prior cesarean
delivery. The reported estimates are obtained by estimating equation (1.7) as described
in the text with events defined at the physicians level. Estimation uses HCUP State
Inpatient Databases for the states and years described in the text. The point estimate
reported in the row labeled “+q quarters” is defined as ∆̂q − 1

6

∑−1
r=−6 ∆̂r; the results

in the text show that this may be interpreted as the causal effect of an event q quarters
later. The “pooled” estimate is defined as 1

6

∑6
q=1 ∆̂q − 1

6

∑−1
q=−6 ∆̂q; this quantity

may be interpreted as the average causal effect over the first six post-event quarters.
Standard errors are obtained via a block bootstrap at the physician level using 200
replications and displayed in parentheses. The common trends p-value is obtained from
a standard χ2 test of the of the hypothesis that ∆q = ∆r for all q, r < 0. Statistical
significance is denoted as follows: + p < .1, ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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Figure 1.7: Time heterogeneity in the difference in mode of delivery between event and
non-event births by time since event
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Panel B: Effects on vaginal delivery

Notes: This figure reports the difference in delivery outcomes between births for which the associated
hospital will or will not experience an event at q = 0. The reported estimates are obtained by estimating
equation (1.7) separately for events in 2002 or earlier and events in 2003 or later. Events are defined at the
hospital level, and the outcome is an indicator for trial of labor (panel A) or vaginal delivery (panel B).
The point estimate for each time-since-event q is ∆̂q. The difference for q = 0 is mechanically distorted
due to the presence (or non-presence) of the event itself and therefore omitted. The horizontal dashed line

depicts the mean pre-period difference: 1
6

∑−1
q=−6 ∆̂q. The error bars depict 95 percent confidence intervals

corresponding to a two-tailed test of the hypothesis that the current period difference is the same as the
mean pre-period difference; failure of the current-period confidence interval to include the pre-period mean
therefore implies existence of a statistically significant causal effect at the 5 percent level. The underlying
covariance matrix is obtained via a block bootstrap at the hospital level using 200 replications.
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Table 1.4: Time heterogeneity in the effect of a uterine rupture event on management of
subsequent patients

Column: (1) (2) (3) (4)

Outcome: Trial of labor Vaginal delivery

Time Period/
Post-event horizon

≤ 2002 ≥ 2003 ≤ 2002 ≥ 2003

+ 1 quarter -0.0079∗∗ -0.0011 -0.0073∗∗ -0.0008
(0.0027) (0.0014) (0.0028) (0.0011)

+ 2 quarters -0.0058∗ -0.0002 -0.0055∗ -0.0005
(0.0026) (0.0017) (0.0028) (0.0013)

+ 3 quarters -0.0091∗∗ -0.0025+ -0.0090∗∗ -0.0018
(0.0029) (0.0015) (0.0031) (0.0012)

+ 4 quarters -0.0122∗∗∗ -0.0015 -0.0112∗∗ -0.0014
(0.0036) (0.0018) (0.0038) (0.0014)

+ 5 quarters -0.0131∗∗∗ -0.0006 -0.0142∗∗∗ -0.0013
(0.0039) (0.0017) (0.0042) (0.0014)

+ 6 quarters -0.0143∗∗∗ 0.0005 -0.0152∗∗ -0.0005
(0.0043) (0.0020) (0.0047) (0.0015)

Pooled -0.0104∗∗∗ -0.0009 -0.0104∗∗ -0.0010
(0.0031) (0.0014) (0.0034) (0.0011)

Auxiliary information
Common trends p-value 0.244 0.122 0.352 0.089
Unique births 1,552,521 1,923,648 1,552,521 1,923,648
Nominal N 13,243,389 15,520,117 13,243,389 15,520,117

Notes: This table reports event study estimates of the effect of a uterine rupture event on physicians’
subsequent management of deliveries by women with a prior cesarean delivery. The reported esti-
mates are obtained by estimating equation (1.7) separately separately for events occurring in 2002
or earlier and for events occurring in 2003 or later with events defined at the hospital level. The
point estimate reported in the row labeled “+q quarters” is defined as ∆̂q− 1

6

∑−1
r=−6 ∆̂r; the results

in the text show that this may be interpreted as the causal effect of an event q quarters later. The
“pooled” estimate is defined as 1

6

∑6
q=1 ∆̂q − 1

6

∑−1
q=−6 ∆̂q; this quantity may be interpreted as the

average causal effect over the first six post-event quarters. Standard errors are obtained via a block
bootstrap at the physician level using 200 replications and displayed in parentheses. The common
trends p-value is obtained from a standard χ2 test of the of the hypothesis that ∆q = ∆r for all
q, r < 0. Statistical significance is denoted as follows: + p < .1, ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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Another prediction of the learning model is that, all else equal, larger hospitals should respond

less to events since larger hospitals will typically have accrued more experience. To test this

prediction, I re-estimate equation (1.7) separately by hospital delivery volume quartile in the quarter

of the event, where delivery volume includes only deliveries by women with a prior cesarean delivery.

Table 1.5 reports the results. Contrary to the model’s prediction, I find no evidence that larger

hospitals respond less to events. If anything, it appears that larger hospitals respond slightly more,

although the differences across volume quartiles are not statistically significant.

There are two interpretations of this fact. The first is that the model is incorrect and the

response to events is being mediated through a non-learning channel. The other possibility, however,

is that a hospital’s own volume is not the relevant measure of the stock of experience it has to draw

on. If hospitals learn from their own experience but also from the experience of other hospitals in

their local areas, then the differences in experience across volume groups might be quite modest,

leading to a pattern like the one observed.

For completeness, Appendix A.7 reports evidence on whether the size of the response varies

by patient characteristics or event severity. I find little evidence of heterogeneous responses across

subgroups, subject to the caveat that my power to detect cross-group differences is limited. It is also

worth noting, however, that because it is impossible to link maternal records to the accompanying

neonatal record (or records), my measures of event severity do not incorporate information on

adverse neonatal outcomes, which are typically the most feared outcomes of uterine rupture. For

this reason, the event severity results should be taken with a significant grain of salt.

Threats to validity

One major threat to the validity of these results is that events cause a change in the mix of patients

seen by the affected providers, either because events cause providers to seek out different types

of patients or because events cause some categories of patients to seek out alternative providers.

If changes in patient mix of this form occur, then the trend in delivery outcomes experienced by

the non-event providers will not provide a valid counterfactual for the trend experienced by event

providers. The causal effects would then be biased.

I look for a causal effect of events on provider patient mix by estimating the same event study

specifications as before, replacing the delivery outcomes with patients’ estimated propensity to ex-
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perience those delivery outcomes based on observable characteristics (Baicker et al., 2006; Chandra

and Staiger, 2007). I obtain these propensities as the predicted values from ordinary least squares

regressions of delivery mode on a full set of indicators for single year of age, several categories of

patient race, several categories of insurance status, and dummies for each calendar quarter. I esti-

mate these specifications separately for each state since coding of age, race, and insurance status

can differ across states. In general, age and calendar quarter are the strongest (available) predictors

of delivery mode.

Figure 1.8 depicts the results of these analyses; to facilitate comparison to the main results,

I plot these on a scale of the same magnitude. The figure indicates that events do not cause

shifts in providers’ patient mixes, at least not shifts that are of substantial concern for the present

analysis. Table 1.6 reports the point estimates in tabular form, as well as corresponding estimates

for several underlying patient characteristics: maternal age, black race, Hispanic ethnicity, and

Medicaid enrollment.27 The results in Table 1.6 generally support the conclusion that events do

not lead to changes in provider case mix. Experiencing an event does appear to reduce a hospital’s

Medicaid share, but this effect is only marginally significant, and the absolute magnitude of the

effect is small.

A second threat to the validity of these results is that events are more likely to occur at hospitals

with high trial of labor rates. Indeed, referring back to Figure 1.5, TOLAC rates at hospitals that

will experience an event next quarter are approximately 4 percentage points higher than those at

hospitals that will not experience an event. For a variety of reasons, one might expect these high-

TOLAC hospitals to experience a relative fall in TOLAC rates over the ensuing quarters, perhaps

due to simple statistical mean reversion or perhaps because all hospitals were gradually transitioning

to a lower-TOLAC practice style and only the high-TOLAC hospitals had so far failed to do so.

To address this concern, I randomly generate 2000 sets of “placebo” uterine rupture events. In

order to match the process actually generating those events as precisely as possible, I generate each

event according to the model for the use of the underlying ICD-9-CM code that was described in

Section 1.3 and that is discussed in detail in Appendix A.6. I then re-estimate the event study for

27For the purposes of the individual characteristic analyses only, I code missing ages as 99, so these analyses will
also be sensitive to sharp changes in the share of deliveries in which maternal age is coded as missing. For the race,
ethnicity, and Medicaid enrollment indicators, I code missing data as zero.
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Figure 1.8: Difference in patient characteristics between event and non-event births by time
since event
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Notes: This figure reports the difference in patients’ estimated propensity for different delivery
outcomes between births for which the associated hospital will or will not experience an event at
q = 0. The reported estimates are obtained by estimating equation (1.7) as described in the text
with events defined at the hospital level and the outcome the patient’s estimated propensity for for
trial of labor (panel A) or vaginal delivery (panel B). The point estimate for each time-since-event
q is ∆̂q. The difference for q = 0 is mechanically distorted due to the presence (or non-presence)
of the event itself and therefore omitted. The horizontal dashed line depicts the mean pre-period
difference: 1

6

∑−1
q=−6 ∆̂q. The error bars depict 95 percent confidence intervals corresponding to a

two-tailed test of the hypothesis that the current period difference is the same as the mean pre-period
difference; failure of the current-period confidence interval to include the pre-period mean therefore
implies existence of a statistically significant causal effect at the 5 percent level. The underlying
covariance matrix is obtained via a block bootstrap at the hospital level using 200 replications.
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Figure 1.9: Distribution of placebo estimates of the effect of a uterine rupture event relative
to the actual estimate
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Notes: This figure reports the distribution of 2000 placebo estimates obtained by randomly generat-
ing “placebo” events, estimating equation (1.7) on the placebo dataset, and computing the “pooled”

estimate 1
6

∑6
q=1 ∆̂q − 1

6

∑−1
q=−6 ∆̂q from the placebo results. The navy blue bars depict the dis-

tribution of the placebo estimates, and the highlighted bar depicts the bin containing the mean of
the placebo estimates. The dotted red line depicts the estimates obtained from the actual data and
were reported in Table 1.2.

each of these placebo datasets and compute the corresponding pooled causal effect estimate.

Figure 1.9 plots the distribution of the placebo estimates, the mean placebo estimate, and the

actual estimate. The results demonstrate that the actual estimate is far out in the left tail of the

placebo estimates for both outcomes. The mean placebo estimate is slightly negative, but this

should not be alarming, as providers that actually experienced events will naturally be somewhat

overrepresented in the placebo event group relative to the placebo non-event group; thus, if events

have a true causal effect, this is precisely what we should expect to see. I conclude that my main

results cannot be accounted for by the fact that events are concentrated in high-TOLAC hospitals.

1.5 Common prior beliefs based on the clinical literature

I turn next to understanding providers’ common prior beliefs about the risk of rupture, which as

described in Section 1.2, I assume to be based on the clinical literature. Both the mean and variance
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of this prior distribution are of great interest. The evolution of the mean of this distribution,

together with the provider’s experience to date, determines how the provider’s trial of labor rate

evolves over time. The variance of the prior – which reflects both sampling uncertainty and,

potentially much more important, the provider’s uncertainty about where she falls in the population

distribution of risks – determines how much weight the provider places on her own experience when

forming her beliefs about the risk of rupture.

To characterize the common prior, I assume that each provider rationally assesses the full

set of available research articles (whether directly, indirectly through published meta-analyses, or

informally through opinion leaders) and forms beliefs accordingly. The remainder of this section

proceeds in three steps. I first present the statistical framework I use to compute the common

prior from the reported results in the clinical literature. I next examine the estimated cross-study

dispersion in the risk of rupture and examine how different assumptions about this dispersion affect

the precision of providers’ common prior, and I consider the implications for the event study results.

I then undertake a rolling meta-analysis of the clinical literature over the full period 1980 to 2010,

which provides estimates of the common prior at monthly frequency that I use to calibrate the

learning model in the next section.

1.5.1 Framework for interpreting the clinical literature

This subsection presents a statistical model of how the true cross-provider distribution of the risk of

rupture relates to the studies in the clinical literature. I then assume that providers have a correct

understanding of this model, form beliefs about the parameters of this model using Bayes rule, and

compute their common prior on the risk of rupture on the basis of those beliefs.

To start, suppose that the risk of uterine rupture ph varies across providers h according to

ph = logit−1(Xhβ + vh),

where Xh represents observable features of the provider’s patient mix and practice patterns that

affect of the risk of rupture, β is a vector of coefficients representing the effects of those observable

features, and vh ∼ N(0, σ2
v) captures unobserved (to the provider) features of the provider’s practice

that affect the probability of rupture. As discussed in Section 1.1, the currently-known correlates

of the risk of uterine rupture are either quite weak or relevant to a small share of patients. This
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implies that Var(Xhβ) ≈ 0, so I assume Xhβ = γ for some constant γ. The distribution of ph

therefore depends upon γ and σ2
v .

I assume that providers obtain information on γ and σ2
v from the clinical literature. Toward

this end, I assume that the reported probability of rupture in any given study s takes the form

qs = logit−1(γ + ws + εs),

where ws captures unobserved characteristics of the study site that affect the probability of rup-

ture and εs ∼ N(0, σ2
ε ) reflects measurement error that is unique to each study (e.g. design flaws,

tabulation errors, etc.).28 To make the link between outcomes in individual studies and the popu-

lation distribution of risks, I assume that study sites are drawn randomly from the population of

providers, so that ws ∼ N(0, σ2
v), just like vh.29

Under these assumptions, the number of ruptures Rs in a study s that includes Ls attempts of

labor follows the simple random effects logit structure

us ∼ N(γ, σ2
u)

qs ∼ logit−1(us)

Rs ∼ binomial(Ls, qs),

(1.8)

where us is distributed N(0, σ2
u) with σ2

u ≡ σ2
v + σ2

ε . As described below, this model is easily

estimated using standard tools. Note, however, that while γ is identified in this model, σ2
v is not

identified separately from σ2
ε . As a consequence, I will need to make an assumption about the

share of the cross-study variance σ2
u that providers believe arises from true heterogeneity in risk

rather than measurement error, which I will refer to as δ. In practice, I report results for a range

of possible assumptions about δ.

I take a Bayesian approach to estimating equation (1.8) since I wish to assign a probabilistic

interpretation to uncertainty in the estimated parameters (γ, σ2
u). To do so, I use a specialized Gibbs

sampler algorithm that is tailored to models with this structure. This algorithm is implemented

28The assumption that εs has mean zero is not innocuous. It reflects an assumption that the clinical literature is
correct “on average.”

29It seems unlikely that study sites are literally drawn randomly from the population of providers. In particular,
it seems plausible that the variance of the risk across study sites is smaller than the cross-provider variance. If this
is the case, then the estimates of σ2

v obtained below will understate the actual degree of cross-provider dispersion.
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in the MCMCglmm package for R and is described in detail in Hadfield (2010).30 Like all Markov

Chain Monte Carlo techniques, the algorithm generates a sequence of draws from the posterior

distribution for the model parameters that can then be used to evaluate any moments of those

parameters that may be of interest. I generate 25,000 such draws, and, following standard practice,

I discard the first 5,000 draws so as to eliminate any draws that depend in an important way on

the starting point of the Markov chain. Thereafter, I retain only every tenth draw so as to keep the

number of draws manageable while minimizing the correlation between subsequent draws, yielding

2,000 total draws. I use different priors in the next two subsections, and I explain each as it arises.

It will be convenient to translate the posterior distribution for ph that is implied by the posterior

distribution of (γ, σ2
u) and the chosen value of δ into the terms of the beta distribution that appears

in the learning model. I do so by first drawing 100 instances of ph for each of the 2,000 posterior

draws of (γ, σ2
u) using whatever value has been selected for δ. I then find the “best fit” beta

distribution by maximum likelihood.31

1.5.2 Meta-analysis of all available studies

I first compute the common prior that would exist after observing the full set of studies published

over the period 1980 through 2010. The process by which I identified these studies was described in

Section 1.3. As described there, I use only the most recent publication using a given study cohort

in order to avoid “double counting” evidence.

For this subsection only, I estimate equation (1.8) using a diffuse prior, so the reported posterior

means and standard deviations are very similar to the point estimates and standard errors one would

obtain by maximum likelihood.32 Table 1.7 reports the results. The most salient feature of these

results is that the posterior mean for σu is extremely large, indicating that different studies are

providing meaningfully different estimates of the risk of rupture. Concretely, the estimate of σu

30The random effects logit model considered here is part of a broader class of models that statisticians refer to as
“generalized linear mixed models,” which is the origin of the “glmm” in the package name.

31It would, of course, have been preferable to select a form for the model in equation (1.8) such that the posterior
distribution of interest literally took a beta form. Unfortunately, I am unaware of any specification that would ensure
that this is the case. In any case, the practical differences between the two distributions are small.

32Specifically, I use the default prior in MCMCglmm, which consists of a normal prior for γ with mean zero and
variance 1010 and an improper flat prior for σ2

u.
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Table 1.7: Bayesian meta-analysis of the risk of uterine rupture based on studies published
1980-2010

Posterior Posterior
Parameter/quantity mean SD

Logit intercept (γ) -5.239 0.098
Logit standard deviation (σu) 0.706 0.082

Population mean (E[ph]) 0.0068 0.0007
Population median (logit−1(γ)) 0.0053 0.0005

Observation counts
Number of posterior samples 2,000
Number of studies 88
Number of trials of labor 400,513

Notes: This table reports features of the posterior distribution of (µ, σ2
u)

obtained from Bayesian estimation of the model specified in equation (1.8).
The sample of published studies used for estimation is described in Sec-
tion 1.3. Estimation uses the specialized Gibbs sampler algorithm imple-
mented in the MCMCglmm package for R. The posterior sample of 2,000
draws was obtained by taking every tenth draw from draws 5,000 through
25,000 produced by the Gibbs sampler. A diffuse prior was used for γ
and σ2

u and is described in the text. The posterior population mean was
obtained by taking 1000 draws of ph for each posterior draw of (γ, σ2

u), com-
puting the mean for each posterior draw, and then computing the mean and
standard deviation of the resulting means.

implies that a study one standard deviation above the median has a probability of rupture that is

approximately 70 log points higher than the median study (after purging small-sample variation).33

How this estimated level of cross-study dispersion affects the providers’ common prior depends

on the share of the cross-study variance that is attributable to true heterogeneity in risk as opposed

to simple measurement error; this is the parameter δ defined in the last section. If δ is large, then

the population distribution of risks will be very spread out and the common prior will be more

diffuse, while if δ is small, the population distribution will be tightly-packed and the common prior

will be correspondingly more peaked.

To provide insight on the implications of different values of δ, Table 1.8 reports the results of

fitting a beta distribution to the posterior distribution for ph using the method described in the last

section for each of five different values of δ. The results indicate that, under most assumptions, the

33Technically, it is the odds ratio that is 70 log points larger one standard deviation above the median. For
probabilities close to zero, however, the odds ratio is essentially equal to the raw probability, so a 70 log point change
in the odds ratio is essentially identical to a 70 log point change in the underlying probability.

53



common prior will be quite diffuse. Even when examining a relatively small value of δ = 0.25, the

common prior has a notional sample size of less than 1,400, meaning that the entirety of the clinical

literature has information content equivalent to less than 1,400 of a physician’s own cases. This is

despite the fact that the literature as a whole encompasses more than 400,000 cases. Only when

all of the cross-study variation is attributed to measurement error (i.e. δ = 0) does the common

prior become highly-peaked.34

The fact that the common prior is this diffuse has important implications for the interpretation

of the event study estimates presented in the last section. I use equation (1.2) from the learning

model to calculate what effect a single rupture event should have on a rational provider’s beliefs

about the risk of rupture for each value of the notional sample size reported in Table 1.8. Focusing

again on the case where δ = 0.25, I calculate that for a provider with no experience, a single

uterine rupture increases the provider’s estimate of the risk of rupture by 13.2 percent of the

baseline risk. Even for a provider with substantial accumulated experience, the effect of an event

on beliefs remains large: 7.6 percent of the baseline risk. When beliefs are this sensitive to events,

rationalizing the event study estimates does not require patient preferences to be particularly

sensitive to the risk of rupture and is thus relatively easy. This conclusion is inconsistent with the

conclusions of Choudhry et al. (2006), who interpret physician responses to idiosyncratic experience

as prima facie evidence that physicians overweight their own personal experience.

1.5.3 Rolling Bayesian meta-analysis

I next examine how the common prior evolved over time, which is a needed input into the calibration

exercise in the next section. To do so, I repeat the basic Bayesian analysis from above, but on a

“rolling” basis. That is, I fit the model separately for each month from 1980 to 2010 in which a

new study is published, making use only of the studies that had been published by that point in

time. Between publication months, I simply interpolate the results. I then fit a beta distribution

to the resulting posterior distributions for ph at each point in time in the same way as above.

34Observe that even if the share of σ2
u that reflects true heterogeneity in risk is zero, the notional sample size of

the common prior is still well below the total number of cases observed in the clinical literature. The reason for this
is essentially the same as the reason that non-clustered standard errors overstate precision in the context of linear
regression (Moulton, 1986). In essence, the number of observations is most appropriately thought of as being the
number of distinct studies, rather than the number of distinct individuals observed.
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Table 1.8: Notional sample size of common prior obtained from meta-analysis

Effect of event on beliefs
Share of variance due to

risk heterogeneity (δ)
Common prior notional

sample size (α+ β)
as share of mean risk

No experience 1,000 deliveries

0 percent 20,034 0.009 0.009
25 percent 1,341 0.132 0.076
50 percent 665 0.250 0.100
75 percent 432 0.363 0.109
100 percent 311 0.473 0.112

Notes: Each row of the table reports the results of estimating a “best fit” beta distribution to the posterior
distribution of ph when δ takes the listed value. The “best fit” beta distribution is estimated by maximum
likelihood on a sample of draws of ph constructed by generating 100 instances of ph for each of the 2,000
posterior draws of (γ, σ2

u) using the assumed value of δ. The effects of events on beliefs reported in the last
two columns are computed according to equation (1.2), and the mean risk is computed using the vector
(α, β) from the best fit beta distribution. The underlying draws of (γ, σ2

u) are obtained from Bayesian
estimation of the model specified in equation (1.8). The sample of published studies used for estimation
is described in Section 1.3. Estimation uses the specialized Gibbs sampler algorithm implemented in the
MCMCglmm package for R. The posterior sample of 2,000 draws was obtained by taking every tenth
draw from draws 5,000 through 25,000 produced by the Gibbs sampler. A diffuse prior was used for γ
and σ2

u and is described in the text.

The analyses in this section differ in one important respect from those in the last section:

they require specifying providers’ pre-1980 beliefs over (γ, σ2
u). This choice was unimportant to

the results obtained in the last section since those analyses included all studies published through

2010, which ensured that any plausible prior would be dominated by the data. As a result, for

those analyses, I could simply specify a vague prior. As depicted in Figure 1.10, however, the

available clinical literature during the 1980s is relatively sparse. As a consequence, a provider’s

pre-1980 beliefs play an important role for much of this period. Specifying such beliefs is necessarily

somewhat speculative, but various historical reports make it possible to choose reasonable values.

I explore the sensitivity of the estimated common prior to alternative specifications of the pre-1980

beliefs later in this section.

To calibrate the pre-1980 beliefs, I turn to evidence on the risk of rupture for women with

a prior classical cesarean section. As noted earlier in the paper, the practice of routine repeat

cesarean section originated in the early 20th century when the “classical” approach to cesarean

section predominated. Since experience with trial of labor between the early 20th century and 1980

was minimal, it seems likely that beliefs about the risk of rupture that were forged in that era still

predominated. Consistent with this view, a major NIH conference report on this topic published

55



Figure 1.10: Published studies on the risk of uterine rupture, 1980-2010
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Notes: This figure plots the risk of uterine rupture reported by published research articles on this
topic over the period 1980-2010. The area of each marker is proportional to the number of attempts of
labor observed in the study. The method in which studies were identified and processed is described
in Section 1.3. The same labor attempt may be reflected in multiple points since multiple studies
frequently make use of the same underlying patient cohort. In the formal analyses presented in the
text, only the most recently published version of each patient cohort is used.
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in 1980 explicitly linked the then-prevailing beliefs regarding the risk of uterine rupture to the era

in which the classical procedure predominated (NIH, 1980).35

Two meta-analyses from the early 1980s, Lavin et al. (1982) and O’Sullivan et al. (1981), both

citing evidence reported by Dewhurst (1957), quote a rupture rate for women with a classical ce-

sarean scar of 4.7 percent. Similarly, Case et al. (1971) reports that, among British physicians,

4 percent was an accepted figure for the risk of rupture during labor for women with a classical

cesarean scar. Also consistent with the idea that physicians of the era were reasonably certain that

the risk was quite high, Lavin et al. (1982) reports survey results from 1968 that 80 percent of physi-

cians would not consider trial of labor for their patients even after being “shown...overwhelming

evidence of the safety of permitting labor following cesarean section.” Roughly following this ev-

idence, I parametrize the pre-1980 beliefs on γ as following a normal distribution with a mean

γ0 = logit−1(0.04). I set the standard deviation of this normal distribution to σγ = 0.50, which

reflects substantial certainty that the risk was high, but limited certainty regarding its precise

magnitude.

Specifying sensible pre-1980 beliefs for the cross-study variance σ2
u is more difficult, as there is

little available information on physicians’ pre-1980 views about the degree of cross-study dispersion

in the risk of rupture. As a straightforward, if admittedly somewhat unattractive shortcut, I center

the prior on the estimate of σ2
u that was obtained in the full sample using a diffuse prior. This

may be interpreted, roughly speaking, as a sort of “perfect foresight” assumption. Formally, I

parametrize the pre-1980 beliefs for σ2
u using a scaled inverse χ2 distribution, which are commonly

used to specify prior beliefs for variance parameters. The scaled inverse χ2 distribution has a

location parameter τ2 and a “degrees of freedom” parameter ν, and it arises naturally as the

posterior distribution for the unknown variance of a normal distribution after observing a sample

of size ν with sample variance τ2, starting from a specific minimally-informative prior (Gelman et

al., 2004). I set τ2 = 0.49 = 0.72, and I set ν = 20, reflecting only a moderate belief that the

variance is close to this value.

35Some evidence on the risk of uterine rupture for women whose prior cesarean had used the modern low-transverse
incision rather than a classical incision was available at this time, largely from the United Kingdom. Lavin et al.
(1982) surveys this evidence and arrives at an overall estimate of the risk of rupture of 0.7 percent, similar to the
estimates obtained using modern evidence. I am assuming that this evidence was not well known in the United States
and did not have an important influence on the pre-1980 beliefs of US physicians.
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Using these pre-1980 beliefs as the prior for estimation, I once again estimate the model in

equation (1.8). The resulting estimates of the common prior are reported in Figure 1.11. I report

estimates separately under three values for δ, the share of σ2
u that represents true heterogeneity

in risk: 0, 0.5, and 1. The evolution of the mean of the common prior appears to be basically

insensitive to the assumed value of δ; it falls steadily and rapidly through the 1980s under all three

assumptions and then rises very slightly thereafter. This time pattern is intriguing in light of the

time series pattern of TOLAC and VBAC rates documented at the outset of the paper, and I return

to the ability of these changes in mean beliefs to explain changes in practice in the next section.

While the evolution of mean beliefs is relatively insensitive to assumptions about heterogeneity,

the notional sample sizes evolve quite differently depending on the value of δ chosen, which is

consistent with the results of the last subsection. With larger values of δ, the notional sample

sizes are relatively small and flatten out by 1990. When δ = 0, however, the notional sample size

is much larger and continues rising over the full period. Intuitively, this difference arises because,

when the risk heterogeneity is substantial, the dispersion in the prior comes to be dominated by the

risk heterogeneity rather than sampling error. As a result, the accumulation of additional evidence

after 1990 has little to no effect on the notional sample size. Without such heterogeneity, the

dispersion in the common prior consists solely of sampling error, so the accumulation of additional

evidence drives a steady increase in the precision of the common prior.

Before concluding this section, I examine these results’ sensitivity to alternative parametriza-

tions of the pre-1980 beliefs. To streamline the presentation, however, I focus solely on the case in

which δ = 0.5. The results of these sensitivity analyses are reported in Figure 1.12. In each row,

the middle plot depicts the base parametrization of the pre-1980 beliefs, and the plots to each side

depict the effect of varying the listed parameter. While none of these alternative parametrizations

of the pre-1980 beliefs change the qualitative conclusions of the analysis, varying some of the pa-

rameters does have interesting effects. When providers are made meaningfully more certain about

the pre-1980 median risk of rupture (i.e. when σγ is smaller), the mean risk declines much more

slowly; the notional sample size also rises more slowly since the model “fits” the data by concluding

that σ2
u is very large. The prior belief about the magnitude of σ2

u also has a meaningful effect on

the notional sample size, and the pattern of effects is quite intuitive.
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Figure 1.11: Estimated common prior for 1980-2010 obtained from a rolling meta-analysis by
the share of cross-study variance due to heterogeneity in risk
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Notes: Each panel of the figure reports the results of estimating a “best fit” beta distribution to the posterior
distribution of ph for each month and for three values of δ. The “best fit” beta distribution is estimated by
maximum likelihood on a sample consisting of 100 random draws of ph for each of the 2,000 posterior draws
of (γ, σ2

u) using the listed value of δ. The underlying draws of (γ, σ2
u) are obtained from Bayesian estimation

of equation (1.8) in each month in which a new study is published. The sample of published studies used
for estimation is described in Section 1.3. The informative prior used for γ and σ2

u is described in the text.
See text for additional estimation details.
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Figure 1.12: Sensitivity of the common prior to alternative pre-1980 beliefs when 50 percent
of the cross-study variance reflects heterogeneity in risk
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Notes: Each panel of the figure reports the results of estimating a “best fit” beta distribution to the posterior
distribution of ph for each month using the listed parametrization of pre-1980 beliefs. The “best fit” beta
distribution is estimated by maximum likelihood on a sample consisting of 100 random draws of ph for each
of the 2,000 posterior draws of (γ, σ2

u) using δ = 0.5. The underlying draws of (γ, σ2
u) are obtained from

Bayesian estimation of equation (1.8) in each month in which a new study is published. The sample of
published studies used for estimation is described in Section 1.3. The informative prior used for γ and σ2

u is
described in the text. See text for additional estimation details.
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1.6 Learning model calibration

In this section, I use the event study estimates obtained in Section 1.4 together with the estimates

of the common prior obtained in the last section to calibrate the model developed in Section 1.2.

The first part of this section describes the approach I take in calibrating the model. In the second

part of the section, I simulate the model for the period 1980-2010, and I examine whether it can

quantitatively account for the dramatic variation in TOLAC rates in the cross-section and the rise

and fall of VBAC and TOLAC rates over recent decades.

1.6.1 Calibration and simulation

I calibrate and simulate a discretized version of the model presented in Section 1.2 in which time

evolves at a monthly frequency. All simulated results reflect a population of 1000 ex ante identical

providers over the period 1980-2010. Simulating the model requires calibrating the following ob-

jects: the common prior parameters α(t) and β(t), the true cross-provider risk distribution G(p),

the patient arrival rate λ(t), and the distribution F (p∗) of maternal risk thresholds above which

cesarean section is preferred to TOALC and below which TOLAC is preferred to cesarean section.

I obtain the common prior parameters α(t) and β(t) directly from the last section. I select the

version of the common prior estimates in which providers believe that 50 percent of the cross-study

variance in reported risks arises from true provider-to-provider variation in risk (i.e. δ = 0.5).36

For the cross-provider risk distribution G(p), I present two alternative calibrations. The first cal-

ibration assumes that the common prior at the end of 2010 accurately reflects the cross-hospital risk

distribution. Because the common prior is non-degenerate, this calibration implies that providers

differ substantially in their true risk of rupture. In the alternative calibration, I assume that each

provider has the same risk of rupture and that this common risk is equal to the mean of the com-

mon prior at the end of the period. Comparing these alternative calibrations provides insight into

how much of the cross-sectional variation in TOLAC rates generated by the model is due to true

heterogeneity in risk and how much is due to differences in providers’ idiosyncratic experiences.

Calibrating the patient arrival rate λ(t) requires making a decision about whether a “provider”

36The assumption that δ = 0.5 corresponds approximately to the case in which providers are perfectly ignorant
about δ and thus have a uniform [0, 1] prior on this parameter.
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in the terms of the model is a physician or a whole hospital and whether each provider learns only

from its own cases or also learns from cases in some broader community. As discussed in detail in

Section 1.4, occurrence of a uterine rupture event seems to affect all physicians at a hospital, not

just the physician who directly experiences the event, so it is reasonable to assume that learning is

occurring at the hospital level or above. I thus assume in my initial calibrations that each provider

is a single hospital that learns only from its own experience. In other calibrations, I assume

that learning occurs at the “community” level, which I suppose (somewhat arbitrarily) consists of

four hospitals. These four hospitals could literally be interpreted as four distinct hospitals that

pool information or, possibly more realistically, as representing each provider’s broad network of

contacts.

I obtain values of the patient arrival rate λ(t) that are appropriate for a single hospital in two

steps. I first estimate the annual delivery volume of the hospital that handles the median delivery

(which I define by ranking deliveries by the volume of the hospital at which they occur). Using the

Nationwide Inpatient Sample for 1988-2010, I obtain an estimate of 2,144. I then use the National

Hospital Discharge Survey to estimate the share of deliveries in which the mother had a prior

cesarean section for each year 1980-2010. Using these estimates, I compute λ(t) for each month t

as the product of the delivery volume from the NIS (divided by 12) and the prior cesarean section

share appropriate for that year. For calibrations using a four-hospital community, I simply scale

the result by a factor of four.

I turn now to the most important step in the calibration: calibrating the distribution of maternal

risk thresholds F (p∗). I assume that F (p∗) has the form of a beta distribution with parameters

(µ∗, φ∗), where µ∗ is the distribution mean and φ∗ is the notional sample size. The mean µ∗ controls

the overall risk tolerance of the population and, thus, the overall level of the TOLAC rate. The

notional sample size φ∗ controls the sensitivity of the TOLAC rate to changes in beliefs about the

risk of rupture. If φ∗ is very large, then the distribution of risk thresholds will be very peaked and

small changes in beliefs will generate large changes in TOLAC rates. In contrast, if φ∗ is small, then

the distribution of thresholds will be very diffuse and TOLAC rates will be relatively insensitive to

changes in beliefs.

I choose the parameters (µ∗, φ∗) so that the simulated data match two empirical moments:

(1) the average TOLAC rate over the period 1980-2010; and (2) the event study estimate of the
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effect of a uterine rupture event on the hospital-level TOLAC rate. Roughly speaking, the average

TOLAC rate over the period determines µ∗ and the average effect of an event on the TOLAC rate

determines φ∗.

I calculate the empirical version of the first of these moments from the NHDS and find that

it is equal to 24 percent. I compute its simulated counterpart in the natural way. Turning to the

second of these moments, I obtain the empirical version of the empirical event study estimate from

Table 1.2. I neglect the time path of the response and thus select the “long-run” effect 6 quarters

after the event, which is -0.72 percent. I then scale this estimate up by a factor 1/0.65 ≈ 1.5 to

account for the fact, discussed in Section 1.3 and Appendix A.6, that some coded uterine rupture

events are not true events, which generates a final event study estimate of -1.11 percentage points.

As demonstrated carefully in Section 1.4, the event study estimates are “treatment on the treated”

estimates that correspond to the particular period covered by the event study sample. To compute

a corresponding moment in the simulated data, I identify, in each month t, the full set of women

who deliver at providers that experienced at least one rupture in month t−1. Among those women,

I then calculate the share that would have made an attempt of labor but for the uterine rupture

events that occurred in month t − 1; this is the simulated average treatment effect on the treated

in month t. I then weight these treatment effects across months t according to the actual number

of deliveries included in the event study analysis in that month.37

To identify the particular values of µ∗ and φ∗ that reproduce these moments, I use the Nelder-

Mead simplex algorithm to minimize the following objective function:

f(µ∗, φ∗) =
∑

j∈{1,2}

(mS
j (µ∗, φ∗)−mj)

2

m2
j

,

where mS
j (µ∗, φ∗) is the simulated version of moment j and mj is its empirical counterpart.

Following standard practice (e.g. Davidson and MacKinnon (2004)), I use the same random

draws when simulating the model for each new set of parameters in order to ensure that mS
j (µ∗, φ∗)

varies in a predictable fashion as the parameter vector (µ∗, φ∗) varies. Retaining the provider

rupture risk and the number of new patient arrivals in each period is straightforward since the

distributions of these quantities are not functions of the parameter vector (µ∗, φ∗). The joint

37In fact, time is observed at quarterly frequency in event study sample, so the weight applied to each month is
the number of deliveries in the corresponding quarter divided by 3.
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distribution of the number of attempts of labor and the number of uterine ruptures in each period is,

however, a function of (µ∗, φ∗). As a consequence, these draws cannot be retained directly. Instead,

I retain an underlying uniform random variable on [0, 1] for each of these quantities and obtain the

draws for each period by applying the inverse cumulative distribution functions appropriate for the

current vector (µ∗, φ∗) to these underlying variables.

Simulated in this fashion and with appropriate selection of starting values, the optimization

algorithm converges to an exact solution (i.e. values such that f(µ∗, φ∗) ≈ 0) after several minutes

of runtime.

1.6.2 Simulation results

I now present the results of calibrating and simulating the learning model under several different

sets of assumptions. To evaluate the results, I compare the simulated mean TOLAC rates and cross-

provider dispersion in TOLAC rates to their actual counterparts. Specifically, for mean TOLAC

rates, I compare the simulated mean TOLAC rate to its actual counterpart as computed using

the National Hospital Discharge Survey. For cross-hospital dispersion, I focus on the standard

deviation of the cross-provider distribution of “latent” TOLAC rates – the probability that a

randomly chosen woman delivering with that provider would undergo TOLAC – in order to abstract

from small-sample variation. I compute the simulated standard deviation in the obvious way. I

compute the actual standard deviation by estimating the beta-binomial mixture model described

in Appendix A.1 using the Nationwide Inpatient Sample for 1980-1987. Because the Nationwide

Inpatient Sample is not available before 1988, I am not able to document the true level of cross-

provider dispersion in 1987 or earlier.

In my first set of results, I simulate the model under the assumption that physicians learn only

from deliveries at their own hospital. The results are plotted in Figure 1.13. The simulated and

actual TOLAC rates agree well through the 1980s, but the simulated rate then flattens out at a

level well below the actual peak and completely misses the late-1990s decline in TOLAC rates. The

initial rise in the TOLAC rate results from the fact that the mean of providers’ common prior for

the risk of rupture falls as new clinical evidence becomes available through the early 1980s; this

evolution in the common prior was depicted in the last section in Figure 1.11. Once the changes

in the common prior cease, however, there is no force in the model to drive additional changes
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Figure 1.13: Level of and cross-provider variation in the TOLAC rate:
Actual vs. simulated (within-hospital learning only)
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Notes: The simulated data are obtained by simulating the learning model as described in the text when
physicians learn from cases at their hospital only. In the simulated series labeled “with risk heterogeneity,”
each hospital’s risk of rupture is drawn according to the common prior distribution for the last month of
the data. In the simulated series labeled “without risk heterogeneity,” each hospital’s risk of rupture is
identical and set equal to the mean of the common prior distribution for the last month of the data. The
actual mean TOLAC rate is computed using the National Hospital Discharge Survey for the appropriate
year. The actual standard deviation of the latent TOLAC rate is computed from the Nationwide Inpatient
Sample by estimating the beta-binomial mixture model described in Appendix A.1. The plotted standard
deviation is the standard deviation of the estimated beta distribution from this model.

in practice. In particular, because the mean true risk of rupture coincides with the mean of the

common prior at the end of the period, the experience providers accrue after 1990 will (on average)

match their pre-existing beliefs.

Turning to the results for cross-hospital dispersion, Figure 1.13 demonstrates that cross-hospital

dispersion on the order of one quarter of the actual level of cross-hospital dispersion appears quickly

once providers start gaining experience with TOLAC. Perhaps surprisingly, most of this variation

exists even in simulations in which all hospitals face the same risk of rupture. Furthermore, the

figure shows that variation from this source does not dissipate quickly over time.

In Figure 1.14, I examine how these results change if instead of learning only from the cases at

a single hospital, physicians learn from all cases in a four-hospital community. This second set of

results exhibits a much greater amount of cross-hospital dispersion. When all providers face the
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same risk of rupture, the model can now explain roughly half of the actual cross-hospital standard

deviation of TOLAC rates, and it remains the case that this source of cross-sectional variation in

TOLAC rates is quite durable. Adding true cross-hospital variation in the risk of rupture increases

the simulated cross-hospital variation in the TOLAC rate further still, to the extent that the model

can approximately match the amount of cross-sectional variation observed in the data.

Embedding physicians in a broader community changes the simulated amount of cross-sectional

variation for two reasons. First, as shown in columns (1) and (2) of Table 1.9, the calibrated

preference parameters change so as to increase the sensitivity of TOLAC rates to changes in beliefs,

which magnifies any given degree of cross-sectional variation in beliefs. Intuitively, when embedded

in a broader community, physicians accrue experience at a greater rate, which causes any single

event to have a smaller effect on beliefs, and the only way for the model to continue to match the

event study estimate is for the sensitivity of the TOLAC rate to beliefs to rise. Second, as also

shown in Table 1.9, increasing the rate at which physicians gain experience changes the amount of

cross-sectional variation in physician beliefs, although the direction of this effect depends on whether

there is true heterogeneity in risk. The intuition for this comes from equation (1.4), which shows

that variation in beliefs attributable to differences in risk rises with experience, while variation in

beliefs attributable to differences in idiosyncratic experience initially rises with experience, then

falls. In the simulations with true heterogeneity in risk, the former effect dominates, while in the

simulations without true heterogeneity, only the latter effect exists.

While embedding physicians in a broader community better matches the amount of cross-

sectional variation in TOLAC rates, the model still fails to match the decline in the TOLAC rate

that starts in the mid-1990s, for essentially the same reasons as before. In an attempt to improve

the model’s ability to explain this feature of the data, I suppose that physicians exhibit a form

of “selective memory” in which they fully remember incidents of rupture, but sometimes “forget”

TOLACs that do not lead to rupture. Concretely, I modify the beta-binomial learning rule in

equation (1.1) so that it takes the following form:

p̃h(t) =
α(t) +Rh(t)

α(t) + β(t) +Rh(t) + (1− θ)[Lh(t)−Rh(t)]
, (1.9)
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Figure 1.14: Level of and cross-provider variation in the TOLAC rate:
Actual vs. simulated (with learning in a four-hospital community)
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Notes: The simulated data are obtained by simulating the learning model as described in the text when
physicians learn from hospitals in a four-hospital community. In the simulated series labeled “with risk
heterogeneity,” each hospital’s risk of rupture is drawn according to the common prior distribution for
the last month of the data. In the simulated series labeled “without risk heterogeneity,” each hospital’s
risk of rupture is identical and set equal to the mean of the common prior distribution for the last month
of the data. The actual mean TOLAC rate is computed using the National Hospital Discharge Survey
for the appropriate year. The actual standard deviation of the latent TOLAC rate is computed from the
Nationwide Inpatient Sample by estimating the beta-binomial mixture model described in Appendix A.1.
The plotted standard deviation is the standard deviation of the estimated beta distribution from this
model.
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Table 1.9: Characteristics of several calibration scenarios

Calibration scenario: (1) (2) (3) (4) (5)

A. With heterogeneity in the risk of rupture

Parameters of the risk threshold distribution
Mean (µ∗) 0.007 0.004 0.016 0.013 0.019
Notional sample size (φ∗) 27 186 78 134 58

Implied sensitivity to 1 in 1,000 change in risk 0.019 0.050 0.017 0.026 0.013

Simulated provider beliefs, Jan. 1995

Mean 0.0055 0.0059 0.0214 0.0155 0.0262
Standard deviation 0.0019 0.0024 0.0061 0.0030 0.0094

B. Without heterogeneity in the risk of rupture

Parameters of the risk threshold distribution
Mean (µ∗) 0.007 0.005 0.020 0.014 0.025
Notional sample size (φ∗) 26 202 96 146 76

Implied sensitivity to 1 in 1,000 change in risk 0.018 0.050 0.017 0.026 0.014

Simulated provider beliefs, Jan. 1995

Mean 0.0056 0.0062 0.0248 0.0166 0.0317
Standard deviation 0.0014 0.0012 0.0027 0.0017 0.0037

Scenario characteristics
Community size (# of hospitals) 1 4 4 4 4
Selective memory parameter (θ) 0 0 0.9 0.9 0.9
Risk share of cross-study variance (δ) 0.50 0.50 0.50 0.25 0.75

Notes: This table reports the calibrated parameter vector (µ∗, φ∗) of the distribution of patient risk
thresholds above which a woman elects repeat cesarean and below which she elects TOLAC under several
scenarios. The parameters of these scenarios are described in the footer of the table. Panel A reports a
version of each scenario in which each hospital’s risk of rupture is drawn according to the common prior
distribution for the last month of the data. Panel B reports a version of each scenario in which each
hospital’s risk of rupture is identical and set equal to the mean of the common prior distribution for the
last month of the data. The implied sensitivity to a 1 in 1,000 change in practice is computed as one
thousandth of the density of the risk threshold distribution, evaluated at the risk level that generates the
period mean TOLAC rate of 24 percent. It can be interpreted as the increase in the TOLAC rate that
would arise from a 1 in 1,000 reduction in the provider’s estimated risk of rupture when starting from
TOLAC rates near the full period average.
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where θ is the share of non-ruptures that the provider forgets.38

There are three reasons one might expect the learning process to exhibit selective memory

of this form. The first is that when drawing upon directly-observed experience, physicians may

apply an “availability heuristic,” as proposed by Tversky and Kahneman (1973). By virtue of its

rarity and severity, an incident of uterine rupture is likely to be a high-salience event. By contrast,

most TOLACs that proceed without rupture will be little different from many other TOLACs and,

for that matter, little different from most deliveries by women without a prior cesarean delivery.

As a consequence, “availability heuristic” behavior would imply that incidents of rupture will be

remembered well, while non-rupture TOLACs may not be. Second, for the simulations in which

learning occurs at the “community level,” the most natural interpretation is that much of this

experience is accruing through social networks. For similar reasons, it seems likely that physicians

will more frequently share stories about cases of rupture than about labors in which nothing unusual

occurs, which will generate a skewed information flow. Finally, most hospitals institutionalize

a focus on cases involving significant complications through regular “morbidity and mortality”

conferences in which such cases are discussed (Gawande, 2002; Pierluissi et al., 2003; Orlander et

al., 2002). This suggests that cases of rupture are more likely to be publicized and remembered at

the hospital level.

As discussed previously, Choudhry et al. (2006) also appeal to an availability heuristic in ex-

plaining their finding that cardiologists become less likely to prescribe warfarin for atrial fibrillation

after experiencing a warfarin-induced bleeding complication. It is important to note, however, that

the type of imperfect memory being proposed here is quite different. Whereas Choudhry et al.

propose that physicians overweight bad outcomes, I am proposing that physicians underweight the

much more common good outcomes. Notably, my approach does not imply that observed responses

to adverse events will be substantially larger than under a rational model.

Figure 1.15 reports the results of calibrating and simulating the model with a selective memory

parameter θ = 0.9, corresponding to the case where physicians remember only 10 percent of at-

tempts of labor that do not lead to rupture. Addition of selective memory dramatically improves

38This approach to incorporating selective memory is, admittedly, ad hoc. A possibly more aesthetically appealing
approach would be to assume that, immediately after each trial of labor that does not end in rupture, the memory of
that attempt is added to the provider’s stock of experience with some probability θ. In practice, this gives extremely
similar results, and because the approach taken here modestly reduces the computational burden, I prefer it.
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Figure 1.15: Level of and cross-provider variation in the TOLAC rate:
Actual vs. simulated (with a four-hospital community and “selective memory”)
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Notes: The simulated data are obtained by simulating the learning model as described in the text when
physicians learn from hospitals in a four-hospital community and have selective memory parameter θ = 0.9.
In the simulated series labeled “with risk heterogeneity,” each hospital’s risk of rupture is drawn from the
common prior distribution for the last month of the data. In the simulated series labeled “without risk
heterogeneity,” each hospital’s risk of rupture is identical and set equal to the mean of the common prior
distribution for the last month of the data. The actual mean TOLAC rate is computed using the National
Hospital Discharge Survey for the appropriate year. The actual standard deviation of the latent TOLAC
rate is computed from the Nationwide Inpatient Sample by estimating the beta-binomial mixture model
described in Appendix A.1. The plotted standard deviation is the standard deviation of the estimated beta
distribution from this model.

the ability of the model to fit the time series. After the rise through the 1980s, TOLAC rates

flatten out, then decline steadily through the remainder of the period, reaching levels similar to

the actual levels by 2010. The improvement in fit comes because the experience physicians accrue

is skewed to include more cases of rupture than actually occur. As a result, beliefs about the risk

of rupture drift upward over time, reaching ph/(1− θ) in the limit for a provider with true risk ph.

This upward drift in beliefs drives the downward movement in TOLAC rates. Of course, the time

series fit is still not perfect, as the rise during the 1980s is still too rapid. It appears that, while the

model interprets new clinical publications as being absorbed into the common prior immediately,

this process takes some time in reality.

In addition to matching the time series, the version of the model with selective memory still
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generates substantial cross-provider variation in TOLAC rates, including in simulations in which

all providers share a common risk of rupture. Furthermore, when there is heterogeneity in risk, the

model continues to approximately match the actual degree of cross-sectional variation. The mech-

anism by which the model with selective memory generates this level of cross-sectional variation

differs somewhat from the version of the model without selective memory, however. Comparing

column (2) to column (3) in Table 1.9 demonstrates that the sensitivity of the TOLAC rate to a

given change in beliefs is now considerably smaller, while the cross-sectional variance in beliefs is

considerably larger. This reduction in the sensitivity of practice to beliefs arises because physicians’

“effective” experience is now given by Rh(t)+(1−θ)[Lh(t)−Rh(T )] rather than Lh(t), so experience

accrues at a considerably slower rate. Since beliefs change more in response to any particular event

when experience is lower, matching the event study estimates now requires preferences to be less

sensitive to beliefs. Turning to the increase in the cross-provider variance in beliefs, there are two

effects to consider. The presence of selective memory slows the rate at which the physician accrues

experience and approximately proportionally increases the share of experience that consists of cases

of rupture. Equation (1.4) indicates that that the increase in the effective probability of rupture

will increase the variance of beliefs, and this will either be reinforced or only partially offset by the

reduction in the rate at which experience accrues, so the variance in beliefs rises.39

Before closing this section, I examine how the conclusions above would change if the model

was calibrated using a version of the common prior that ascribed a smaller or larger share of the

cross-study variance in the estimated risk of uterine rupture to true heterogeneity in risk. Thus,

Figure 1.16 explores the sensitivity of the last calibration exercise (i.e. that with a four-hospital

community and selective memory) to setting δ = 0.25 or δ = 0.75 instead of the value δ = 0.5

used in the main results. Changing δ has almost no effect on the time series results. Changing

δ does, unsurprisingly, change the amount of cross-sectional variation in simulations that include

true heterogeneity in risk, but for all values of δ, the simulations continue to approximately match

the amount of cross-sectional variation observed in the data.

39Strictly speaking, equation (1.4) does not apply to the model with selective memory. However, under the version
of selective memory described in footnote 38, which gives results very similar to the version of selective memory
actually simulated, a counterpart to equation (1.4) can be derived that provides the same intuition.

71



F
ig

u
re

1
.1

6
:

M
e
a
n

a
n

d
c
ro

ss
-h

o
sp

it
a
l

st
a
n

d
a
rd

d
e
v
ia

ti
o
n

o
f

th
e

T
O

L
A

C
ra

te
:

A
c
tu

a
l

v
s.

si
m

u
la

te
d

(w
it

h
a

fo
u

r-
h

o
sp

it
a
l

c
o
m

m
u

n
it

y
a
n

d
“
se

le
c
ti

v
e

m
e
m

o
ry

”
a
n

d
d

iff
e
re

n
t

a
ss

u
m

p
ti

o
n

s
a
b

o
u

t
th

e
sh

a
re
δ

o
f

th
e

c
ro

ss
-s

tu
d

y
v
a
ri

a
n

c
e

in
th

e
ri

sk
o
f

ru
p

tu
re

th
a
t

re
fl

e
c
ts

tr
u

e
h

e
te

ro
g
e
n

e
it

y
in

ri
sk

)

0.1.2.3.4.5
Trial of labor rate

19
80

19
90

20
00

20
10

Y
ea

r

δ 
=

 2
5 

pe
rc

en
t

0.1.2.3.4.5
Trial of labor rate

19
80

19
90

20
00

20
10

Y
ea

r

δ 
=

 5
0 

pe
rc

en
t

0.1.2.3.4.5
Trial of labor rate

19
80

19
90

20
00

20
10

Y
ea

r

δ 
=

 7
5 

pe
rc

en
t

A
. M

ea
n 

T
O

LA
C

 r
at

e

0.05.1.15.2
SD of TOLAC rate

19
80

19
90

20
00

20
10

Y
ea

r

δ 
=

 2
5 

pe
rc

en
t

0.05.1.15.2
SD of TOLAC rate

19
80

19
90

20
00

20
10

Y
ea

r

δ 
=

 5
0 

pe
rc

en
t

0.05.1.15.2
SD of TOLAC rate

19
80

19
90

20
00

20
10

Y
ea

r

δ 
=

 7
5 

pe
rc

en
t

B
. S

ta
nd

ar
d 

de
vi

at
io

n 
of

 la
te

nt
 p

ro
vi

de
r 

T
O

LA
C

 r
at

es

D
at

a
S

im
ul

at
ed

 (
w

ith
 r

is
k 

he
te

ro
ge

ne
ity

)
S

im
ul

at
ed

 (
w

ith
ou

t r
is

k 
he

te
ro

ge
ne

ity
)

N
o
te

s:
T

h
e

si
m

u
la

te
d

d
a
ta

a
re

o
b
ta

in
ed

b
y

si
m

u
la

ti
n
g

th
e

le
a
rn

in
g

m
o
d
el

a
s

d
es

cr
ib

ed
in

th
e

te
x
t

w
h
en

p
h
y
si

ci
a
n
s

le
a
rn

fr
o
m

h
o
sp

it
a
ls

in
a

fo
u
r-

h
o
sp

it
a
l

co
m

m
u
n
it

y
a
n
d

h
av

e
se

le
ct

iv
e

m
em

o
ry

p
a
ra

m
et

er
θ

=
0
.9

u
n
d
er

d
iff

er
en

t
a
ss

u
m

p
ti

o
n
s

a
b

o
u
t

th
e

sh
a
re
δ

o
f

th
e

cr
o
ss

-s
tu

d
y

va
ri

a
n
ce

in
ri

sk
es

ti
m

a
te

s
th

a
t

re
fl
ec

ts
tr

u
e

h
et

er
o
g
en

ei
ty

in
ri

sk
.

In
th

e
si

m
u
la

te
d

se
ri

es
la

b
el

ed
“
w

it
h

ri
sk

h
et

er
o
g
en

ei
ty

,”
ea

ch
h
o
sp

it
a
l’
s

ri
sk

o
f

ru
p
tu

re
is

d
ra

w
n

fr
o
m

th
e

co
m

m
o
n

p
ri

o
r

d
is

tr
ib

u
ti

o
n

fo
r

th
e

la
st

m
o
n
th

o
f

th
e

d
a
ta

.
In

th
e

si
m

u
la

te
d

se
ri

es
la

b
el

ed
“
w

it
h
o
u
t

ri
sk

h
et

er
o
g
en

ei
ty

,”
ea

ch
h
o
sp

it
a
l’
s

ri
sk

o
f

ru
p
tu

re
is

id
en

ti
ca

l
a
n
d

se
t

eq
u
a
l

to
th

e
m

ea
n

o
f

th
e

co
m

m
o
n

p
ri

o
r

d
is

tr
ib

u
ti

o
n

fo
r

th
e

la
st

m
o
n
th

o
f

th
e

d
a
ta

.
T

h
e

a
ct

u
a
l

m
ea

n
T

O
L

A
C

ra
te

is
co

m
p
u
te

d
u
si

n
g

th
e

N
a
ti

o
n
a
l

H
o
sp

it
a
l

D
is

ch
a
rg

e
S
u
rv

ey
fo

r
th

e
a
p
p
ro

p
ri

a
te

y
ea

r.
T

h
e

a
ct

u
a
l

st
a
n
d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

la
te

n
t

T
O

L
A

C
ra

te
is

co
m

p
u
te

d
fr

o
m

th
e

N
a
ti

o
n
w

id
e

In
p
a
ti

en
t

S
a
m

p
le

b
y

es
ti

m
a
ti

n
g

th
e

b
et

a
-b

in
o
m

ia
l

m
ix

tu
re

m
o
d
el

d
efi

n
ed

in
eq

u
a
ti

o
n

(A
.1

).
T

h
e

p
lo

tt
ed

st
a
n
d
a
rd

d
ev

ia
ti

o
n

is
th

e
st

a
n
d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

es
ti

m
a
te

d
b

et
a

d
is

tr
ib

u
ti

o
n

fr
o
m

th
is

m
o
d
el

.

72



1.7 Effects of high-profile events

The last section established that a model based on gradual learning from the clinical literature and

individual experience can account for much or all of the cross-sectional variation in TOLAC rates

as well as for the most salient features of the pattern of TOLAC rates over time. In this section,

I examine an alternative theory of the evolution in TOLAC rates: that it was driven by a small

number of high-profile events, namely, the publication of several high profile papers and the release

of new practice guidelines by the American College of Obstetricians and Gynecologists (ACOG).

Guise et al. (2010b), MacDorman et al. (2011), Zinberg (2001), and Santerre (1996) all argue that

events of this kind have had large effects on practice patterns over the period studied in this paper.

One such event (the publication of Lydon-Rochelle et al. (2001)) has also been previously studied

in the economics literature by Price and Simon (2009).

I study two specific sets of events: (1) publication of the five most highly-cited research articles

on the appropriate management of labor and delivery for women with prior cesarean delivery

appearing during the period 1980-2010; and (2) all releases of revised practice guidelines by ACOG.

I identify the highly-cited studies using the comprehensive database of clinical articles on this topic

that I described in Section 1.3.40 In ranking articles, I use citation counts as reported in the

Thomson Reuters Web of Science citation index. The five articles selected by this strategy are

Lavin et al. (1982), Flamm et al. (1994), McMahon et al. (1996), Lydon-Rochelle et al. (2001), and

Landon et al. (2004). This set includes the two articles (McMahon et al. (1996) and Lydon-Rochelle

et al. (2001)) that are frequently identified as having had an important effect on physician attitudes

(see, for example, Guise et al. (2010b) and MacDorman et al. (2011)). A brief description of each

of these articles is provided in Table 1.10.

The ACOG guidelines I examine were published in 1982, 1984, 1988, 1994, 1995, 1998, 1999,

and 2010 (ACOG, 1982; 1984; 1988; 1994; 1995; 1998; 1999; 2010b). In general, the early guidelines

progressively broadened the class of women for whom a trial of labor could be considered an

appropriate option.41 This process culminated in the 1994 and 1995 guidelines, which state that

40Note that, for this exercise, I include articles that do not report original case series; in particular, the article by
Lavin et al. (1982) is a meta-analysis of earlier case series.

41As of this writing, I have been unable to obtain copies of ACOG guidelines published before 1994. This description
is based upon the description provided in Zinberg (2001).
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TOLAC should be “encouraged” for a relatively broad class of women. The 1998 and 1999 guidelines

represent a break in this trend of increasing ACOG support for TOLAC and state that women

should be “offered” a trial of labor, but also that TOLAC is only appropriate in settings that

can provide a prompt cesarean section, a standard many smaller hospitals are thought to have

difficulty achieving. Accounts of trends in VBAC rates during this period frequently state that

these guideline revisions – particularly the requirements on the availability of immediate cesarean

section – played an important causal role in the late-1990s decline in VBAC rates (Guise et al.,

2010b; MacDorman et al., 2011). The 2010 guideline is generally viewed as a slight reversal in

course. While substantively similar to the 1999 guideline, it added language emphasizing patients’

prerogative to accept any risks associated with VBAC. It also was accompanied by press materials

from ACOG describing the guideline as “less restrictive” (ACOG, 2010a). Each individual guideline

is briefly summarized in Table 1.11.

In the remainder of this section, I first describe the empirical approach I use to evaluate the

effect of these events and then present my results.

1.7.1 Empirical specification

I estimate the effect of each event on practice by examining whether the event date is associated

with a discontinuity in the level or the trend of the VBAC rate. Under the usual assumptions, the

discontinuity in level can be interpreted as the short-run effect of the event. As shown below, the

discontinuity in trend can be interpreted as the rate at which the effect of the guideline or article

is growing or shrinking over time. For events occurring after 1990, I estimate these effects using

the NVSS birth certificate data. For events before 1990, I use the NHDS. Because, as discussed

previously, the NVSS only reports whether a mother had a vaginal delivery and not whether she

attempted labor, I focus on effects on VBAC for this set of results, rather than effects on TOLAC.

To estimate the immediate effect of each article or guideline publication on practice style, I use

a standard local linear regression discontinuity specification with a rectangular kernel as suggested

by Imbens and Lemieux (2008). That is, I run the following specification:

ytj = α+ dt · 1{dt ≤ 0}β0 + dt · 1{dt > 0}β1 + 1{dt > 0}τ + εtj , (1.10)

where t indexes time and j patients, ytj is an indicator for whether the woman delivered vaginally,
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Table 1.11: Summaries of ACOG VBAC/TOLAC guidelines, 1980-2010

Publication year Summary

1982 The full text of the guideline was not available at the time of writing. Zin-
berg (2001) describes the guideline as saying that “with careful selection
of patients. . . vaginal delivery appeared to be an acceptable option.”

1984 The full text of the guideline was not available at the time of writing.
Zinberg (2001) states that the guideline broadened the group of patients
considered appropriate for TOLAC.

1988 The full text of the guideline was not available at the time of writing.
Zinberg (2001) states that the guideline broadened the group of patients
considered appropriate for TOLAC.

1994 Recommended that “in the absence of a contraindication, a woman with
one previous cesarean delivery. . . should be counseled and encouraged to
undergo a trial of labor in her current pregnancy” (emphasis added).

1995 Reaffirmed the 1994 guideline and provided a slightly expanded evidence
review.

1998 Recommended that “most women with one previous cesarean deliv-
ery. . . are candidates for VBAC and should be counseled about VBAC
and offered a trial of labor” (emphasis added). Also recommended that
“VBAC should be attempted in institutions equipped to respond to emer-
gencies with physicians readily available to provide emergency care” (em-
phasis added).

1999 Reaffirmed the 1998 guideline, but strengthened the recommendation that
emergency care be “readily available” to a recommendation that it be
“immediately available.”

2010 Made recommendations similar to those in 1999 guideline, but stated that
patients “should be allowed” to undergo TOLAC even when emergency
care is not “immediately available” if “clearly informed of such potential
increase in risk.” Accompanied by press release titled “Ob Gyns Issue
Less Restrictive VBAC Guideline.”
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and dt is the time relative to the publication date (measured in years).42 The coefficient of interest

is τ . The sample for estimating this regression is limited to women with a prior cesarean delivery

for whom |dt| ≤ h for some bandwidth h. I exclude observations with dt = 0 since it is unknown

whether births in this category occurred before or after the event. Regressions using the NHDS are

weighted using the NHDS sampling weights. I follow the advice of Lee and Card (2008) for settings

with discrete running variables and cluster my standard errors at the (monthly) resolution of the

running variable. In practice, this adjustment has only a modest effect on the standard errors.

As depicted in Figure 1.17 in the next subsection, the time series of VBAC rates exhibits

substantial curvature. While curvature does not alter the (first-order) asymptotic properties of

local linear regression discontinuity estimators, it can generate substantial small sample bias if the

total change in slope over the months falling inside the bandwidth is large. To evaluate whether

small sample bias of this kind is a substantial concern in the present context, I explore the robustness

of all results to an analogous local quadratic specification:

ytj = α+ dt · 1{dt ≤ 0}β0 + dt · 1{dt > 0}β1

+ d2
t · 1{dt ≤ 0}γ0 + d2

t · 1{dt > 0}γ1 + 1{dt > 0}τ + εtj . (1.11)

Once again, the coefficient of interest is τ . Implementation of this specification is otherwise identical

to the local linear specification discussed above.

Due to the large differences in sample size, I use different bandwidths for events studied in

the NHDS and those studied in the NVSS. For the NHDS regressions, I use a base bandwidth

h = 24 months. For the NVSS regressions, I use a base bandwidth h = 12 months. I explore the

sensitivity of all results to bandwidths twice as large and bandwidths half as large. Rather than

using the same fixed bandwidth for all events, I considered computing the “optimal” bandwidth

suggested by Imbens and Kalyanaraman (2012) for each event and then examining sensitivity rela-

tive to those bandwidths. The approach I use facilitates presentation of the results and comparison

across specifications, so I prefer it. Regardless, the optimal bandwidths generally fall within the

range of the bandwidths considered.

42Per the discussion of the NVSS data in section 1.3, starting in 2003, states begin adopting a revised birth
certificate that appears to increase reported VBAC rates by 2.3 percentage points (see Section 1.3 for details). To
adjust for this, I subtract 0.023 from ytj for all births reported using the revised certificate.

77



A downside of the regression discontinuity estimates discussed above is that they estimate only

the immediate effect of each event on practice; this immediate effect could either understate or

overstate the long-run effect of each informational shock. For example, if some providers respond

to the new information with a delay, then the effect of the event will grow over time and the

level discontinuity estimate will understate the long-run effects on practice. On the other hand,

an informational shock could simply accelerate changes that would have occurred over the ensuing

months and years even in the absence of the shock, in which case the effect of the event will shrink

over time and the level discontinuity estimate will overstate the long-run effect of publication. To

shed light on this question, I estimate the discontinuity in the slope of the regression function at the

time of the event. Under a plausible smoothness assumption, the discontinuity in the slope is equal

to the rate at which the effect of the event is growing or shrinking over time (in a neighborhood of

the event date).43

To formalize this approach, consider the following potential outcomes framework: for each unit,

Y (0) denotes the outcome in the counterfactual world where the event of interest never occurs; and

Y (1) denotes the observed outcome in the world where the event does occur. Each unit is observed

at some time T . The event occurs at time t = 0, and I assume there is no anticipation of the event,

so that Y (0) = Y (1) for all units with T < 0. The identifying assumption is that, in the absence

of the event, average outcomes would have been smooth at time t. That is, the counterfactual

expectation E[Y (0) |T = t] is continuously differentiable in t. Likewise, I assume that its observed

counterpart E[Y (1) |T = t] is continuously differentiable in t except possibly at t = 0.44

I state the key result emerging from this framework in the form of a lemma:

43The quantity estimated in this design – the instantaneous change in slope – is the same as in the “regression
kink design” of Card et al. (2012), a research design that exploits a discrete jump in the rate of change of treatment
intensity as a function of the running variable. While the appropriate estimators are similar between this case and
the “regression kink” case, the underlying estimands of interest are distinct. Card et al. are interested in the effect of
a marginal change in treatment on the outcome. In their case, therefore, a change in the level of the outcome at the
kink point calls into question the validity of the design since any change in slope may reflect a change in who is “on
the margin” on the two sides of the kink. By contrast, I am interested in the total effect on the outcome including
any effect of initial exposure and cumulative effects as the duration of exposure increases. As such (and as shown in
what follows), level changes at the time of the event cause no problems for interpreting the change in slope.

44These smoothness assumptions are stronger than the assumptions required for a regression discontinuity analysis
of the immediate effect of the event. Validity of the regression discontinuity estimates requires only continuity of the
expected potential outcomes (Hahn et al., 2001; Imbens and Lemieux, 2008).
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Lemma 3. Define the effect of the event at time t as

τ(t) = E[Y (1)− Y (0) |T = t].

Under the smoothness conditions stated above,

lim
t→0+

dτ

dt
= lim

t→0+

d

dt
E[Y (1) |T = t]− lim

t→0−

d

dt
E[Y (1) |T = t],

the change in the observed slope at t = 0.

Proof. The proof is brief and instructive, so I state it here. To start, differentiate τ(t) with respect

to t for t > 0, which yields

dτ

dt
=

d

dt
E[Y (1) |T = t]− d

dt
E[Y (0) |T = t].

To complete the proof, we take limits as t→ 0 from above. We obtain

lim
t→0+

dτ

dt
= lim

t→0+

d

dt
E[Y (1) |T = t]− lim

t→0+

d

dt
E[Y (0) |T = t]

= lim
t→0+

d

dt
E[Y (1) |T = t]− lim

t→0−

d

dt
E[Y (0) |T = t]

= lim
t→0+

d

dt
E[Y (1) |T = t]− lim

t→0−

d

dt
E[Y (1) |T = t]

where the second equality uses the fact that E[Y (0) |T = t] is everywhere continuously differen-

tiable, and the third equality uses the fact that Y (0) = Y (1) whenever T < 0.

Card et al. (2012) establish that, under reasonable conditions, both the local linear specification

in equation (1.10) and the local quadratic specification in equation (1.11) deliver consistent esti-

mates of discontinuities in slope, and the usual standard errors permit valid asymptotic inference.

As they discuss, the local quadratic specification has the theoretical advantage that the asymptotic

bias of the estimated change in slope will be of lower order than that obtained from a local linear

specification if the regression function exhibits curvature around the point of interest.45 This bias

advantage comes at a substantial cost, however, as shifting to a locally quadratic specification in-

creases the asymptotic variance of the estimated slope discontinuity by a factor of 16. Nevertheless,

45This result is directly analogous to the results presented by Hahn et al. (2001), Porter (2003), and Imbens and
Lemieux (2008) that local linear regression will exhibit lower bias than “locally constant” non-parametric regression
for estimating a discontinuity in level when the regression function exhibits substantial slope on either side of the
point of interest.

79



because substantial curvature appears to be present in my application, I only present estimated

slope discontinuities from local quadratic specifications. For precision reasons, I only present such

results using the largest bandwidth used in the level discontinuity regressions (24 months for the

NVSS data and 48 months for the NHDS data).

1.7.2 Results

To start, Figure 1.17 plots the basic trends in VBAC rates and overlays lines indicating the month

in which each of the events under study occurred. The general visual impression is that the VBAC

rate changes continuously and smoothly over time, suggesting that none of these events had a

substantial effect on the VBAC rate. The only evident exception is Lydon-Rochelle et al. (2001),

for which there is an apparent drop in the VBAC rate after its publication in July 2001.

To formalize these visual impressions, Figure 1.18 reports estimates of the change in the level of

the VBAC rate around each of these events obtained from estimating the local linear specification

in equation (1.10). For completeness, these estimates are reported in tabular form in Table 1.12,

and the fitted local linear regressions for the base bandwidth are reported in Figure 1.19. These

results confirm that there is a robust and highly significant reduction in the VBAC rate of slightly

less than 2 percentage points after the publication of Lydon-Rochelle et al. (2001) in July 2001.

Beyond this event, however, there is essentially no evidence that any other events considered had

any immediate effect on practice.46 Indeed, at least for the events analyzed using NVSS data, I can

reject effects of much more than one percentage point in either direction. These conclusions are

robust to consideration of results from the local quadratic specifications reported in Figure 1.20.

I turn now to the question of whether there is any evidence that these events had a gradual effect

on practice, which I ascertain by looking for a discontinuity in the slope of the time series at the time

of these events. Results obtained by estimating the local quadratic specification in equation (1.11)

46One possible exception is the very small estimated increase in the VBAC rate around the publication of Landon
et al. (2004) in December 2004, which is statistically significant under the larger and smaller bandwidths. This
result should likely be taken with a grain of salt, however. Several states (including Texas) adopted the revised birth
certificate in January 2005. While, as described previously, I adjust for the birth certificate change-over, unless this
adjustment is perfect, a small discontinuity would remain even if there is no effect of the publication.

In addition, in the specifications using longer bandwidths, there are statistically significant estimated discontinuities
after publication of the October 1988 and October 1998 ACOG guidelines. Both, however, occur in periods where
the VBAC time series exhibits substantial curvature and, thus, RD specifications using long bandwidths are prone
to giving biased results. Consistent with this theory, these discontinuities disappear in the quadratic specifications
reported in Figure 1.20.
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Figure 1.17: Dates of major events and monthly VBAC rates
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Notes: This figure plots monthly VBAC rates from the NHDS in panel A and monthly VBAC rates from the
NVSS in panel B. NVSS data for 2003 and later are adjusted for the gradual adoption of the 2003 certificate
of live birth as described in Section 1.3. The red dashed lines mark months in which highly-cited research
articles on the risk of uterine rupture were published. The purple dotted lines mark months in which the
American College of Obstetricians and Gynecologists published new practice guidelines. Events occurring
prior to January 1990 are plotted in panel A, and events occurring after that date are plotted in panel B.
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Figure 1.18: Estimated discontinuities in the level of the VBAC rate around major events
(linear specification)
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NHDS data and a base bandwidth of 24 months; the regressions are weighted using the NHDS sampling
weights. Estimation for events occurring on or after January 1990 uses NVSS data and a base bandwidth of
12 months; regressions including births from 2003 or later are adjusted for the gradual adoption of the 2003
certificate of live birth as described in the text. In all cases, estimation excludes births occurring during the
month in which the event occurs since it is unknown whether those births occurred before or after the event.

82



T
a
b

le
1
.1

2
:

L
o
c
a
l

li
n

e
a
r

a
n

d
lo

c
a
l

q
u

a
d

ra
ti

c
re

g
re

ss
io

n
e
st

im
a
te

s
a
ro

u
n

d
h

ig
h

-p
ro

fi
le

e
v
e
n
ts

C
o
lu

m
n

:
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0
)

B
a
se

b
a
n

d
w

id
th

B
a
se

b
a
n
d

w
id

th
×

2
.0

B
a
se

b
a
n

d
w

id
th
×

0
.5

D
is

c
o
n
ti

n
u

it
y

ty
p

e
:

le
ve

l
le

ve
l

N
le

ve
l

le
ve

l
sl

o
p

e
N

le
ve

l
le

ve
l

N
P

o
ly

n
o
m

ia
l

o
rd

e
r:

li
n

ea
r

q
u

a
d

li
n

ea
r

q
u

a
d

q
u

a
d

li
n

ea
r

q
u

a
d

A
.

E
st

im
a
te

d
e
ff

e
c
ts

o
f

h
ig

h
ly

-c
it

e
d

p
u

b
li

c
a
ti

o
n

s
L

av
in

et
al

.
(1

98
2)

0.
02

2
0.

0
0
6

4
,7

9
8

-0
.0

0
8

0
.0

2
8+

-0
.0

3
4
+

8
,6

7
4

0
.0

1
1

0
.0

5
1

2
,4

8
9

(0
.0

13
)

(0
.0

2
2
)

(0
.0

1
1
)

(0
.0

1
6
)

(0
.0

2
0
)

(0
.0

2
2
)

(0
.0

3
9
)

F
la

m
m

et
al

.
(1

99
4)

0.
00

3
-0

.0
1
1∗

8
3
8
,9

6
5

0
.0

0
3

0
.0

0
2

-0
.0

1
6+

1
,6

7
5
,9

2
0

-0
.0

0
5

-0
.0

0
8

4
1
9
,7

3
4

(0
.0

04
)

(0
.0

0
5
)

(0
.0

0
3
)

(0
.0

0
4
)

(0
.0

0
9
)

(0
.0

0
4
)

(0
.0

0
9
)

M
cM

ah
on

et
al

.
(1

99
6)

-0
.0

06
0.

0
0
3

8
1
7
,5

4
3

-0
.0

0
5

-0
.0

0
8

-0
.0

0
8

1
,6

4
3
,7

2
7

-0
.0

0
0

0
.0

1
5
∗

4
0
7
,3

1
2

(0
.0

05
)

(0
.0

0
6
)

(0
.0

0
4
)

(0
.0

0
6
)

(0
.0

1
2
)

(0
.0

0
6
)

(0
.0

0
8
)

L
y
d

on
-R

o
ch

el
le

et
al

.
(2

00
1)

-0
.0

17
∗∗
∗

-0
.0

2
4∗
∗∗

9
0
3
,7

0
0

-0
.0

2
3∗
∗∗

-0
.0

1
6
∗∗
∗

0
.0

0
1

1
,8

0
9
,5

5
7

-0
.0

1
7∗
∗∗

-0
.0

1
9
∗∗

4
4
9
,0

4
8

(0
.0

03
)

(0
.0

0
4
)

(0
.0

0
2
)

(0
.0

0
3
)

(0
.0

0
6
)

(0
.0

0
4
)

(0
.0

0
7
)

L
an

d
on

et
al

.
(2

00
4)

0.
00

3
0.

0
0
6∗

1
,0

0
9
,7

6
0

0
.0

0
2
+

0
.0

0
5
∗∗

0
.0

0
3

2
,0

3
6
,7

1
2

0
.0

0
5∗

0
.0

0
5
∗

5
0
5
,7

3
1

(0
.0

02
)

(0
.0

0
3
)

(0
.0

0
1
)

(0
.0

0
2
)

(0
.0

0
4
)

(0
.0

0
2
)

(0
.0

0
3
)

B
.

E
st

im
a
te

d
e
ff

e
c
ts

o
f

A
C

O
G

g
u

id
e
li

n
e
s

J
an

u
ar

y
19

82
0.

01
9

-0
.0

0
2

4
,7

8
3

-0
.0

0
4

0
.0

2
0

-0
.0

1
7

8
,5

4
4

0
.0

0
8

0
.0

2
2

2
,4

7
5

(0
.0

14
)

(0
.0

2
3
)

(0
.0

1
1
)

(0
.0

1
7
)

(0
.0

2
1
)

(0
.0

2
3
)

(0
.0

2
8
)

N
ov

em
b

er
19

84
0.

00
4

-0
.0

2
3

5
,5

6
5

-0
.0

0
1

0
.0

1
1

0
.0

0
5

1
2
,5

4
1

-0
.0

1
5

-0
.0

0
3

2
,7

3
5

(0
.0

13
)

(0
.0

2
4
)

(0
.0

1
1
)

(0
.0

1
6
)

(0
.0

2
0
)

(0
.0

1
9
)

(0
.0

3
3
)

O
ct

ob
er

19
88

0.
01

6
-0

.0
4
2

1
0
,6

5
6

0
.0

3
8∗

-0
.0

1
0

0
.0

3
8

2
0
,7

3
5

-0
.0

2
8

-0
.0

8
4∗

5
,5

2
0

(0
.0

23
)

(0
.0

3
6
)

(0
.0

1
6
)

(0
.0

2
5
)

(0
.0

3
1
)

(0
.0

3
3
)

(0
.0

4
3
)

O
ct

ob
er

19
94

0.
00

0
0.

0
0
3

8
3
3
,7

3
2

0
.0

0
1

-0
.0

0
1

-0
.0

0
7

1
,6

7
2
,1

7
8

0
.0

0
2

-0
.0

0
7

4
1
4
,7

4
6

(0
.0

04
)

(0
.0

0
6
)

(0
.0

0
3
)

(0
.0

0
4
)

(0
.0

0
9
)

(0
.0

0
5
)

(0
.0

0
7
)

A
u

gu
st

19
95

0.
00

3
0.

0
0
1

8
2
1
,0

6
8

0
.0

0
4

0
.0

0
3

0
.0

1
2

1
,6

5
3
,3

0
9

0
.0

0
1

0
.0

0
4

4
0
4
,1

0
5

(0
.0

05
)

(0
.0

0
9
)

(0
.0

0
4
)

(0
.0

0
5
)

(0
.0

1
1
)

(0
.0

0
7
)

(0
.0

0
9
)

O
ct

ob
er

19
98

-0
.0

05
0.

0
0
1

8
3
0
,1

6
3

-0
.0

0
8∗

-0
.0

0
4

-0
.0

1
0

1
,6

7
2
,5

5
2

-0
.0

0
1

-0
.0

0
9

4
1
3
,1

1
6

(0
.0

04
)

(0
.0

0
5
)

(0
.0

0
3
)

(0
.0

0
4
)

(0
.0

0
9
)

(0
.0

0
4
)

(0
.0

0
6
)

J
u

ly
19

99
-0

.0
05

-0
.0

0
2

8
4
3
,4

8
4

-0
.0

0
3

-0
.0

0
2

0
.0

2
2∗
∗

1
,6

9
8
,9

5
1

-0
.0

0
2

0
.0

0
1

4
1
5
,7

6
2

(0
.0

04
)

(0
.0

0
4
)

(0
.0

0
3
)

(0
.0

0
4
)

(0
.0

0
8
)

(0
.0

0
4
)

(0
.0

0
9
)

A
u

gu
st

20
10

0.
00

2
-0

.0
0
5

7
4
7
,3

3
2

0
.0

0
5

-0
.0

0
4

0
.0

5
5

1
,3

1
2
,9

7
3

0
.0

0
1

-0
.0

0
1

4
6
5
,5

4
6

(0
.0

03
)

(0
.0

0
5
)

(0
.0

0
3
)

(0
.0

0
5
)

(0
.0

6
1
)

(0
.0

0
3
)

(0
.0

0
5
)

N
o
te

s:
T

h
is

ta
b
le

re
p

o
rt

s
th

e
es

ti
m

a
te

d
d
is

co
n
ti

n
u
it

y
in

th
e

le
v
el

o
f

o
r

tr
en

d
in

th
e

V
B

A
C

ra
te

o
b
ta

in
ed

b
y

es
ti

m
a
ti

n
g

th
e

lo
ca

l
li
n
ea

r
sp

ec
ifi

ca
ti

o
n

in
eq

u
a
ti

o
n

(1
.1

0
)

o
r

th
e

lo
ca

l
q
u
a
d
ra

ti
c

sp
ec

ifi
ca

ti
o
n

in
eq

u
a
ti

o
n

(1
.1

1
)

fo
r

ea
ch

o
f

th
e

li
st

ed
ev

en
ts

.
S
ee

th
e

te
x
t

fo
r

es
ti

m
a
ti

o
n

d
et

a
il
s.

S
ta

n
d
a
rd

er
ro

rs
a
re

cl
u
st

er
ed

a
t

th
e

m
o
n
th

ly
le

v
el

a
n
d

d
is

p
la

y
ed

in
p
a
re

n
th

es
es

.
S
ta

ti
st

ic
a
l

si
g
n
ifi

ca
n
ce

is
d
en

o
te

d
a
s

fo
ll
ow

s:
+
p
<
.1

,
∗
p
<
.0

5
,
∗∗
p
<
.0

1
,
∗∗
∗
p
<
.0

0
1
.

83



F
ig

u
re

1
.1

9
:

M
o
n
th

ly
V

B
A

C
ra

te
s

a
n

d
lo

c
a
l

li
n
e
a
r

re
g
re

ss
io

n
fi

ts
a
ro

u
n

d
m

a
jo

r
e
v
e
n
ts

0.1.2.3.4
Vaginal birth after cesarean rate

19
78

19
80

19
82

19
84

19
86

19
88

La
vi

n 
et

 a
l. 

(1
98

2)

0.1.2.3.4
Vaginal birth after cesarean rate

19
90

19
92

19
94

19
96

19
98

20
00

F
la

m
m

 e
t a

l. 
(1

99
4)

0.1.2.3.4
Vaginal birth after cesarean rate

19
92

19
94

19
96

19
98

20
00

20
02

M
cM

ah
on

 e
t a

l. 
(1

99
6)

0.1.2.3.4
Vaginal birth after cesarean rate

19
96

19
98

20
00

20
02

20
04

20
06

Ly
do

n−
R

oc
he

lle
 e

t a
l. 

(2
00

1)

0.1.2.3.4
Vaginal birth after cesarean rate

20
00

20
02

20
04

20
06

20
08

20
10

La
nd

on
 e

t a
l. 

(2
00

4)

0.1.2.3.4
Vaginal birth after cesarean rate

19
78

19
80

19
82

19
84

19
86

19
88

A
C

O
G

 1
98

2

0.1.2.3.4
Vaginal birth after cesarean rate

19
80

19
82

19
84

19
86

19
88

19
90

A
C

O
G

 1
98

4

0.1.2.3.4
Vaginal birth after cesarean rate

19
84

19
86

19
88

19
90

19
92

19
94

A
C

O
G

 1
98

8

0.1.2.3.4
Vaginal birth after cesarean rate

19
90

19
92

19
94

19
96

19
98

20
00

A
C

O
G

 1
99

4

0.1.2.3.4
Vaginal birth after cesarean rate

19
90

19
92

19
94

19
96

19
98

20
00

A
C

O
G

 1
99

5

0.1.2.3.4
Vaginal birth after cesarean rate

19
94

19
96

19
98

20
00

20
02

20
04

A
C

O
G

 1
99

8

0.1.2.3.4
Vaginal birth after cesarean rate

19
94

19
96

19
98

20
00

20
02

20
04

A
C

O
G

 1
99

9
0.1.2.3.4

Vaginal birth after cesarean rate

20
06

20
07

20
08

20
09

20
10

20
11

A
C

O
G

 2
01

0

N
o
te

s:
T

h
is

fi
g
u
re

p
lo

ts
m

o
n
th

ly
V

B
A

C
ra

te
s

fo
r

a
te

n
y
ea

r
w

in
d
ow

su
rr

o
u
n
d
in

g
ea

ch
ev

en
t

d
a
te

a
n
d

su
p

er
im

p
o
se

s
th

e
p
re

d
ic

te
d

va
lu

es
fr

o
m

es
ti

m
a
ti

n
g

th
e

lo
ca

l
li
n
ea

r
re

g
re

ss
io

n
sp

ec
ifi

ca
ti

o
n

in
eq

u
a
ti

o
n

(1
.1

0
).

E
st

im
a
ti

o
n

fo
r

ev
en

ts
o
cc

u
rr

in
g

b
ef

o
re

J
a
n
u
a
ry

1
9
9
0

u
se

s
N

H
D

S
d
a
ta

a
n
d

a
b
a
n
d
w

id
th

o
f

2
4

m
o
n
th

s;
th

e
re

g
re

ss
io

n
s

a
n
d

p
lo

tt
ed

ra
te

s
a
re

w
ei

g
h
te

d
u
si

n
g

th
e

N
H

D
S

sa
m

p
li
n
g

w
ei

g
h
ts

.
E

st
im

a
ti

o
n

fo
r

ev
en

ts
o
cc

u
rr

in
g

o
n

o
r

a
ft

er
J
a
n
u
a
ry

1
9
9
0

u
se

s
N

V
S
S

d
a
ta

a
n
d

a
b
a
n
d
w

id
th

o
f

1
2

m
o
n
th

s;
re

g
re

ss
io

n
s

a
n
d

p
lo

tt
ed

ra
te

s
th

a
t

in
cl

u
d
e

b
ir

th
s

fr
o
m

2
0
0
3

o
r

la
te

r
a
re

a
d
ju

st
ed

fo
r

th
e

g
ra

d
u
a
l

a
d
o
p
ti

o
n

o
f

th
e

2
0
0
3

ce
rt

ifi
ca

te
o
f

li
v
e

b
ir

th
a
s

d
es

cr
ib

ed
in

th
e

te
x
t.

In
a
ll

ca
se

s,
es

ti
m

a
ti

o
n

ex
cl

u
d
es

b
ir

th
s

o
cc

u
rr

in
g

d
u
ri

n
g

th
e

m
o
n
th

in
w

h
ic

h
th

e
ev

en
t

o
cc

u
rs

si
n
ce

it
is

u
n
k
n
ow

n
w

h
et

h
er

th
o
se

b
ir

th
s

o
cc

u
rr

ed
b

ef
o
re

o
r

a
ft

er
th

e
ev

en
t.

84



Figure 1.20: Estimated discontinuities in the level of the VBAC rate around major events
(quadratic specification)

R
es

ea
rc

h
 a

rt
ic

le
s

 

A
C

O
G

 g
u

id
el

in
e 

re
vi

si
o

n
s

 
Lavin et al. (Feb. 1982)

Flamm et al. (Jun. 1994)

McMahon et al. (Sep. 1996)

Lydon−Rochelle et al. (Jul. 2001)

Landon et al. (Dec. 2004)

  January 1982
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   August 1995

  October 1998

     July 1999

   August 2010

−.1 −.05 0 .05 .1
Estimated change in VBAC rate

Base bandwidth Base x 2.0 Base x 0.5

Notes: This figure plots the estimated discontinuity in the VBAC rate obtained by estimating the local
quadratic regression specification in equation (1.11) for each of the events listed above using three different
bandwidths. Gray bars depict 95 percent confidence intervals. Estimation for events occurring before
January 1990 uses NHDS data and a base bandwidth of 24 months; the regressions are weighted using the
NHDS sampling weights. Estimation for events occurring on or after January 1990 uses NVSS data and a
base bandwidth of 12 months; regressions including births from 2003 or later are adjusted for the gradual
adoption of the 2003 certificate of live birth as described in the text. In all cases, estimation excludes births
occurring during the month in which the event occurs since it is unknown whether those births occurred
before or after the event.
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are reported in Figure 1.21. The corresponding point estimates are reported in tabular form in

Table 1.12, and the fitted regression curves are plotted in Figure 1.22. As expected, these estimates

are considerably less precise, but they provide little evidence that there are large delayed effects

on practice. The only statistically significant estimate is for July 1999, and this estimate actually

has the opposite of the expected sign, as the consensus is that this guideline was less favorable to

VBAC than the one preceding it (MacDorman et al., 2011; Guise et al., 2010b). Examining the

fitted regressions in Figure 1.22, it appears that this single anomalous result occurs because the

bandwidth overlaps with the sharp drop in VBAC rates around the publication of Lydon-Rochelle

et al. (2001), which distorts the fit. There is also, notably, no evidence that the effect of Lydon-

Rochelle et al. (2001), gets larger over time; the estimated change in slope is essentially zero. I

conclude, therefore, that there is little to no evidence that the immediate effects of these events

understate their long-run effects, although the power limitations of these analyses are important to

keep in mind.

In sum, the evidence presented in this section suggests that these high-profile events did not

play an important role in driving the evolution of VBAC rates over this period. Even the one

exception to this general pattern, Lydon-Rochelle et al. (2001), only reduced VBAC rates by two

percentage points, a very small effect when compared to the time series changed observed. In this

sense, it is the exception that proves the rule. That is, it demonstrates that sufficiently important

events of this kind can indeed cause immediate changes in the VBAC rate, but that even when

such responses do appear, they tend to be small.

1.8 Conclusion

In this paper, I presented event study evidence that physicians and hospitals change their treatment

patterns in response to idiosyncratic experiences with individual patients and that the responses

to such events appear to occur at or above the level of an individual hospital. I demonstrated that

this behavior is plausibly rational in light of disagreement in the clinical literature about the risk

of uterine rupture.

When embedded in a rational model of provider learning, the event study estimates imply the

existence of substantial and long-lasting cross-provider variation in treatment decisions, even when
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Figure 1.21: Estimated discontinuities in the trend of the VBAC rate around major events
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Notes: This figure plots the estimated discontinuity in the trend of the VBAC rate obtained by estimating
the local quadratic regression specification in equation (1.11) for each of the events listed above. Gray bars
depict 95 percent confidence intervals. Estimation for events occurring before January 1990 uses NHDS data
and a bandwidth of 48 months; the regressions are weighted using the NHDS sampling weights. Estimation
for events occurring on or after January 1990 uses NVSS data and a bandwidth of 24 months; regressions
including births from 2003 or later are adjusted for the gradual adoption of the 2003 certificate of live birth
as described in the text. In all cases, estimation excludes births occurring during the month in which the
event occurs since it is unknown whether those births occurred before or after the event.
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providers all face the same risk of uterine rupture. Furthermore, when the level of cross-provider

dispersion in the risk of rupture is calibrated at a level that appears plausible based on the clinical

literature, the model can match the actual level of cross-provider variation in treatment decisions,

at least when learning is assumed to occur in a multi-hospital community.

More speculatively, I showed that if providers selectively remember uncommon bad outcomes

relative to more common good outcomes, a model calibrated to match the event study estimates

can explain both the rise and fall in TOLAC rates over the period studied. By contrast, the

conventional account of the time series changes over this period, which focuses on a small number

of high-profile events, appears inconsistent with the evidence.

One of the most striking findings of this paper is that idiosyncratic differences in experience can

generate long-lasting cross-provider variation among fundamentally similar providers, even when

learning is rational. This conclusion seems likely to hold beyond the particular medical setting I

examined here. Indeed, there are at least two reasons to believe that idiosyncratic differences in

experience may play an even more important role in other settings.

First, my setting features a large patient population; there are on the order of 500,000 deliveries

by women with a prior cesarean section each year. As a result, studies on the consequences of TO-

LAC are plentiful and frequently feature relatively large sample sizes, so true sampling uncertainty

makes a very limited contribution to physicians’ prior uncertainty about the risk of rupture. In

settings with a sparser clinical literature, sampling uncertainty might make a large contribution

to physicians’ prior uncertainty, magnifying their responsiveness to idiosyncratic events. The large

patient population also means that, at least when learning occurs at the community level, experi-

ence relatively quickly reaches the point where variation in beliefs due to idiosyncratic differences

in experience starts to decline. In a setting where experience accrued more slowly, variation would

initially emerge more gradually, but would then be more long-lasting.

Second, the technologies of labor management and cesarean section were not changing particu-

larly rapidly over the period I studied. In a setting with substantial ongoing technological change,

the information content of clinical studies would “depreciate” over time, which would generally

reduce the precision of physicians’ prior beliefs and thereby magnify the effect of idiosyncratic

differences in experience. Experience would similarly depreciate over time, potentially keeping

physicians perpetually at the intermediate experience levels that generate the greatest amount of
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variation in beliefs and practice.

This paper also contributes to our understanding of the link between cross-provider variation in

the productivity of alternative treatments and cross-provider variation in utilization. Chandra and

Staiger (2007) establish, in the context of cardiac catheterization, that the qualitative relationship

between productivity and utilization is consistent with a model in which productivity differences

drive differences in practice. Their results do not, however, address whether the observed differences

in productivity are large enough to explain the observed differences in practice. By contrast, the

results presented here demonstrate that plausible levels of cross-provider variation in the productiv-

ity of TOLAC (stemming from variation in the risk of rupture) are indeed large enough to explain

the observed degree of cross-provider variation in TOLAC rates. This evidence that dispersion in

productivity can quantitatively account for observed cross-provider variation in treatment should

increase our confidence that this mechanism is important.

The results also imply that understanding why different clinical studies give different results

could have great value if provider learning is indeed approximately rational. If it were determined

that different clinical studies give different results primarily because different providers face truly

different levels of risk (and the sources of that heterogeneity were identified), providers could jump

directly to the correct practice pattern, rather than approaching it only gradually as they learn

about their risk from experience. If, on the other hand, it were determined that different studies give

different risk estimates primarily because of measurement error, physicians could then be much more

confident that the mean estimate from the clinical literature is correct, reducing the uncertainty

embodied in their common prior. This increased certainty would in turn reduce their responsiveness

to idiosyncratic differences in experience which, under this scenario, would be desirable. In either

case, the benefits could be substantial.

Finally, my finding that, when physicians exhibit selective memory, the gradual accumulation of

experience with uterine rupture can explain the observed decline in TOLAC rates, although more

speculative than the other results, is intriguing. In particular, it suggests that efforts to explain

why some changes in practice diffuse quickly, others slowly, and some not at all should consider

the structure of physician learning alongside more traditional economic factors like adoption costs,

payment incentives, and patient demand.
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Chapter 2

Technology Diffusion in Healthcare:

The Welfare Implications of Use,

Overuse, and Business Stealing1

The health sector in the United States has expanded dramatically over the last 50 years. In 1960,

the United States spent 5.2 percent of GDP on health care, while by 2011, that share had more

than tripled to 17.9 percent. The dominant factor driving this growth is generally believed to have

been the development and diffusion of new health care technologies for treating a wide range of

ailments (Newhouse 1992; CBO, 2008). As argued by Cutler (2004), many of these new technologies

have generated striking improvements in the length and quality of life, benefits that have more

than justified their substantial costs. On the other hand, health care markets feature a variety of

well-known market imperfections that can cause technologies to spread beyond the population for

which they generate positive returns (Chandra and Skinner, 2012). Overuse of sufficient magnitude

can diminish or even completely dissipate the benefits generated by an otherwise promising new

technology.

Diffusion of technologies that require adopting hospitals to incur large fixed costs also raises a

separate set of questions traditionally studied in industrial organization. Simple economics implies

that adoption by an additional hospital improves social welfare only if it leads to a sufficiently large

1This chapter is joint work with Amitabh Chandra.
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market-wide increase in utilization of the technology. If adopting hospitals simply “steal” business

from hospitals that have already adopted the technology, then society loses the fixed costs of adop-

tion for no corresponding gain. Applied to the problem of technology adoption, the classic work of

Mankiw and Whinston (1986) implies that excessive adoption is very likely to occur when adop-

tion is unrestricted because new adopters can earn large profits even if they are primarily stealing

business from incumbents. In practice, of course, adoption often faces important restrictions, like

inelastic supply of key complementary inputs (Cutler et al., 2010) or legal restrictions, so excessive

adoption is not a forgone conclusion, but it remains a real possibility.

In this paper, we examine the welfare consequences of hospital adoption of percutaneous coro-

nary intervention (PCI), a commonly-used treatment for coronary artery disease. As depicted

in Figure 2.1, the share of hospitals with PCI capabilities has risen rapidly over the last three

decades and roughly one-third of hospitals have such capabilities today. This setting raises all of

the questions posed above. Overuse is a real concern, as the health benefits of PCI (but not the

private returns to medical providers) fall off sharply beyond the most appropriate group of patients.

Likewise, PCI adoption requires a substantial capital investment, so excessive adoption has the po-

tential to cause large welfare losses. But adoption also frequently faces legal barriers, notably state

“certificate of need” requirements, so the Mankiw-Whinston conclusions do not directly apply.

We first present a simple theoretical analysis of the welfare consequences of PCI adoption that

formalizes the tradeoff between the potential benefits of adoption – improved access to PCI for

those who need it – and its costs – the required capital investment and expanded potential for

overtreatment. Then, using Medicare claims data covering the universe of hospital stays by fee-

for-service Medicare beneficiaries for 1992-2008, we implement an event study (dynamic difference-

in-differences) design to estimate changes in PCI utilization around instances of hospital adoption

of PCI. Unsurprisingly, we find that entering hospitals quickly acquire a substantial PCI business

of 25 procedures per quarter. We find, however, that much of this business is taken from other

hospitals, and the combined increase in PCI utilization among the hospital and its competitors is

just 10 procedures per quarter. When we then decompose this market-wide increase in utilization

according to the medical indication for the PCI, we find that only 2 of these 10 new PCIs are

in patients currently experiencing an acute myocardial infarction (heart attack), the diagnosis for

which the benefits of PCI are known to be large. The remainder are non-AMI patients, for whom
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Figure 2.1: Diffusion of cardiac catheterization and PCI capabilities, 1980-2010
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Notes: The share of hospitals with catheterization and PCI capabilities was estimated using
the American Hospital Association Annual Survey. The hospital sample was restricted to
those hospitals identifying themselves as general medical and surgical hospitals. The share of
hospitals failing to respond to the survey in any given year rises from 10 percent of hospitals
to 20 percent over the period examined. Hospitals that fail to respond in a given year are
excluded from that year’s estimate. Alternative approaches to handling missing data yield
similar results.
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evidence suggests the benefits of PCI are relatively small.

In the final section of the paper, we use our theoretical framework to integrate these utilization

estimates with pre-existing evidence on the costs and benefits of PCI. Summarizing existing evidence

on the marginal costs and benefits of PCI, we calculate that each additional PCI in an AMI

patient generates social benefits of nearly $36,000, while each PCI performed in a non-AMI patient

generates a social loss of close to $4,400. As a result, although our estimate of the cumulative

per adoption benefit of increased utilization in AMI patients ($5.2 million) exceeds our estimate

of the fixed cost of adoption ($3.0 million), the substantial welfare losses attributable to non-AMI

patients ($2.6 million) cause adoption over the period studied to be close to welfare neutral overall.

We also demonstrate that this social calculus differs markedly from the private calculus of an

individual hospital. Hospitals earn profits of $1.9 million on AMI patients, less than the fixed costs

of adoption. By contrast, they earn very large profits of $7.7 million on non-AMI patients, which

transform PCI adoption from a money-loser into a hugely profitable undertaking for a hospital.

This pattern of private benefits implies that policy changes that solely discourage utilization of

PCI among non-AMI patients cannot achieve the socially efficient outcome in which hospitals

adopt PCI but only serve AMI patients. Optimal policy pairs changes for non-AMI patients with

increases in PCI reimbursement for AMI patients that allow hospitals to capture more of the social

surplus generated by PCI in these patients.

Our paper adds to a small economics literature on the diffusion of PCI in particular and the

welfare consequences of entry in health care markets generally. Cutler and Huckman (2003) examine

the diffusion of PCI in New York from the early 1980s through 2000. Cutler et al. (2010) examine

an expansion in the number of cardiac surgery programs in Pennsylvania following relaxation of

the state’s “certificate of need” requirements in 1996. Unlike these earlier papers, we are able

to examine the consequences of adoption nationwide. Not only is this national scope of intrinsic

interest, but it also enables us to implement the event study design used in this paper, which is likely

to be less vulnerable to confounds than earlier work. We also examine the divergence between the

current structure of incentives in this market and the structure of incentives that would maximize

social welfare.

The paper proceeds as follows. Section 1 provides a brief description of our clinical setting,

and Section 2 presents a simple theoretical framework for thinking about the welfare consequences
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of adoption in this setting. Section 3 describes our data, and Section 4 describes our empirical

strategy. Section 5 presents our results. Section 6 presents a welfare analysis of the consequences

of adoption, and the final section concludes.

2.1 Clinical background

The clinical context of this paper is the treatment of coronary artery disease, which is the leading

cause of death in the United States. In coronary artery disease, fatty deposits known as “plaques”

accumulate on the walls of the coronary arteries, the arteries that supply blood to the heart muscle.

Plaques can interfere with blood flow, depriving the downstream heart muscle of oxygen and causing

angina (chest pain). Plaques can also rupture, precipitating a clotting response that severely

restricts blood flow through the artery. This reduction in blood flow can cause “unstable” (sudden

and serious) angina and, potentially, death of the affected heart muscle. Events of this type are

collectively referred to as acute coronary syndromes (ACSs), and cases in which the loss of blood

flow leads to the death of the affected heart muscle are known as an acute myocardial infarctions

(AMIs), or, colloquially, heart attacks.

The main focus of this paper is a category of procedures used in the treatment of coronary artery

disease known as percutaneous coronary intervention (PCI). PCI falls under the broader heading

of cardiac catheterization. In a cardiac catheterization, the operating physician inserts a thin tube

known as a catheter through an incision in the patient’s groin or wrist and guides the catheter

through the patient’s arteries into the coronary arteries (or other heart structure of interest). Once

in place, the catheter is used to inject a contrast dye that is opaque to x-ray radiation, which permits

the physician to use a specialized x-ray camera to visualize the location and extent of any coronary

blockages. In many cases, physicians then use specialized tools attached to the end of the catheter

to clear any blockages found; interventional procedures of this kind are collectively referred to as

PCI. In the most common such procedure, which is known as angioplasty, the physician inflates a

small balloon inside the affected artery to compress the accumulated plaque. A small wire mesh

tube known as a stent may also be inserted to keep the artery from closing back up over time.

The benefits of PCI relative to purely medical therapy differ according to the manifestation of

coronary artery disease being treated. There is clear evidence that, for patients with acute coronary
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syndromes, PCI soon after onset of symptoms both improves survival and improves quality of life

by reducing the subsequent incidence of AMI and angina. By contrast, for patients with non-acute

manifestations of coronary artery disease – namely, stable angina – there is no evidence that PCI

improves survival, although it may reduce the subsequent incidence of angina.2

Hospitals that wish to conduct cardiac catheterization procedures (including PCI) require spe-

cialized facilities known as cardiac catheterization laboratories. Building a catheterization labo-

ratory requires a capital outlay of on the order of $3 million in today’s dollars (Lieu et al., 1996;

Gehrki, 2004). In addition, as of 2011, construction of catheterization laboratories was subject

to state “certificate of need” requirements in 26 states (NCSL, 2012). Thus, in large portions of

the country, construction also requires demonstrating to state regulators that such a facility is

“necessary.”

2.2 Theoretical framework

To frame the empirical exercise and discussion, we present a simple framework for analyzing the

welfare consequences of hospital PCI adoption. Consider a market with multiple types of potential

patients θ ∈ Θ, where the mass of each type of patient is given by some measure µ(·). While the

theoretical development that follows is fully general, in our application Θ will consist of just two

types of patients: AMI patients and non-AMI patients. The medical benefit of PCI, monetized in

some appropriate fashion, varies with θ and is given by τ(θ). Hospitals can incur setup costs k

at t = 0 to equip a PCI-capable catheterization laboratory, which will remain in operation for the

next T̄ units of time (interpreted as the lifetime of the equipment). Having paid the setup cost,

PCI can be provided at marginal cost c(θ) for patients of type θ.3 The probability that patients

receive PCI may vary with the number of hospitals present in the market; let vN (θ) denote the

(flow) rate at which patients of type θ receive PCI when N hospitals have entered the market. We

2We provide a more detailed discussion of the clinical evidence in this area, including a discussion of the magnitude
of the clinical benefits of PCI, in Section 2.6.

3In assuming that the marginal costs and benefits are not a function of the number of entrants, we have assumed
that there are no economies of scale either in treatment quality or cost. There is, however, some evidence that such
economies of scale do exist, at least with respect to treatment quality (Hannan et al., 2005). In general, if economies
of scale are present, calculations using this framework will overstate the benefits of entry. Determining how to account
for these factors in our empirical exercise is a possible avenue for further work.
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leave the form of vN (θ) fully general rather than deriving it from a particular model of consumer

demand and market structure.

In this setup, total social welfare when N hospitals elect to enter the PCI market may be written

as

W (N) =

∫ T̄

0

[∫
Θ

(τ(θ)− c(θ))vN (θ)dµ(θ)

]
e−rtdt− kN,

where r is an appropriate social discount rate. The change in social welfare created by an additional

hospital entering the market when N hospitals have already elected to enter is then given by

∆W (N,N + 1) =

[∫
Θ

(τ(θ)− c(θ))(vN+1(θ)− vN (θ))dµ(θ)

]
︸ ︷︷ ︸

flow net benefits of PCI

[
1− e−rT̄

r

]
︸ ︷︷ ︸
discount factor

− k︸︷︷︸
fixed cost

, (2.1)

where we have integrated over t. The integral gives the (flow) net benefits associated with PCI

provision, while the term multiplying it is the appropriate discount and scaling factor for a discount

rate of r and a period length of T̄ . The social desirability of additional adoption therefore hinges

on whether the the discounted net benefits of the additional utilization (the first term) exceed the

setup costs required for entry (the second term).

Examining the flow net benefit term in equation (2.1) more closely, we see that the benefits

of additional utilization depend on two factors. The first is the magnitude of the market-wide

increase in utilization of PCI, which is determined by the change in utilization, vN+1(θ) − vN (θ),

for each type θ and the population size µ(Θ). In order to justify the setup costs and increase

welfare, adoption must sufficiently increase utilization, rather then simply redirecting volume from

incumbent hospitals to the entrant. In their well-known theoretical work, Mankiw and Whinston

(1986) show that the latter is a substantial concern. They show that in homogeneous product

markets with free entry, these “business stealing” effects mean that entry will almost always exceed

the social optimum. In the present setting, of course, entry into the PCI market is frequently

subject to legal restrictions (as noted above) or relies upon inputs in inelastic supply (Cutler et al.,

2010). For this reason, whether hospital entry into the PCI market raises or lowers welfare remains

an empirical question.

The second factor is the (marginal) cost-effectiveness of the incremental care: τ(θ) − c(θ). In

a standard market, we would expect the net benefits of the additional utilization to be positive

for the types θ ∈ Θ that receive care (i.e. those for which vN (θ) > 0). If these net benefits
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are indeed positive, adoption that increases utilization by a sufficiently large amount will always

be welfare-improving. In health care markets, however, the presence of insured consumers and

imperfect provider payment systems may cause overtreatment: utilization that extends beyond

those patients for whom the benefits exceed the (marginal) costs. This means that additional

utilization resulting from entry can directly reduce welfare, turning the standard logic on its head.

We seek to use this framework to evaluate the welfare effects of post-1992 PCI adoption. The

following sections present empirical evidence on whether hospital PCI adoption increases access

to PCI and, if so, by how much and for whom. In Section 2.6, we combine these estimates with

estimates of τ(θ) − c(θ) and k drawn from the literature in order to estimate the full net benefits

of hospital entry into the PCI market over the period studied.4

2.3 Data

Our main data source is the Medicare Provider Analysis and Review (MedPAR) files for 1992-2008,

which provide data on the universe of hospital and skilled nursing facility discharges of fee-for-

service Medicare beneficiaries.5 The file reports a rich set of information on each stay, including

the Center for Medicare and Medicaid Services (CMS) provider number for the facility at which the

stay occurs, the dates of admission and discharge, basic patient characteristics (including zipcode

of residence), and ICD-9-CM codes for the diagnoses and procedures associated with the stay. The

specific ICD-9-CM diagnosis and procedure codes used to identify the diagnosis and procedure

categories of interest are reported in Appendix B.1.

We use these data to construct a hospital-level panel of admission volumes over the period

1992Q1 to 2008Q2.6 The universe of hospitals covered by the panel includes all acute care short-

4Observe that we do not require information on how entry affects prices to assess the welfare consequences of
entry. Any welfare effect of reduced prices is fully captured in the observed effects on utilization.

5The MedPAR file also reports discharge records for individuals enrolled in certain classes of Medicare Advantage
plans. However, the precise categories of plans included vary over time and these records are thought to be less
complete (Asper and Mann, 2011). For consistency, therefore we limit our analysis to discharges of patients covered
by traditional Medicare. More generally, although the lack of coverage of Medicare Advantage claims is not ideal, it
is likely not important for the present analysis.

6The panel does not extend through the end of 2008 because the MedPAR files report stays on the basis of date
of discharge, rather than date of admission. As a result, some admissions that occur late in 2008 will be reported
in the 2009 MedPAR file. Ending the panel in 2008Q2 ensures that we achieve virtually complete coverage for the
included quarters.
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term hospitals that provide general medical and surgical services, which excludes skilled nursing

facilities, long-term care hospitals, and various specialty hospitals (e.g. psychiatric hospitals, cancer

hospitals, and specialty surgical hospitals). We identify these facilities using information from the

CMS Provider of Services file and information on hospital case mix from the MedPAR file itself.

The precise criteria are described in detail in Appendix B.1. A single facility may, for a variety of

reasons, report admissions under more than one CMS provider number during the period studied.

We group such provider numbers into a single “consolidated” record for the purposes of analysis.

The algorithms for identifying and consolidating related provider numbers are also described in

Appendix B.1

The event study design we use in this paper requires knowing the date each entering hospital

adopts PCI. We consider a hospital to have adopted PCI in the first quarter in which the hospital

reports: (a) at least one PCI; and (b) a total of at least five such procedures during the current

quarter and the following three quarters. The second criterion helps distinguish isolated procedure

coding errors from true PCI adoption. Because this criterion uses a full year of data to confirm

adoption, adoption status is observed only through 2007Q3.

The theoretical analysis provided in the previous section shows that we will wish to estimate

the effect of PCI adoption not only the adopting hospital’s own volume, but also “market-wide.”

We compute market-wide volume in practice by adding each hospital’s volume to the volume of an

identified set of competitors. To identify the set of hospitals with which a given hospital competes,

we turn to a simple model of patient hospital choice. Formally, we suppose that the utility of

admission to hospital h for patient i living in zipcode z is given by

uizh = ξh + γhz + εihz.

The coefficients {ξh} represent the quality of each hospital h, while the coefficients {γhz} represent

the idiosyncratic desirability of each hospital in each zipcode (which is based, presumably, on the

zipcode’s proximity to the hospital, among other factors). Assuming that patients maximize utility

and that εihz follows an extreme value type I distribution, the market shares implied by this demand

system take the standard form:

szh =
exp[ξh + γhz]

1 +
∑H

h′=1 exp[ξh′ + γh′z]
.
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To identify the competitors of hospital h, we consider the reallocation of patients arising from a

small increase in the desirability of hospital h (that is, a small increase in ξh). It is straightforward

to show that

∂szh
∂ξh

= szh(1− szh),

and that for h′ 6= h,

∂szh′

∂ξh
= −szhszh′ .

Summing over zipcodes z, the marginal (normalized) increase in the volume of hospital h in this

thought experiment is
∑

z wzszh(1− szh), where wz is the share of the population living in zipcode

z. The portion of this increase that represents business “stolen” from a given hospital h′ 6= h

is similarly calculated to be
∑

z wzszhszh′ . For each hospital h, we then construct the hospital’s

competitor set Ch as the smallest set of hospitals that accounts for 95 percent of the total stolen

business. That is, the set Ch is the smallest set that satisfies:

∑
h′∈Ch

∑
z

wzszhszh′ ≥ 0.95
∑
z

wzszh(1− szh).

All of the zipcode population sizes (wz) and zipcode market shares (szh) can be estimated di-

rectly from the data. We do so in the obvious way using data on all hospital admissions over the

full sample period that report a valid zipcode, except that, for computing market shares in zipcode

z, we exclude admissions to hospitals with a market share of less than 1 percent. “Trimming” the

zipcode market shares in this way has two advantages. First, it dramatically reduces the number of

hospitals with positive market share in each zipcode, and therefore dramatically reduces the com-

putational burden of calculating the sets Ch. Second, cases in which a patient goes to a hospital

that has a very low market share in his zipcode predominantly arise when the patient is traveling

or when the patient’s zipcode is recorded incorrectly. Including such admissions would, therefore,

generate a misleadingly broad view of a hospital’s set of competitors, which would introduce con-

siderable noise into the market-wide volume estimates and reduce the precision of the regression

results. In any case, we demonstrate that our qualitative results are insensitive to varying the 1

percent threshold.

An alternative way of defining each hospital’s “market” would be to include all zipcodes in which

the hospital has a market share above some threshold. While this approach has the advantage of
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being very simple, it also has an important disadvantage. As noted above, a non-trivial share of

admission records report an invalid zipcode or a zipcode that does not correspond to the patient’s

location at the time the hospital admission became necessary. As a result, under this approach,

some admissions will be allocated to the wrong geographic market or to no market at all. In

contrast, there are no missing provider numbers, and, by definition, the patient must have been

physically present at the hospital when admitted. The patient’s provider number will thus reliably

map every hospital admission to the correct geographic “market.” While the zipcode errors mean

that these markets may be defined with some error, it seems likely that the trimming approach

described above will ensure that those errors are small.

2.4 Estimation

We estimate the effect of adoption on subsequent hospital volume using a dynamic difference-in-

differences (Jacobson et al., 1993) specification, which has frequently been referred to as an “event

study” design in recent work (e.g. Almond et al. (2011) and Hilger (2012)). Our main estimating

equation takes the form:

Yhq = ψh + φq + 1{q < Qh −
¯
d}τ−

¯
d−1 +

∑
d∈{−

¯
d,...,0,...,d̄}
d 6=−1

1{q −Qh = d}τd + εhq, (2.2)

where h indexes hospitals and q indexes quarters, Yhq is the volume measure of interest, Qh is the

quarter in which hospital h adopts PCI, {ψh} is a full set of hospital fixed effects, {φq} is a full set

of quarter fixed effects, εhq is the error term,
¯
d is the number of leads of adoption included, and d̄

is the number of lags.

Provided that the standard common trends assumption holds, the coefficients τd for d ≥ 0 can

be interpreted as the effect of PCI adoption on volume d quarters after adoption. The common

trends assumption also implies that τd = 0 for all d < 0. By testing this restriction, we can evaluate

the plausibility of this crucial assumption.

In practice, we set the number of leads
¯
d to 8. The number of lags d̄ is set to the maximum

number of post-adoption periods observable in the sampled population of hospitals. In presenting

the results, however, we focus on the first 12 post-adoption quarters. As one ventures further
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into the post-adoption period, the precision of the estimates shrinks (because fewer hospitals are

observed at long post-adoption horizons) and any small violations of the common trends assumption

that do exist are magnified.

It will frequently be desirable, for reasons of both precision and simplicity, to combine estimates

at multiple post-adoption horizons into a single summary measure. In practice, we focus on the

following “pooled” estimator:

τ̂pooled =
1

9

12∑
d=4

τ̂d. (2.3)

The formula excludes d ∈ {0, 1, 2, 3} so as to exclude the immediate post-adoption “ramp up” and

permit interpretation of τ̂pooled as the “long-run” effect of PCI adoption on volumes.

The characteristics of the available data introduce one final complication. Because we identify

PCI adoption directly from data on hospital volumes, we cannot identify the time of adoption for

a hospital adopting PCI on or before 1992Q1, nor do we have all the information necessary to code

the “lead” regressors for hospital-quarters falling less than 9(=
¯
d+ 1) quarters before 2007Q3. To

address these problems, we exclude hospitals that adopted PCI on or before 1992Q1 and exclude

hospital-quarters falling after 2005Q2 when estimating equation (2.2).

2.5 Results

Before proceeding to the main results, we present Table 2.1, which reports descriptive statistics for

the hospital panel. For consistency with the regression sample, Table 2.1 covers the period 1992Q1

to 2005Q2. In order to accurately portray the full population of hospitals, however, Table 2.1 does

include hospitals that adopt PCI on or before 1992Q1 despite the fact that these hospitals are

excluded from the regression sample.

We start by examining the effect of PCI adoption on the adopting hospital. Figure 2.2 plots the

coefficients obtained from estimating equation (2.2) with the hospital’s volume of PCI admissions as

the left-hand-side variable. PCI volume is flat in the pre-period (which is unsurprising since volume

is essentially zero at hospitals that have not yet adopted) and increases sharply in the quarters

following adoption to around 25 procedures per quarter. Table 2.2 reports the corresponding

summary estimate, which is defined in equation (2.3), for this set of coefficients.

We next investigate whether the increase in PCI volume at the adopting hospital represents an
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Table 2.1: Hospital panel descriptive statistics

Hospital-quarters included: All Post-adoption

Volume measures Mean SD Mean SD

Hospital-level quarterly volumes
Total admissions 598 690 1,409 861
Cardiovascular admissions 196 255 498 339
PCI admissions 15 42 63 67

with AMI primary diagnosis 4 11 17 17
with non-AMI primary diagnosis 11 32 46 53

Market-wide quarterly volumes
Total admissions 11,517 7,490
Cardiovascular admissions 3,916 2,517
PCI admissions 409 285

with AMI primary diagnosis 106 73
with non-AMI primary diagnosis 303 219

Sample sizes
Hospital-quarters 253,848 58,769
Hospitals 5,094
PCI adoption events 613
Pre-1992Q1 PCI adoptions 848

Notes: This table reports descriptive statistics for the sample used to estimate equation (2.2) plus
the sample of hospitals adopting PCI on or before 1992Q1. The first two columns report means and
standard deviations for the full sample, while the latter two columns report data for hospital-quarters
in which the hospital has PCI capabilities. Cardiovascular admissions are those with a cardiovascular
primary diagnosis. PCI admissions are those that report a percutaneous coronary intervention in any
procedure field. The ICD-9-CM codes used to define these categories are described in Appendix B.1.
Hospital-level quarterly volumes reflect volumes at a given hospital, while market-level quarterly
volumes reflect total volumes at the given hospital and its “competitors” as defined in Section 2.3.
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Figure 2.2: Dynamic difference-in-differences estimates of the effect of PCI adoption on the
adopting hospital’s PCI volume
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Notes: This figure plots estimates of the coefficients {τd}d∈{−8,−7,...,11,12} obtained from estimating
equation (2.2); as in equation (2.2), the coefficient for d = −1 is normalized to zero. The dependent
variable is the total number of PCIs performed in each hospital-quarter. The error bars depict 95
percent confidence intervals for the plotted point estimate and are computed using standard errors
clustered at the hospital level.
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Table 2.2: Summary difference-in-differences estimates of the effect of PCI adoption on
hospital-level and market-wide PCI volumes

Column: (1) (2) (3)

Primary diagnosis

Analysis level All AMI Non-AMI

Hospital-level 25.0∗∗∗ 7.6∗∗∗ 17.4∗∗∗

(1.3) (0.3) (1.0)
[0.10] [0.05] [0.13]

Market-wide 10.3∗ 1.8 8.6∗

(4.9) (1.2) (4.0)
[0.45] [0.34] [0.62]

Auxiliary statistics
Business-stealing ratio 0.587 0.767 0.509
Hospital-quarter observations 209,015 209,015 209,015

Notes: This table reports summary results from estimating equation (2.2). For each
analysis level and primary diagnosis level, the reported point estimate is the “pooled”
long-run volume effect defined in (2.3). For the hospital-level analyses, the dependent
variable is the total number of PCIs performed on patients with the listed primary di-
agnosis in each hospital-quarter. For the market-wide analyses, the dependent variable
is the total number of PCIs performed on patients with the listed primary diagnosis at
the hospital or its competitors in each hospital-quarter (where the set of competitors
is defined as described in Section 2.3). AMI is an abbreviation for acute myocardial
infarction (heart attack). The p-value from a test of the null hypothesis of pre-period
common trends (i.e. that τ2 = τ3 = · · · = τ8 = 0) is displayed in brackets. Standard
errors clustered at the hospital level are reported in parentheses. Statistical significance
is denoted as follows: ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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Figure 2.3: Dynamic difference-in-differences estimates of the effect of PCI adoption on
market-wide PCI volume
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Notes: This figure plots estimates of the coefficients {τd}d∈{−8,−7,...,11,12} obtained from estimating
equation (2.2); as in equation (2.2), the coefficient for d = −1 is normalized to zero. The dependent
variable is the total number of PCIs performed at the hospital or its competitors in each hospital-
quarter (where the set of competitors is defined as described in Section 2.3). The error bars depict 95
percent confidence intervals for the plotted point estimate and are computed using standard errors
clustered at the hospital level.

increase in the total number of patients undergoing PCI in the hospital’s market, or whether it

instead reflects “business stealing” from the hospital’s competitors. To address this question, we

re-estimate equation (2.2), except that we place the combined PCI volume of the hospital and its

competitors on the left-hand side of the regression.

Figure 2.3 reports the results, plotted on the same scale as Figure 2.2 to facilitate comparison.

The figure shows that, while there is indeed an increase in market-wide PCI volume following

adoption, this increase is considerably smaller than the increase in volume experienced by the

adopting hospital. Comparing the two summary estimates reported in Table 2.2, we conclude that

approximately 60 percent of the PCI volume at the adopting hospital is taken from the hospital’s

competitors, and the market-wide increase in quarterly PCI volume is only about 10 procedures.

As the theoretical framework provided in Section 2.2 makes clear, evaluating the welfare im-
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plications of this expansion in PCI availability requires understanding which categories of patients

are newly receiving PCI. As described previously, the available clinical evidence indicates that PCI

can have substantial benefits for patients with acute coronary syndromes (i.e. AMI or unstable

angina), while the benefits to patients with chronic manifestations of coronary artery disease are

considerably smaller. Guided by this medical evidence, therefore, we seek to separately estimate

the increase in PCI volume for patients with and without acute illness. We operationalize this

in practice by dividing patients receiving PCI into two groups: those with a primary diagnosis

of AMI and those with other primary diagnoses. This distinction differs from the ideal clinical

categorization, as it includes the relatively small number of patients with unstable angina in the

“other” category. Unfortunately, this imprecision is unavoidable in light of prevailing ICD-9-CM

coding practices, which make it impossible to distinguish the relatively small group of patients with

unstable angina from a much larger group of patients with chronic coronary artery disease.7

Figure 2.4 provides this diagnosis breakdown of the increase in PCI volume at the adopting

hospital alone. For the adopting hospital, the increase in PCI volume for patients with AMI

diagnoses is large and highly statistically significant, although it is less than half as large as the

increase in PCI volume for patients with non-AMI diagnoses. Figure 2.5 reports the same diagnosis

breakdown at the market level. At the market level, the estimated increase in PCI volume for

patients with AMI diagnoses shrinks dramatically. While the summary estimate for AMI patients

that is reported in Table 2.2 remains positive, it is not statistically significant. By contrast, even

at the market-level, there is a large and statistically significant increase in PCI volume for patients

without an AMI diagnosis. We conclude, therefore, that hospital PCI adoption most likely causes

a small increase increase in market-wide PCI utilization for AMI patients, but causes a substantial

increase in utilization for other patients.

Having established our main results, we turn to a pair of more subtle issues that may affect

the interpretation of those results. The first issue we explore is whether entry by the adopting

hospital deters entry by other hospitals. If this were the case, then the event study results do not

answer the question of interest: how adding one additional PCI-capable hospital to the market

affects utilization in equilibrium. To look for deterrent effects of entry, we estimate equation (2.2)

7ICD-9-CM diagnosis codes for unstable angina do exist. However, other features of the records on which these
codes are used suggest that they are frequently planned, non-emergency admissions and, thus, not incidents of ACS.
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Figure 2.4: Dynamic difference-in-differences estimates of the effect of PCI adoption on the
adopting hospital’s PCI volume by primary diagnosis
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Notes: This figure plots estimates of the coefficients {τd}d∈{−8,−7,...,11,12} obtained from estimating
equation (2.2); as in equation (2.2), the coefficient for d = −1 is normalized to zero. The dependent
variable is the total number of PCIs performed on patients with the listed primary diagnosis in each
hospital-quarter. AMI is an abbreviation for acute myocardial infarction (heart attack). The error
bars depict 95 percent confidence intervals for the plotted point estimate and are computed using
standard errors clustered at the hospital level.
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Figure 2.5: Dynamic difference-in-differences estimates of the effect of PCI adoption on
market-wide PCI volume by primary diagnosis
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Notes: This figure plots estimates of the coefficients {τd}d∈{−8,−7,...,11,12} obtained from estimating
equation (2.2); as in equation (2.2), the coefficient for d = −1 is normalized to zero. The dependent
variable is the total number of PCIs performed on patients with the listed primary diagnosis at
the hospital or its competitors in each hospital-quarter (where the set of competitors is defined as
described in Section 2.3). AMI is an abbreviation for acute myocardial infarction (heart attack).
The error bars depict 95 percent confidence intervals for the plotted point estimate and are computed
using standard errors clustered at the hospital level.
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Figure 2.6: Dynamic difference-in-differences estimates of the effect of PCI adoption on the
market-wide number of PCI programs
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Notes: This figure plots estimates of the coefficients {τd}d∈{−8,−7,...,11,12} obtained from estimating
equation (2.2); as in equation (2.2), the coefficient for d = −1 is normalized to zero. The dependent
variable is the total number of active PCI programs among the hospital itself and its competitors
in each hospital-quarter (where the set of competitors is defined as described in Section 2.3). The
error bars depict 95 percent confidence intervals for the plotted point estimate and are computed
using standard errors clustered at the hospital level.

with the market-wide number of PCI programs on the left-hand-side. The results are reported

in Figure 2.6 and column (1) of Table 2.3. We find that entry coincides with an immediate and

permanent increase in the market-wide number of hospitals with PCI capabilities of almost exactly

one, so we conclude that there is no evidence that a given hospital’s entry has a deterrent effect on

its competitors.

The second issue we explore is whether the increased PCI utilization we observe reflects sub-

stitution away from the main alternative surgical treatment for coronary artery disease, coronary

artery bypass graft (CABG) surgery. Cutler and Huckman (2003) report evidence suggesting just

such a pattern of substitution as PCI diffused in New York. If substantial substitution were indeed

occurring, it would be important to account for the reduction in resources devoted to CABG in the

welfare calculations presented in the next section. To quantify any such substitution, we once again
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Table 2.3: Summary difference-in-differences estimates of the effect of PCI adoption on the
hospital-level and market-wide number of PCI programs and CABG volume

Column: (1) (2)

Dependent variable

Analysis level # of PCI hospitals CABG volume

Hospital-level N/A 10.9∗∗∗

(0.7)
[0.00]

Market-wide 1.1∗∗∗ -0.5
(0.0) (2.4)
[0.01] [0.05]

Hospital-quarter observations 209,015 209,015

Notes: This table reports summary results from estimating equation (2.2). For each
regression, the reported point estimate is the “pooled” medium-run volume effect de-
fined in (2.3). For the analysis presented in column (1), the dependent variable is the
total number of hospitals with PCI programs in that quarter (where the set of com-
petitors is defined as described in Section 2.3). For the market-level analysis presented
in column (2), the dependent variable is the total number of CABGs performed in each
hospital-quarter. For the market-wide analysis presented in column (2), the dependent
variable is the total number of CABGs performed at the hospital or its competitors
in each hospital-quarter. The p-value from a test of the null hypothesis of pre-period
common trends (i.e. that τ2 = τ3 = · · · = τ8 = 0) is displayed in brackets. Standard
errors clustered at the hospital level are reported in parentheses. Statistical significance
is denoted as follows: ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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re-estimate equation (2.2), first with CABG volume of each individual hospital on the left-hand-side

and then with market-wide CABG volume on the left-hand-side.

The results are reported in Figure 2.7 and in column (2) of Table 2.3. We see that PCI-

adopting hospitals actually experience a substantial increase in CABG volume of approximately 10

procedures per quarter; it appears that hospital PCI adoption frequently coincides with creation or

expansion of hospitals’ cardiac surgery programs.8 While the market-level results suggest that all of

this increase in CABG utilization reflects business stealing, we can safely conclude that there is no

evidence that the market-wide increase in PCI utilization causes substitution away from CABG.9

Finally, we present two sets of specification checks. In our first set of checks, we evaluate the

plausibility of the common trends assumption that justifies estimating equation (2.2). To do so, we

examine the coefficients on the leads of PCI adoption included in equation (2.2). If the common

trends assumption holds, these coefficient estimates should all be approximately equal to zero (and,

consistent with that, exhibit no clear trend). Visual examination of Figures 2.2-2.5 suggests that

the estimated coefficients do indeed satisfy this condition. We can also formally test the hypothesis

that the coefficients on the leads are all zero. The p-values from joint F -tests of these restrictions

are reported in brackets in the relevant cells of Table 2.2.10 The p-values only approach standard

thresholds for statistical significance in the hospital-level specifications, and, in these cases, the

point estimates demonstrate that any pre-trend that does exist is exceedingly small.

In our second set of checks, we examine whether the market-level results are sensitive to the

8This pattern of coincidental adoption may reflect PCI-adopting hospitals’ desire to have emergency CABG
“backup” on hand in the event of complications during PCI. Early clinical guidelines (e.g. Ryan et al. (1993))
recommended that all hospitals offering elective PCI be able to perform on-site CABG, and this recommendation
has only been meaningfully weakened recently (e.g. Levine et al. (2011)). Although adherence to this rule is not
universal, many hospitals do appear to abide by it. Alternatively, it may be that hospitals adopting PCI do so in the
midst of a broader effort to expand their line of cardiology services.

9In fact, although the point estimate reported in Table 2.3 is slightly negative, there is visual evidence of a
downward trend in market-level CABG volume for adopting hospitals, and the p-value reported in Table 2.3 indicates
that this trend is statistically significant. Extrapolating this trend suggests that the markets of hospitals adopting
PCI actually experience a small increase in CABG volume. In any case, there is no evidence of net substitution away
from CABG.

10When running these joint hypothesis tests, we do not include the lead corresponding to quarters more than 8
quarters before adoption: τ−9 in equation (2.2). The F -tests for the market-level specifications would typically reject
if this coefficient were included because τ−9 is generally negative and statistically significant. This indicates that
market-level volumes for PCI adopting hospitals were trending upward during the period more than two years prior
to adoption. We do not view this earlier pre-trend as cause for concern given that the trend has ceased by the time
of PCI adoption.
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Figure 2.7: Dynamic difference-in-differences estimates of the effect of PCI adoption on
hospital-level and market-wide CABG volumes
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Notes: This figure plots estimates of the coefficients {τd}d∈{−8,−7,...,11,12} obtained from estimating
equation (2.2); as in equation (2.2), the coefficient for d = −1 is normalized to zero. The dependent
variable in panel A is the total number of CABGs performed in each hospital-quarter. The dependent
variable in panel B is the total number of CABGs performed at the hospital or or its competitors
in each hospital-quarter (where the set of competitors is defined as described in Section 2.3). The
error bars depict 95 percent confidence intervals for the plotted point estimate and are computed
using standard errors clustered at the hospital level.
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threshold used to “trim” zipcode market shares when defining each hospital’s competitor set. Ta-

ble 2.4 reports the market-level results for the base 1 percent threshold as well as for a trimming

threshold half as large and a trimming threshold twice as large. The table indicates that the point

estimates are qualitatively similar no matter the threshold used. Smaller thresholds substantially

reduce precision, however, and when the smaller threshold considered is used, the market-wide

increases in overall PCI volume and non-AMI PCI volume are no longer statistically significant.11

2.6 Welfare analysis

We now turn to the question of whether entry over this period improved welfare, which we address

by calibrating equation (2.1) from Section 2.2. In the first several parts of this section, we use

the utilization estimates from the last section and existing evidence on the benefits and costs of

PCI to pin down the unknown quantities in equation (2.1). The resulting parameter values are

are summarized in Table 2.5. Then, in the last part of this section, we use these parameters to

estimate the welfare gain or loss resulting from entry.

2.6.1 Calibrating the utilization response

We start by selecting, for each patient type θ ∈ {AMI,non-AMI}, values for (vN+1(θ)−vN (θ))µ(θ),

which is the change in the flow of PCI utilization for patients of type θ. This quantity can be

computed directly from the market-wide utilization results presented in the last section. Specifically,

we start with the long-run change in market-wide Medicare PCI utilization reported in Table 2.2.

We then scale these estimates up to account for the share of patients covered by insurers other

than Medicare. Using the National Hospital Discharge Survey (NHDS) for 1992-2005 (the years

included in the sample used to estimate equation (2.2)), we find that Medicare patients account

for 42 percent of PCI utilization among patients with an AMI primary diagnosis and 50 percent of

PCI utilization among patients with a non-AMI primary diagnosis.12 The resulting estimates of the

11The loss in precision with a lower threshold occurs because the number of hospitals in each provider’s competitor
set grows as the threshold falls. A great number of competitors increases the scale and, therefore, the variance of
market-wide volume, which decreases the precision of the estimated effects.

12The NHDS data files were obtained from the the Inter-university Consortium for Political and Social Research,
study number 24281.
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Table 2.4: Sensitivity analysis of the estimated effect of PCI adoption of hospital-level and
market-wide PCI volumes

Column: (1) (2) (3)

Primary diagnosis

Analysis level All AMI Non-AMI

Hospital-level 25.0∗∗∗ 7.6∗∗∗ 17.4∗∗∗

(1.3) (0.3) (1.0)
[0.10] [0.05] [0.13]

Market-wide (0.5 percent threshold) 8.4 2.0 6.3
(6.0) (1.5) (4.9)
[0.12] [0.09] [0.23]

Market-wide (1 percent threshold) 10.3∗ 1.8 8.6∗

(4.9) (1.2) (4.0)
[0.45] [0.34] [0.62]

Market-wide (2 percent threshold) 10.9∗∗ 2.1∗ 8.8∗

(4.1) (1.0) (3.5)
[0.64] [0.42] [0.83]

Hospital-quarter observations 209,015 209,015 209,015

Notes: This table reports summary results from estimating equation (2.2). For each analysis
level and primary diagnosis level, the reported point estimate is the “pooled” medium-
run volume effect defined in (2.3). For the hospital-level analyses, the dependent variable
is the total number of PCIs performed on patients with the listed primary diagnosis in
each hospital-quarter. For the market-wide analyses, the dependent variable is the total
number of PCIs performed on patients with the listed primary diagnosis at the hospital or
its competitors in each hospital-quarter (where the set of competitors is defined as described
in Section 2.3 using the “trimming” threshold listed). AMI is an abbreviation for acute
myocardial infarction (heart attack). The p-value from a test of the null hypothesis of pre-
period common trends (i.e. that τ2 = τ3 = · · · = τ8 = 0) is displayed in brackets. Standard
errors clustered at the hospital level are reported in parentheses. Statistical significance is
denoted as follows: ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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market-wide, all-insurer increase in quarterly PCI utilization are reported in panel A of Table 2.5.

2.6.2 Calibrating the health benefits

We next turn to calibrating the health benefits of PCI, τ(θ). Receipt of PCI may improve survival,

improve quality of life, or both; the main source of quality-of-life improvements in this context is

a reduction in the incidence of angina. In order to monetize these benefits, we follow a standard

approach in health economics and compute the number of quality-adjusted-life-years (QALYs)

generated by each treatment path.13

We use the following simple framework for our QALY calculations. For a patient of type θ

with treatment status p ∈ {0, 1}, the probability of survival until time t is denoted by Spθ (t), where

t = 0 is the time of PCI. The incidence of angina among those alive at each time t is given by

Apθ(t). Angina is assumed to carry a penalty in QALY units of νa. The discounted number of

quality-adjusted life years (QALYs) gained by switching from pure medical management to PCI is

therefore given by

τ(θ) =

∫ ∞
0

[1− νaA1
θ(t)]S

1
θ (t)e−rtdt−

∫ ∞
0

[1− νaA0
θ(t)]S

0
θ (t)e−rtdt, (2.4)

where r is the social discount rate as in equation (2.1). We set r = 0.03 throughout.

To facilitate calibration, we specify simple parametric functional forms for the survivor functions

Spθ (t) and the angina incidence paths Apθ(t), taking care to choose functions that are flexible enough

to capture the salient features of the clinical literature. We assume that the survival function in

the absence of PCI takes the form S0
θ (t) = s0

θ exp[−λsθt], which features an initial instantaneous

survival probability of s0
θ and a subsequent mortality hazard of λsθ. We further suppose that any

survival benefits of PCI appear immediately after treatment and that any new survivors have a life

expectancy similar to that of other survivors. This implies that the survival function for individuals

receiving PCI can be written as S1(t) = [s0
θ + ∆s

θ] exp[−λsθt], where ∆s
θ can be interpreted as the

short-run survival benefit of PCI. We parametrize angina incidence by Apθ(t) = a0
θ +p∆a

θ exp[−λaθt],

which implies that PCI causes an immediate reduction in angina incidence of size ∆a
θ that decays

13The number of QALYs associated with spending a given path of health states is defined as the number of years
of life in perfect health that an individual would accept in exchange for that path. See Dolan (2000) for a review of
this approach to valuation.
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over time at a rate λaθ .

Substituting these functional forms into equation (2.4) and doing a small amount of algebra,

we obtain the following expression for τ(θ):

τ(θ) =
∆s
θ(1− νaa0

θ)

λsθ + r
+

∆θ
aνa(s

0
θ + ∆s

θ)

λsθ + λaθ + r
. (2.5)

The first term of equation (2.5) represents the QALY value of any survival improvement, while the

second represents the QALY value of any quality-of-life gains. We obtain values for the parameters

that appear in equation (2.5) from the clinical literature.

Clinical benefits for AMI patients

For patients with AMI, the clinical evidence is clear that PCI improves both the length and quality

of life. The most readily applicable evidence is for patients with the most serious type of AMI, ST-

elevation myocardial infarction (STEMI), which is named for the electrocardiogram abnormality

that distinguishes it from other AMIs. For these patients, the authoritative meta-analysis by Keeley

et al. (2003) finds that prompt receipt of PCI reduces mortality at 6-18 months by 4 percentage

points from 13 percent to 9 percent, so we set ∆s
AMI = 0.04 and s0

AMI = 0.87. Keeley et al. (2003)

also find that PCI reduces the incidence of recurrent ischemia (i.e. new incidents of insufficient

coronary blood flow) by 16 percentage points from 39 percent to 23 percent. Recurrent ischemia

can take a variety of forms, ranging from angina up to a new AMI. Likely conservatively, we treat

these reductions in recurrent ischemia as reflecting reductions in the incidence of persistent angina

and thus set ∆a
AMI = 0.16 and a0

AMI = 0.39. There is little evidence available on the persistence of

these gains, so we calibrate λaAMI on the basis of the evidence for non-AMI patients that is discussed

below.14

14In evaluating this parametrization, one important question is whether the survival and quality-of-life benefits of
PCI in STEMI patients are a reasonable guide to the benefits realized by other heart attack (known as NSTEMI)
patients. Answering this question is complicated by the fact that the available trials for NSTEMI patients do not
directly compare PCI with medical management. Rather, most of the available trials compare two broad treat-
ment regimes: a “conservative” regime emphasizing medical management; and an “invasive” regime emphasizing
revascularization (i.e. PCI and bypass surgery).

Bavry et al. (2006) present a comprehensive meta-analysis of such trials and concludes that treatment according to
the “invasive” pathway reduces mortality by 1.6 percentage points and the incidence angina-related hospitalizations
by 7.8 percentage points, both at a mean follow-up period of 24 months. In light of the fact that patients in the
“invasive” arm of these trials are only 25 percentage points more likely to receive revascularization and assuming that
the benefits found are not disproportionately due to bypass surgery rather than PCI, these results suggests that the
benefits of PCI for NSTEMI patients are similar in magnitude to those for STEMI patients.
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To calibrate the mortality hazard λsAMI, we turn once again to the NHDS and calculate that the

average age of AMI patients receiving PCI during the study period was 62.2 years. By interpolating

life tables created by the CDC (Arias, 2012) for 1999-2001, we compute that the typical individual

of this age during this period had a remaining life expectancy of 19.8 years. In a Medicare cohort,

Cutler et al. (1998) find that life expectancy after an AMI is approximately 55 percent of that for

the general population.15 Applying this same factor, we compute a life expectancy for the patients

in this study of 10.9 years. The NHDS indicates that 23 percent of AMI patients received PCI

during the study period, which allows us to calculate that λsAMI = 0.081.

Clinical benefits for non-AMI patients

By contrast to AMI patients, the benefits of PCI for non-AMI patients – almost entirely patients

with “stable” coronary artery disease – appear to be considerably smaller.16 For these patients,

the uniform conclusion of recent meta-analyses (Wijeysundera et al., 2010; Steriopulos and Brown,

2012; Thomas et al., 2013) and the position taken by current practice guidelines (Fihn et al., 2012)

is that PCI provides no improvement in survival relative to medical management. Thus, we set

∆s
Non-AMI = 0, and since early mortality is negligible for these patients, we set s0

Non-AMI = 1.

While the consensus among cardiologists is that PCI does not improve survival in this group

of patients, it is generally thought to reduce the incidence of angina. To quantify these benefits,

we turn to the two largest trials in this area: the RITA-2 trial (Henderson et al., 2003) and

the COURAGE trial (Weintraub et al., 2008).17 RITA-2 reports that PCI reduces the incidence

A meta-analysis by Hoenig et al. (2010) presents a dissenting view and concludes that there is no statistically
significant evidence of reductions in mortality, recurrent AMI, or recurrent angina among patients randomized to
invasive or conservative pathways. However, the Hoenig et al. point estimates are similar to those presented by
Bavry et al. (2006) as well as those obtained by Mehta et al. (2005) and Biondi-Zoccai et al. (2005) and fail to reach
statistical significance mainly because Hoenig et al. include a narrower set of studies.

15We could directly repeat the Cutler et al. (1998) exercise in our Medicare data, and we may do so in future
work.

16Note, once again, that due to data limitations, the non-AMI category includes some patients experiencing true
unstable angina. The benefits of PCI for these patients are likely more similar to the benefits for AMI patients than
to the benefits for the rest of the non-AMI group. They are, however, a small portion of the non-AMI group.

17As noted above, there are three major meta-analyses in this literature: Wijeysundera et al. (2010), Steriopulos
and Brown (2012), and Thomas et al. (2013). These analyses reach varying conclusions regarding the effect of PCI on
the incidence of angina. These analyses share a key flaw, however, that they combine studies using widely-differing
follow-up horizons. As the discussion of RITA-2 and COURAGE indicates, the effect of PCI on angina appears to
decay relatively rapidly, which is likely to render the results of this type of meta-analysis uninterpretable.
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of angina by 17 percentage points at 3 months, but by just 6 percentage points after 5 years.

COURAGE reports that PCI reduces the incidence of angina after 3 months by 11 percentage

points, but by just 3 percentage points after 3 years. On the basis of this evidence, we set the

initial reduction in the incidence of angina at an intermediate value of ∆Non-AMI = 0.14 and choose

a decay parameter intermediate between those implied by the two studies of λaNon-AMI = 0.281.18

Because, as noted above, there is no evidence on the rate at which the angina benefits to AMI

patients decay over time, we apply this same decay parameter to those patients.

To calibrate the mortality hazard λsNon-AMI, we use an approach very similar to that used for

AMI patients. NHDS calculations indicate that the average age of the non-AMI patients was 64.4

years. The corresponding life expectancy in the general population from the CDC life tables is 18.2

years. We suppose that these patients’ life expectancy is 75 percent of that of individuals in the

general population, which is higher than the 55 percent figure from Cutler et al. (1998) that we used

in the calculation for the AMI patients. We use the higher value here to reflect the fact that these

patients are likely somewhat healthier than the AMI population. Given the arbitrariness of this

choice, we explore the sensitivity of our results to alternative assumptions.19 Our base assumption

yields a value for the mortality hazard of λsNon-AMI = 0.073.

Parameters common to AMI and non-AMI patients

We draw two final parameters from other sources. For the QALY penalty associated with chronic

angina (νa), we follow Cutler and Huckman (2003), who use an estimate based on Tengs and Wallace

(2000) that a year with moderate angina is worth 0.2 QALYs less than a year in perfect health.

Since some of the reductions in angina incidence observed in the clinical literature, particularly for

non-AMI patients, may reflect milder angina, we explore the robustness of our results to smaller

values. To convert the resulting QALY totals into monetary terms, we assume that a year of life in

perfect health is valued at $100,000, following Cutler (2004). Murphy and Topel (2006) argue that

considerably higher values may be appropriate, and we consider the sensitivity of our results to an

18We compute the average decay parameter between the two studies as the harmonic mean rather than the simple
arithmetic mean since the inverse of the decay parameter is the more meaningful quantity in our setting.

19We could reduce the arbitrariness here by repeating the Cutler et al. (1998) exercise in the present sample. We
may do so in future work
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alternative value of $200,000.

2.6.3 Calibrating costs

We base our estimates of the marginal costs of PCI, c(θ), on the amount paid by Medicare, which,

at least in principle, approximate provider costs (Newhouse, 2002). For non-AMI patients, we start

with the average payment that Medicare makes for a PCI hospitalization during fiscal year 2013.

For AMI patients, we wish to account for the fact that these patients would likely have already

been hospitalized and, thus, would have incurred the basic costs of hospitalization even without

PCI. Thus, for AMI patients, we obtain our initial estimate by subtracting the average payment

Medicare makes for a medically-managed AMI hospitalization from the average payment for a PCI

hospitalization.20 We add an additional $1,000 to each of these figures to account for the cost of

physician services that are reimbursed separately. The fact that providers are willing to accept

this reimbursement to perform PCI suggests that these amounts exceed hospitals’ marginal costs

of PCI. We therefore reduce these figures by 15 percent to obtain our final cost estimates, which

are displayed in Panel C of Table 2.5.

We consult two sources to obtain an estimate of the capital investment required to enter the

PCI market. A 2004 article in a major industry newsletter (Gehrki, 2004) reports total construction

and equipment costs for a new catheterization facility of $2-2.5 million; taking the middle of the

range and adjusting for inflation, this suggests a total cost of $2.7 million in today’s dollars. Lieu

et al. (1996) report an estimated equipment cost of $1.6 million and an estimated construction cost

of $1.5 million, both in 1993 dollars. They assume that the equipment investment needs to be

repeated every 10 years and the construction costs every 30 years. Under the assumption that the

hospital can continue to make use of the building even if decides to exit to the PCI market after 10

years, this implies a total cost in today’s dollars of $3.5 million.21 Guided by these estimates, we

use an intermediate figure of k = $3 million, and we set the replacement horizon to T̄ = 10 years

20In detail, we compute the average cost of a PCI hospitalization by computing the average payment level across
DRGs 246-251, weighting each DRG’s contribution to the average by the number of admissions categorized in that
DRG during fiscal year 2012. We obtain the average payment for a medically-managed AMI hospitalization by
averaging across DRGs 280-285, weighting each DRG’s contribution in the same fashion. The data required for these
calculations are available for download from the Center for Medicare and Medicaid Services website.

21For this calculation, we use a 3 percent discount rate and assume the building depreciates linearly.
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as suggested by Lieu et al. (1996).

2.6.4 Welfare analysis results and discussion

The first row of Table 2.6 reports the welfare estimates we obtain under the base parameterization.

Focusing first on the net benefits of a single PCI procedure (in columns (1) and (2) of the table), we

see that PCI for AMI and non-AMI patients has markedly different welfare implications. For AMI

patients, a single procedure generates net benefits of almost $36,000, while, for non-AMI patients,

PCI generates a net loss of approximately $4,400. Turning to the cumulative social welfare effects

of treatment (in columns (3) and (4) of the table), we see that the cumulative net benefits for

AMI patients reach $5.2 million per adopter despite the relatively modest utilization response

we estimated for this group, an amount more than enough to cover the fixed costs of adoption.

The social surplus generated by this group is, however, completely offset by the $2.6 million per

entrant welfare loss associated with the increase in PCI utilization among non-AMI patients. As

a result, our best estimate is that adoption was approximately welfare neutral over this period.

As indicated by the reported standard errors, this estimate is subject to considerable uncertainty

(primarily attributable to uncertainty in the estimated effect of entry on PCI utilization by AMI

patients), and we cannot rule out the possibility that adoption either increased or reduced welfare

by economically meaningful amounts. We can, however, conclude with high confidence that the net

benefits of entry would have been larger (and, more likely than not, positive) had the utilization

increases been limited to AMI patients.

In Table 2.7, we explore the sensitivity of our basic social welfare conclusions to alternative

parameterizations. The results demonstrate that our basic conclusions – that adoption was most

likely close to welfare neutral and that the welfare costs of increased utilization of PCI by non-AMI

patients are sizable – are robust. The one exception to this general pattern is when we increase

the value of a year of life from $100,000 to $200,000. In this case, even modest reductions in the

incidence of angina for non-AMI patients are sufficient to justify the cost of providing PCI, and, as

a result, the overall net benefits swing to being strongly positive.

Our finding that increased PCI utilization among non-AMI patients reduced welfare suggests

that it would have been socially desirable for hospitals to have forgone treating these patients. This

leads naturally to the question of how efforts to discourage treatment for these patients would affect
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hospital adoption incentives. We can address this question directly using the estimated hospital-

level utilization responses reported in Table 2.2 (which we scale up using data from the NHDS

in the same fashion as before) together with information on marginal costs and payment rates.

The required information on costs and Medicare payment rates was already described in the last

subsection. To obtain payment rates relevant to privately-insured patients (who constitute nearly

all of the non-Medicare PCI market), we apply an estimate reported by Robinson (2011) that

private payment rates for angioplasty exceed Medicare rates by 64 percent. Although the Robinson

estimates apply to a selected group of 61 hospitals that participated in one of two value-based

purchasing initiatives, they provide a useful starting point, and we examine the sensitivity of our

results to alternative parameter choices.

The results of this exercise are reported in the second row of Table 2.6. We see that the additional

profits earned from PCI in non-AMI patients are $7.7 million per adopter, far in excess of the profits

earned from AMI patients. Moreover, without the profits earned from non-AMI patients, the total

returns to adoption would not cover the required setup costs. Observe that these effects on profits

are very precisely estimated since they rely only on the hospital-level utilization responses, which

are themselves very precisely estimated. As shown in Table 2.8, these conclusions are also highly

robust to alternative choices of parameter values.

This pattern of results suggests that policy reforms that seek solely to reduce the utilization of

PCI in non-AMI patients (e.g. by lowering payment rates for these patients) cannot achieve the

first-best outcome in which hospitals adopt PCI but decline to treat non-AMI patients. Any policy

that was sufficiently successful in discouraging use of PCI among non-AMI patients would cause

hospitals to decline to adopt PCI altogether, with the result that society would not realize the

incipient welfare benefits for AMI patients. Rather, optimal policy would pair measures to reduce

utilization of PCI in non-AMI patients with increases in payment rates for AMI patients in order

to allow hospitals to capture more of the surplus generated by PCI in the latter group.

2.7 Discussion and conclusion

Our analysis demonstrated that the typical hospital entering the PCI market over the period 1992-

2005 engaged in significant business stealing, but still generated a meaningful market-wide increase
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in PCI volume. These increases in utilization were, however, weighted toward patients with low

clinical benefits of PCI. As a result, our best estimate is that even though the average hospital

adopting PCI generated benefits among AMI patients that were large enough to justify the fixed

costs of adoption, overuse among non-AMI patients more than dissipated these social benefits.

We also showed that the structure of incentives offered by public and private payers made this

pattern of post-adoption behavior highly profitable and rendered efficient post-adoption behavior

unprofitable. The implication of our results is that achieving the first-best outcome would require

not only reducing hospitals’ incentives to perform PCI in non-AMI patients, but also replacing the

lost cross-subsidy by increasing payment rates for PCI in AMI patients.

Our conclusions regarding the welfare consequences of the diffusion of PCI differ from prior work

examining the experience in New York by Cutler and Huckman (2003). We differ for two main

reasons. First, Cutler and Huckman find that, in New York, PCI substituted for bypass surgery as

it diffused, which substantially reduced costs; we find no evidence of such substitution here. This

difference may arise because Cutler and Huckman examine an earlier period than we examine here

or because of differences between New York and the rest of the country. Second, we rely on more

recent clinical evidence to quantify the reductions in angina due to PCI in non-AMI patients. This

more recent evidence suggests that those benefits are both smaller and, more importantly, much

less durable than the evidence cited by Cutler and Huckman.22

Our overall conclusion that hospital entry into the PCI market was close to welfare neutral is

similar to that reached by Cutler et al. (2010) in their study of entry into the the cardiac surgery

market in Pennsylvania during the late 1990s. The factors driving this common conclusion differ,

however. Cutler et al. find that the fixed costs of entry were offset by an reallocation of patients

to higher-quality surgeons, while in our case the fixed costs of entry were offset by the net benefits

of increased utilization.23

In closing, we note that the issues raised in this paper are not unique to PCI. The health sector

22There is some disagreement on whether the benefits of PCI in non-AMI patients were actually larger in the past
or whether the later studies are simply higher quality. See Wijeysundera et al. (2010) for a discussion.

23As noted earlier, we have assumed for the purposes of our analysis that the reallocation of patients across
providers has no direct welfare consequences. Although we may seek to relax this assumption in future work, we
do note that an analysis of the multi-site COURAGE trial of PCI found no evidence of cross-site differences in the
benefit of PCI relative to medical therapy (Kolm et al., 2013).

127



continues to grapple with the diffusion of technologies that feature both high fixed costs and social

returns that are highly heterogeneous across patient groups. High-profile current examples include

proton beam radiation therapy for cancer and robot-assisted surgery. The experience with PCI

suggests that, while these technologies may have great promise, realizing that promise will require

careful tailoring of the incentives hospitals face when deciding who to treat.
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Chapter 3

How does hospital congestion affect

care and outcomes for patients with

acute coronary illness?

Many major categories of illness arise unpredictably and require immediate treatment. As a re-

sult, hospitals face large day-to-day variation in patient demand for their services. For example,

Figure 3.1 plots the distribution of end-of-day inpatient censuses for a medium-sized hospital in

the state of Massachusetts over several years. The end-of-day census at the 75th percentile of the

plotted distribution (171) is 14 percent larger than that at the 25th percentile (150). Patients ar-

riving on a day when the hospital sits at the 25th percentile therefore encounter a hospital that can

offer a more generous bundle of per-patient resources than patients who arrive on a 75th percentile

day. In this paper, I exploit this quasi-random variation in resource levels to estimate the marginal

return of scaling a hospital’s per-patient bundle of resources up or down.

Estimates of this marginal return to an increase in per-patient hospital resources are useful for

answering at least two types of economic questions. First, these estimates are directly relevant to

evaluating the efficiency of hospital capacity investment decisions, which is important for policy

analysis of state regulatory (“certificate of need”) restrictions on hospital investment and technology

acquisition. Second, economic theory often makes sharp predictions about how the productivity of

medical care varies across medical providers (e.g. Chandra and Staiger (2007)). Because it exploits
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Figure 3.1: Distribution of end-of-day inpatient census at a medium-sized hospital
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Notes: This figure plots the distribution of the total number of inpatients present at the end of each
day in a medium-sized hospital in Massachusetts from calendar quarter 2002Q4 through calendar
quarter 2009Q2. The dataset used to compute the quantities plotted in this figure are described in
detail in Section 3.3.

within-provider variation in the resource intensity of treatment, my research design can provide

estimates of how the marginal product of additional resources varies across different categories of

providers, which can be used to directly test such theories.

I implement my empirical approach in data covering the universe of emergency department,

outpatient observation, and inpatient stays that occurred in Massachusetts during the years 2003-

2009. These data provide basic information on patient characteristics and detailed information

on the care patients receive during any given stay. I am also able to link these hospital records

to the universe of death certificates for Massachusetts for the years 2002-2009, which permits me

to examine the effect of congestion on post-discharge mortality outcomes. Using these data, I

construct an analysis sample of new hospital arrivals who are experiencing acute coronary illnesses.

I focus on this group of patients because they are a large and important group of patients for whom

the timing of hospital presentation is likely to be approximately random and for whom timely
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receipt of care is important.

To provide a framework for my empirical analysis, I develop a simple structural model that

permits me to clearly state the conditions under which day-to-day variation in hospital census

can be used to identify the effect of resource congestion on patient care and outcomes. The key

assumption is that, after purging variation associated with calendar date and a rich set of hospital-

time fixed effects (in my case, hospital-year, hospital-month, and hospital-day-of-week effects),

the residual variation in hospital census is independent of both: (1) the characteristics of newly

arriving patients; and (2) factors determining the hospital’s staffing choice set. (The importance

of this latter independence assumption has been overlooked in the prior literature using similar

research designs.) I then use my model to derive the main estimating equation used in this paper,

which relates patient care and outcomes to two dimensions of hospital congestion: the patient

census in the hospital’s intensive care unit (ICU); and the patient census outside of the hospital’s

ICU. I parametrize each census measure as a share of its mean for the appropriate hospital-year,

rescaled by the interquartile range of this share in the full sample; a one unit change in these “scaled

census” variables can therefore be interpreted as approximately equivalent to moving from the 25th

to the 75th percentile of demand for hospital resources.

Moving to the results, I first present evidence on the validity of the identifying assumptions. I

demonstrate that shocks to residual hospital census fade rapidly and completely, which is consistent

with the hypothesis that they are driven by high-frequency random variation in patient demand,

rather than low-frequency variation in hospital capacity or patient demand. This is reassuring, as

the presence of variation from either of the latter two sources would likely invalidate the research

design. I next present direct evidence on both aspects of the identifying assumption. In particular,

I demonstrate that the demographic and clinical characteristics of newly arriving patients are

independent of current hospital census. I also show that the total number of scheduled surgeries

done at the hospital and the number of physicians present at the hospital are only very weakly

related to hospital census, which suggests that hospital staffing options are similar on high and low

congestion days.

I then examine the effect of congestion on an arriving patient’s probability of being admitted

to the hospital’s ICU. I find that a one unit change in scaled ICU census reduces the probability

of ICU admission by one percentage point. The reduction in the probability of ICU admission is
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proportionally largest for the least sick patients, which is qualitatively consistent with a model in

which hospitals ration ICU beds by expected clinical benefit. I find no effect of non-ICU census on

the probability of ICU admission, but higher patient census in the rest of the hospital does appear

to very slightly lengthen the duration of a patient’s ICU stay. I also demonstrate that the effect of

rising ICU census on the probability of ICU admission is highly non-linear, as should be expected

given that the hospitals face a hard capacity constraint in the number of ICU beds.

I next investigate how congestion affects procedure receipt, focusing on cardiac catheterization

and percutaneous coronary intervention (PCI), two important procedures for this pouplation of

patients. Focusing on the sub-group of hospitals with full catheterization capabilities, I find that a

one unit increase in scaled ICU census reduces the probability of catheterization and PCI receipt

1-2 days after arrival by one percentage point. Effects on receipt of cardiac catheterization fade

by the time of discharge, but a substantial fraction of the effect on PCI persists. The patients for

whom prompt receipt of catheterization and PCI has the largest returns appear to face smaller (or

no) delays in the receipt of care, once again consistent with efficient rationing. These results are,

however, noisy.

Finally, I examine the effect of congestion on patient health outcomes, specifically, patient

mortality and subsequent hospital admission. I examine both outcomes at horizons of up to one

year. I find no statistically significant evidence that congestion worsens patient outcomes, but I am

unable to rule out effects that would be clinically and economically significant.

A substantial prior literature in medicine and operations research uses related empirical strate-

gies to identify the effect of congestion on patient care and outcomes (Strauss et al., 1986; Selker

et al., 1987; Iapichino et al., 2004; Richardson, 2006; Pines et al., 2006, 2007, 2009; Fee et al., 2007;

Kc and Terwiesch, 2009; Anderson et al., 2011, 2012; Stelfox et al., 2012; Kim et al., 2013; Sun et

al., 2013). In economics, two papers have taken closely-related approaches. Bartel et al. (2011)

use monthly variation in nurse-to-patient ratios to estimate the effect of nurse staffing on patient

outcomes and find that higher nurse staffing levels improve patient outcomes. Freedman (2012)

uses variation in the availability of neonatal intensive care unit (NICU) beds at the time of birth to

estimate the effect of NICU availability on NICU utilization and patient outcomes. He finds that

bed availability has an important effect on the probability of NICU admission for marginal infants

and that the benefits of admission appear to justify the costs.
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Relative to the existing literature, my paper makes four contributions. First, I clarify the

conditions under which empirical strategies of this kind identify the causal effect of congestion

on care and outcomes, and I present detailed evidence on whether those conditions hold in my

setting. In contrast, prior work has neglected to examine whether hospital staffing options are

similar between high and low congestion days. Second, unlike nearly all prior work other than

Bartel et al. (2011) and Freedman (2012), I am able to estimate the effect of congestion in a large

population of hospitals, rather than a single hospital or a small group of hospitals, meaning that

I can obtain more precise and potentially more representative estimates. Third, unlike all prior

contributions except Freedman (2012), I have obtained linked vital records data that permit me to

examine effects of congestion on post-discharge survival outcomes. Finally, my results extend the

literature to a particular group of patients who have not previously been studied in detail.

The paper proceeds as follows. Section 1 describes my clinical setting. Section 2 introduces my

empirical approach and derives my estimating equation. Section 3 describes my data, and Section

4 presents my results. Section 5 discusses and concludes.

3.1 Clinical background

I examine the effect of hospital congestion on patient outcomes in the context of acute manifestations

of coronary artery disease (CAD). These patients can be broken into three basic groups. The first

is those with acute myocardial infarction (AMI) or, colloquially, a heart attack. AMI occurs

when an acute blockage in one of the coronary arteries (the arteries that supply the heart muscle)

causes the death of downstream heart tissue. In this paper, I will sometimes examine two sub-

groups of AMI patients: patients with ST-elevation myocardial infraction (STEMI), so named

for the particular electrocardiogram abnormality that defines this condition; and non-ST-elevation

myocardial infarction (NSTEMI). In general, STEMI patients face a worse prognosis and benefit

the most from aggressive early treatment (O’Gara et al., 2013). The second group is those with

unstable angina, sudden and serious chest pain resulting from an acute blockage of a coronary

artery, but which does not lead to death of the affected heart muscle. Because unstable angina

and AMI share the common underlying cause of an acute blockage of a coronary artery, they are

frequently grouped together under the heading of “acute coronary syndromes” (ACS). The final
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group of patients I examine consists of those presenting at the hospital on an emergency basis with

symptoms of coronary artery disease (typically angina), but who are determined not to be suffering

from a current acute coronary blockage.

One dimension of resource utilization I examine in this paper is admission to a hospital’s in-

tensive care unit (ICU). An intensive care unit is a specialized group of beds in a hospital that

serves the hospital’s sickest patients. ICU beds typically offer more and more highly-trained nurses,

more intensive monitoring technologies, and life-sustaining technologies like ventilators. Many large

hospitals operate multiple ICUs that specialize in different types of patients, typically including

one that specializes in patients with serious cardiac illnesses. Boundaries between specialized ICUs

are porous, however, and patients may be placed in any one of a hospital’s ICUs when capacity

constraints bind. For this reason, I combine all of a hospital’s ICUs together and refer to a single

measure of “ICU census” in this paper.1

I also examine patient receipt of cardiac catheterization procedures. In cardiac catheterization,

a catheter (small tube) is inserted through an incision in the patient’s wrist or groin and then guided

into the patient’s coronary arteries. Once in place, the catheter can be used to inject contrast dye

that is opaque to x-rays, permitting visualization of blood flow through the coronary arteries using

a specialized x-ray camera. If blockages are identified, the physician can then use the catheter to

perform a procedure called angioplasty, in which a small balloon is inflated to compress the blockage

against the walls of the artery. A small wire mesh tube called a stent may also be inserted to keep

the artery from closing up again over time. Angioplasty, stenting, and a small number of related

procedures are collectively referred to as percutaneous coronary intervention (PCI). Catheterization

procedures must be performed in a specialized procedure room known as a cardiac catheterization

lab, which are typically in limited supply.

Contemporary treatment guidelines state that STEMI patients (without a contraindication)

should undergo immediate catheterization, with the goal of performing PCI to clear the blocked

coronary artery (O’Gara et al., 2013). Patients with NSTEMI or unstable angina may also may be

appropriate candidates for early catheterization and PCI (Anderson et al., 2013). The benefits of

catheterization and PCI are much smaller for patients without AMI or unstable angina, although

1As a practical matter, it is also not clear that hospitals consistently distinguish between different ICU types in
the billing records I use to measure ICU utilization.
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it may still relieve symptoms (Fihn et al., 2012).

3.2 Empirical model

This paper seeks to understand how changes in hospitals’ congestion levels affect patient care

and patient outcomes. To clarify the conditions under which the natural experiment I analyze

will provide answers to this causal question, I consider the following simple structural model.

Throughout, let i index patients, h index hospitals, and t index time. I assume that I observe the

treatment or health outcome of interest Yiht, the start-of-period hospital census Nht, and a set of

patient characteristics Xiht for each arriving patient, which in practice includes a full set of age

decile-sex interactions, a set of indicators for comorbid conditions identified using the algorithm of

Elixhauser et al. (1998), and indicators for four primary diagnosis groups (ST-elevation myocardial

infarction, non-ST-elevation myocardial infarction, unstable angina, and other coronary artery

disease). Patient census Nht may be multi-dimensional and, thus, may capture patient census in

multiple distinct parts of the hospital.

Outcomes for patient i arriving at hospital h at time t are determined by the production function

Yiht = g(Nht, Sht, Uiht),

where Sht is an unobserved vector describing the hospital’s current operational capabilities, and Uiht

is an unobserved vector of the arriving patient’s characteristics. The hospital chooses staffing to

maximize some (unspecified) objective function before seeing the characteristics of the new patient

arrivals at time t. This yields a decision rule for Sht of the form

Sht = h(Nht, ε
S
ht),

where εSht is a vector of non-load factors (e.g. vacation schedules) that determine the hospital’s

staffing choice set. This form admits the possibility that the hospital can “staff up” on days where

patient census is high.

To identify the causal effects of interest, I make the following conditional independence assump-

tion:

Nht ⊥⊥ (Uiht, ε
S
ht) | ψt, {φτh×τ(t)}τ∈S , Xiht, (ID)
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where ψt is an unobserved date effect and φτh×τ(t) is an unobserved hospital-time effect for each

τ ∈ S = {year,month,day-of-week}. Assumption ID states that, after conditioning on the date

effect ψt and the hospital time effects {φτh×τ(t)}τ∈S , the remaining variation in patient census Nht

is as good as randomly assigned; in particular, it is independent of the characteristics of the newly-

arriving patient (Uiht) and the non-load factors that affect the hospital’s staffing choice set (εSht).

The first independence restriction rules out the possibility that patients presenting on more

congested days differ systematically from those presenting on less congested days. The second

independence restriction rules out the possibility that the hospital’s staffing options differ between

more and less congested days. Concretely, it rules out the possibility that the availability of

physicians and nurses is different on days when patient census happens to be high. The date effects

ψt allow each different date to have distinct patterns of congestion, patient characteristics, and

hospital capabilities, and the hospital-time effects {φτh×τ(t)}τ∈S allow each hospital to have its own

pattern of evolution over time and its own seasonal and weekly patterns.

Under assumption ID, the regression function E[Yiht|Nht, Xiht, ψt, {φτh×τ(t)}τ∈S ] satisfies

E[Yiht|Nht = n,Xiht, ψt, {φτh×τ(t)}τ∈S ] =

∫
g(n, h(n, εS), u)dF (εS , u|Xiht, ψt, {φτh×τ(t)}τ∈S). (3.1)

The right-hand-side of equation (3.1) is the average outcome that would be obtained by assigning

the hospital the patient census vector n, permitting the hospital to select its optimal staffing level

given that census vector, and then averaging over the distribution of patient types (Uiht) and

hospital staffing choice set shocks (εSht) that occur given observed patient characteristics Xiht and

day characteristics (ψt, {φτh×τ(t)}τ∈S). Thus, under Assumption ID, the regression function on the

left-hand-side answers the causal question of interest.

For the purposes of estimation, I assume that the integral on the right-hand-side of equation (3.1)

can be written in a form such that

E[Yiht|Nht, Xiht, ψt, {φτh×τ(t)}τ∈S ] = α+ Ñ ICU
ht βICU + ÑOIP

ht βOIP +Xihtγ + ψt +
∑
τ∈S

φτh×τ(t), (3.2)

where Ñ ICU
ht and ÑOIP

ht are, respectively, the hospital’s “scaled” ICU and non-ICU inpatient (“other

136



inpatient”) census. For hospital unit k ∈ {ICU,OIP}, this scaled census variable is defined as

Ñk
ht =

Nk
ht/N̄

k
h,year(t)

IQR(Nk
ht/N̄

k
h,year(t))

where Nk
ht is the total number of patients in unit k of hospital h at the start of date t, N̄k

h,year(t)

is the mean number of patients in unit k of hospital h during the year in which t falls, and the

denominator of this equation is the full-sample interquartile range of their ratio. Concretely, this

measure is current unit k census as a share of its hospital-year mean, scaled such that a one unit

change corresponds to moving from the 25th percentile to the 75th percentile in the full-sample

distribution of shares.

The functional form in equation (3.2) is admittedly somewhat restrictive. In particular, this

specification assumes that the effect of congestion on the outcomes of interest is constant across

hospitals and over time. However, Chernozhukov et al. (2010) show that, in settings with a single

fixed effect and a single binary treatment variable, fixed effects specifications of this form will still

estimate a particular weighted average treatment effect even when the true effects are heterogeneous.

While it seems plausible that such results would carry over in some form to this setting, confirming

that is beyond the scope of this paper.

I estimate equation (3.2) using the ordinary least squares fixed effects estimator, and I cluster my

standard errors at the hospital-date level, the level at which the congestion measures vary. Estima-

tion poses two complications, one theoretical and one computational. The theoretical complication

is that fixed effects estimation typically requires a stronger assumption than the contemporane-

ous exogeneity assumption made in Assumption ID.2 The standard stronger assumption is strict

exogeneity, in which the current error term is independent of the regressors for all observations

associated with each fixed effect. In practice, however, Wooldridge (2010) demonstrates that, pro-

vided that contemporaneous exogeneity holds, the asymptotic bias associated with failures of strict

exogeneity is inversely proportional to the number of observations identifying each fixed effect. In

my application, this number will typically be quite large and the bias correspondingly small. I

conclude, therefore, that this is not a substantial concern.

The computational complication is that equation (3.2) contains four high-dimensional fixed

2I thank Seth Freedman for bringing this point to my attention.
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effects. Direct computation of the OLS estimates via a least squares dummy variables approach

would therefore require solving a linear system of very high dimension, which is computationally

infeasible. With a single set of fixed effects, the standard way of addressing this problem is to use a

de-meaning transformation to compute the portion of the variation in the outcomes and regressors

that is orthogonal to the fixed effects. The Frisch-Waugh-Lovell Theorem then implies that the

desired estimates can be obtained from a regression of the de-meaned outcome on the de-meaned

regressors. This method, however, is not directly applicable to models with multiple fixed effects.

To solve this problem, I turn to an algorithm proposed by Gaure (2013). In brief, the algorithm

consists of iteratively de-meaning the outcome and regressors with respect to each set of fixed

effects in sequence until convergence. It can be shown that this algorithm computes the portion

of the variation in the outcome and regressors that is orthogonal to the space spanned by all four

sets of fixed effects. As above, the Frisch-Waugh-Lovell Theorem then implies that the estimates of

interest can be obtained from a regression of the transformed outcome on the transformed regressors.

Additional details on this algorithm and a comparison to other approaches to estimation in the

presence of multiple high-dimensional fixed effects (Abowd et al., 1999, 2002; Carneiro et al., 2012)

are provided in Appendix C.1.

3.3 Data

This analysis draws on data from two sources: (1) records of all emergency department, outpatient

observation, and inpatient hospital stays in Massachusetts during fiscal years 2003-2009; and (2)

the universe of death certificates filed in Massachusetts during the period 2002-2009. In this section,

I first describe the discharge data. I then describe how I construct the analysis sample from these

data. Finally, I describe how I link the discharge data to the death certificates.

3.3.1 Hospital records

I obtained data on the universe of emergency department, outpatient observation, and inpatient

hospital stays in Massachusetts during fiscal years 2003-2009 from the Massachusetts Center for

Health Information and Analysis (formerly the Division of Health Care Finance and Policy).3

3Fiscal years are defined such that year Y starts in October of year Y − 1.
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Each discharge record includes the full set of fields typically present on hospital discharge records,

including ICD-9-CM diagnosis and procedures codes, basic patient characteristics (like age, race,

and insurance status), hospital identifiers,4 a code for the type of discharge (e.g. to another hospital,

to home, or due to death), and a code for the source of the patient’s admission (e.g. home or

another hospital). The emergency department and outpatient observation files also sometimes

report Current Procedural Terminology (CPT) procedure codes in place of or in addition to ICD-

9-CM procedure codes.

The records contain three other types of information that are essential to my analysis but are

not available in all discharge databases. First, each inpatient discharge record reports detailed

billing information for each stay, including UB-92/UB-04 “revenue codes,” charges, and the num-

ber of units for each billed service. Crucially for my purposes, these codes permit computing the

duration of any ICU admission during the hospital stay, as well as whether the patient received

emergency department services prior to admission; the specific codes used are described in Ap-

pendix C.2. Second, all three data sources report the exact dates of patient arrival and discharge,

which permits me to compute hospital census at a daily frequency and to link each arriving patient

to the appropriate measure of congestion. Finally, these data report a unique patient identifier

that is suitable for following patients across encounters (both within and between hospitals). This

unique identifier is an encrypted version of the patient’s Social Security Number and thus is also

suitable for linkage to death certificates as discussed later in this section.

From these data, I identify the diagnoses and procedures of primary interest using the reported

ICD-9-CM and CPT codes. The specific ICD-9-CM and CPT codes used are reported in Ap-

pendix C.2. As noted in the last section, I identify indicators of patient comorbid conditions for

use as control variables using the algorithm proposed by Elixhauser et al. (1998).5 I identify a small

number of additional diagnosis and procedure categories for use in covariate balance tests using

the Clinical Classification Software (CCS) groupings of ICD-9-CM codes defined by the Healthcare

Cost and Utilization Project. Details on the use of CCS codes are reported in Appendix C.2.

4A small number of hospitals report distinct campuses separately for part of the period and jointly for part of
the period. In the interest of consistency over time, I consolidate such hospitals into a single unit for the full period.

5For this purpose, I adapt software posted by the Healthcare Cost and Utilization Project at http://www.hcup-
us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp.
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As described in Section 3.2, the key right-hand-side variables in my main specification are the

hospital’s ICU and non-ICU inpatient censuses at the beginning of the day the patient arrived.

To compute ICU census at each point in time, I start with the universe of inpatient records for

each hospital, and I identify all stays for which the billing records indicate an ICU stay using the

procedure described in Appendix C.2. These billing records also report the length of the ICU stay

measured in days, but, unfortunately, do not report when during the patient’s hospital stay the

ICU stay occurred.6 I thus assume that all of a patient’s ICU days fall at the beginning of the

patient’s hospital stay. Although this assumption is not ideal, there is no alternative given the

available data, and it should be accurate in the sizable majority of cases. As for census in the

rest of the hospital, the hospital’s overall inpatient census at the beginning of each day can be

computed unambiguously from the admission and discharge dates on each discharge record, so I

derive non-ICU patient census by subtraction.

3.3.2 Analysis sample construction

I estimate equation (3.2) in a sample of newly arriving patients with an acute coronary illness.

Specifically, I identify patients with a diagnosis of acute myocardial infarction, unstable angina, or

another diagnosis indicating coronary artery disease. Some of the diagnosis codes used to identify

patients in the latter two groups can also be used for patients being admitted to the hospital

for scheduled procedures (generally PCI or bypass surgery). I thus exclude patient records that

report these codes and show no evidence of interaction with the hospital’s emergency department.

Details of the ICD-9-CM codes used to define each diagnosis group and the method for identifying

admissions through the emergency department are reported in Appendix C.2. Starting with this

basic group of records, I limit the sample in the following ways.

First, I wish to limit the sample to patients for whom hospital arrival represents the beginning

of that treatment “episode”; I do not wish to include transfers from other hospitals. I identify a

6There is one complication in interpreting the length of stay information reported by the billing records. My
calculations require knowing the number of midnights the patient was present in the ICU, but Medicare requires
hospitals to measure ICU length of stay as the arrival day plus the number of subsequent days that the patient is
present at midnight (CMS, 2013), and private insurers appear to follow the Medicare definition. The number of
midnights a patient was present in the ICU is thus ambiguous whenever the reported ICU length of stay is equal to
one. I resolve this ambiguity by assuming that the patient stayed overnight in the ICU unless the patient’s date of
hospital admission and discharge are the same.
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patient as having been transferred into the current hospital if either: (1) the current hospital codes

the patient as having arrived via transfer in the admission source field; or (2) another hospital

coded the patient as being discharged due to transfer on the day of arrival at the current hospital.

Second, in order to focus on hospitals that routinely treat patients with acute coronary illness,

I restrict the sample to those hospitals that see at least two patient arrivals each day by patients

with the diagnoses listed above or a diagnosis of non-cardiac chest pain. This restriction eliminates

16 hospitals from the dataset, approximately half of which are specialty hospitals of various types

and the remainder of which are very small hospitals, many of which do not provide full emergency

services. This restriction reduces the sample size by less than 5 percent.

Third, because stay records are reported to the state on the basis of the date of discharge, the

database will fail to include many arrivals occurring near the end of fiscal year 2009. I thus limit

the sample to arrivals occurring at least 90 days before October 1, 2009. Similarly, I only examine

stays occurring after the start of fiscal year 2003 since any reported admissions from before that

date will be a selected sample of longer stays. There are also a small number of episodes where a

hospital fails to report some or all of its data. I exclude the hospital from the sample for the period

of the reporting failure and for a 90 day window preceding the failure when the failure affects the

hospital’s inpatient records, but only a 30 day window when the failure affects only the hospital’s

emergency department or outpatient observation records. Finally, I exclude two patients whose age

is missing.

Table 3.1 reports basic descriptive statistics for the final analysis sample. Slightly more than

half of the sample is made up of patients who are experiencing an AMI, and most of the rest are

experiencing unstable angina. There are evident day-of-week and seasonal patterns in arrival, which

suggests that the types of patients arriving may vary at these temporal frequencies, justifying the

inclusion of the corresponding hospital-time fixed effects in equation (3.2).

3.3.3 Linkage to vital records

Post-discharge patient survival is the main health outcome of interest in my analyses. I obtain

data on these outcomes by linking the hospital records to Massachusetts death certificates for 2002-

2009. I obtained these records via a request to the Registry of Vital Statistics in the Massachusetts

Department of Public Health.
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Table 3.1: Descriptive statistics for the analysis sample

Mean SD

A. Patient characteristics
Age 69.182 14.485
Female 0.418 0.493
COPD 0.124 0.330
Diabetes 0.310 0.463
Hypertension 0.607 0.488

B. Primary diagnosis
ST-elevation myocardial infarction 0.226 0.418
Non-ST elevation myocardial infarction 0.328 0.470
Unstable angina 0.256 0.436
Other coronary artery disease 0.190 0.392

C. Day of arrival
Sunday 0.125 0.330
Monday 0.160 0.367
Tuesday 0.150 0.357
Wednesday 0.150 0.357
Thursday 0.148 0.355
Friday 0.143 0.350
Saturday 0.124 0.330

D. Quarter of arrival
Quarter 1 0.258 0.438
Quarter 2 0.256 0.436
Quarter 3 0.218 0.413
Quarter 4 0.267 0.442

E. Encounter type
Emergency department 0.129 0.336
Observation admission 0.062 0.240
Inpatient admission 0.809 0.393

F. Treatment characteristics
Admitted to ICU 0.295 0.456

Catheterization 0.360 0.480
PCI 0.185 0.388

Length of stay 3.529 4.442

Transferred before admission 0.084 0.277
Transferred ever 0.256 0.437

N 149,428

Note: This table reports descriptive statistics for the analysis sample of
new hospital arrivals with acute manifestations of coronary artery disease
described in Section 3.3.
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Table 3.2: Effect of hospital congestion on the probability a valid SSN is recorded

Coef./SE on Independent Variables

Dependent variable Mean Scaled ICU census Scaled OIP census

Missing patient SSN 0.0296 -0.0006 0.0005
(0.0004) (0.0006)

N 149,428 149,428 149,428

Note: This table reports the results of estimating equation (3.2) where the outcome is an indicator for
whether the patient SSN is missing. The key independent variables are ICU and non-ICU census at the
start of the day the patient arrived, scaled so that a one unit change can be interpreted as the effect
of moving from the 25th percentile to the 75th percentile in the distribution of proportional deviations
from average census. The regression also includes a full set of age decile-sex interactions, a full set of
Elixhauser comorbidities, indicators for primary diagnosis as described in the text, and date, hospital x
year, hospital x month, and hospital x day-of-week fixed effects. The estimation sample is the sample
of new hospital arrivals with coronary artery disease described in Section 3.3. Standard errors are
clustered at the hospital-date level. Statistical significance is denoted as follows: ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

The linkage of the two data sources was achieved using patient Social Security Numbers (SSNs),

which are present on both data sources. As noted above, the SSNs reported on the hospital

discharge data were encrypted by the Center for Health Information and Analysis before they

were transmitted to me in order to protect patient privacy. To achieve the linkage, therefore, the

Department of Public Health transmitted the the death certificate file directly to a contractor of the

Center for Health Information and Analysis. That contractor encrypted the SSNs, deleted the raw

SSNs from the file, and then transmitted the file with the encrypted identifiers to me for linking.

More than 97 percent of the hospital discharge records in the analysis sample report a valid

(encrypted) SSN and, thus, are eligible for linking. A possible concern is that whether a patient’s

record is included in the 3 percent of records without a valid SSN is a function of hospital congestion,

which could bias my estimates of the effect of congestion on survival. To address this concern, I fit

a version of equation (3.2) that uses an indicator for whether the patient’s SSN was missing as the

outcome. Table 3.2 reports the results; there is no evidence that whether the hospital records an

SSN is an outcome of congestion, meaning that this is unlikely to be a source of bias.

Match quality is high. To evaluate the true positive rate of the match, I follow Zingmond et al.

(2004) and estimate the share of discharge records on which the patient is reported to have died

in the hospital that match a death certificate with a date of death equal to the date of discharge;

I estimate that this share is equal to 93 percent. To evaluate the false match rate, I estimate the
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share of matches in which patient sex as listed on the death certificate and patient sex as listed on

the discharge record disagree; this share is just 0.3 percent.

3.4 Results

3.4.1 Examining the variation in congestion

As discussed in Section 3.2, I aim to identify the effect of hospital congestion on patient care

and outcomes using high-frequency variation in hospital congestion levels. The key identifying

assumption (Assumption ID) states that, after conditioning on date fixed effects, hospital-by-year,

hospital-by-month, and hospital-by-day-of-week fixed effects, the remaining variation in hospital

congestion is as good as randomly assigned. In this subsection, I present evidence supporting this

identifying assumption.

Substantial variation does remain in the hospital congestion measures included in equation (3.2)

after accounting for the fixed effects. The R2 from a regression of scaled ICU census on the fixed

effects in equation (3.2) is just 0.14, while the corresponding figure for scaled non-ICU census

is 0.36. An important question, however, is whether this residual variation is “high-frequency”

variation in patient load that arises from random variation in patient arrivals or “low-frequency”

variation that arises from persistent shifts in hospital capacity or patient demand. Variation of the

latter type is unlikely to satisfy the identifying assumption and, as such, is undesirable. While the

hospital-time effects included in equation (3.2) should purge most low-frequency variation, if they

are not sufficiently rich, some could remain.

To address this question, I examine the persistence of variation in congestion via regressions of

the form

Nk
h,t+s = α+N ICU

ht βICU +NOIP
ht βOIP + ψt +

∑
τ∈S

φτh×τ(t), (3.3)

where Nk
ht is the unscaled census of hospital h at time t in unit k ∈ {ICU,OIP} and s ≥ 0. For

any given value of s and census type k on the left-hand-side, the coefficient βk can be interpreted

as the share of the deviation from normal in hospital unit k at time t that persists s days later.

Figure 3.2 plots the resulting coefficients for each type of hospital census. The evidence is clear

that congestion shocks dissipate quickly and essentially completely, indicating that the residual
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Figure 3.2: Persistence of variation in hospital congestion
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Notes: Panel A of this figure reports the coefficient βICU from estimating equation (3.3) with
N ICU

h,t+s as the outcome for each s ∈ {0, 1, . . . , 30}. Panel B reports the corresponding sequence
of estimated coefficients for non-ICU census. In addition to the variables described in the last
sentence, equation (3.3) includes the other measure of hospital census and date, hospital x year,
hospital x month, and hospital x day-of-week fixed effects. The estimation sample is the sample of
new hospital arrivals with coronary artery disease described in Section 3.3.

variation in congestion is almost entirely “high-frequency” variation as desired.7

I turn now to direct “covariate balance” tests of the identifying assumption. This assumption

has two parts: that the (unobserved) characteristics of arriving patients are independent of residual

variation in congestion; and that hospital staffing options are independent of residual variation in

congestion. To assess the plausibility the first assumption, I estimate versions of equation (3.2) in

which observed patient characteristics are the outcomes (and all patient controls are omitted from

the right-hand-side). If congestion appears independent of a rich set of observed characteristics

of arriving patients, then it is reasonable to believe that congestion is independent of unobserved

patient characteristics as well. Table 3.3 presents the results of these analyses. Panel A shows

that the basic demographics and clinical characteristics of arriving patients are not associated with

7A small portion of the shock to non-ICU census does persist 30 days later. However, I have verified in a simple
model that even under the assumption that arrivals are completely independent from day to day, persistence of this
magnitude is to be expected, essentially because the length-of-stay distribution has a very long right tail.
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congestion, and panel B shows that summary indices obtained by using the full set of patient co-

variates included in equation (3.2) to predict various treatment and health outcomes of interest are

also unrelated to congestion.8 Panel C shows that patients arriving on high and low congestion

days do not differ in their utilization of hospital care over the last year. Panel D presents evidence

on whether hospitals are turning patients away when patient census is high, which could be prob-

lematic if certain types of patients are more likely to be rejected than others; I find no evidence of

patient diversion. Given the precision of the reported estimates, I conclude that the results permit

reasonable confidence that patients arriving on days on which hospital census is high are similar to

those arriving on other days.

I turn next to evaluating whether the hospital’s staffing choice set is similar on congested

days relative to less-congested days. This assumption is difficult to test, as it does not rule out

hospitals altering staffing in response to patient census, which means that observed indicators of

hospital staffing may differ across high and low census days even if the assumption holds. Rather,

it is inherently about the hospital’s menu of staffing options remains constant when congestion

changes.

With this important caveat in mind, I examine the effect of congestion on two proxies for hospital

staffing options. First, I examine whether the hospital’s slate of scheduled procedures appears

to differ between high and low-census days, which provides an indicator of its general staffing

configuration and operational state. Concretely, I compute for each day the number of patients

admitted that day who undergo several common procedures that typically occur on a scheduled

basis, and I divide that number by the typical number of such arrivals during that hospital-year; to

avoid division by zero, I exclude hospital-years in which a hospital did none of the listed procedure.

I then run a version of equation (3.2) with these volume measures on the left-hand-side (omitting

patient covariates). Table 3.4 reports the results.9 I find that when scaled ICU census increases

by one unit, hospitals’ hysterectomy volume appears to be approximately 3 percent higher, while

when scaled non-ICU census increase by one unit, orthopedic volume and cholecystectomy volume

8The creation of summary indices of this form follows Baicker et al. (2006) and Chandra and Staiger (2007).

9To interpret these results, recall that, as described in Section 3.2, the scaled census variables are defined to be
the relevant census measure as a share of mean census in that hospital-year, scaled by the interquartile range of this
share in the full dataset. A one unit change in this variable is, therefore, roughly analogous to a change in this share
from the 25th to the 75th percentile.
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Table 3.3: Balance on patient characteristics

Coef./SE on Independent Variables

Dependent variable Mean Scaled ICU census Scaled OIP census

A. Demographics and comorbidities (N = 149,428)

Age 69.1821 -0.0068 -0.0209
(0.0414) (0.0549)

Female 0.4182 -0.0026 0.0017
(0.0014) (0.0019)

COPD 0.1244 -0.0011 -0.0023
(0.0009) (0.0013)

Diabetes 0.3102 0.0012 -0.0026
(0.0013) (0.0017)

Hypertension 0.6071 -0.0007 0.0009
(0.0014) (0.0019)

B. Summary predictive indices (N = 149,428)

ICU admission 0.2900 0.0000 -0.0002
(0.0004) (0.0006)

Catheterization 0.3542 0.0003 0.0001
(0.0004) (0.0005)

One-year mortality 0.1626 -0.0004 -0.0002
(0.0004) (0.0006)

C. Prior-year utilization (N = 119,311)

Any inpatient stay 0.3904 0.0009 -0.0004
(0.0015) (0.0021)

Number of inpatient stays 0.9508 0.0044 -0.0081
(0.0059) (0.0078)

Any hospital encounter 0.5503 0.0017 -0.0010
(0.0016) (0.0021)

Number of hospital encounters 1.8710 0.0231 -0.0111
(0.0126) (0.0169)

D. Arrival cohort size (N = 149,428)

Arrival cohort size 2.5153 -0.0066 -0.0081
(0.0054) (0.0100)

Note: This table reports the results of estimating equation (3.2) with the listed outcome, omitting
covariates. The comorbidity indicators are described in Appendix C.2. The summary predictive indices
are predicted values from a logit regression of the listed outcome on the patient covariates included in
equation (3.2). The independent variables are ICU and non-ICU census at the start of the day the
patient arrived, scaled so that a one unit change can be interpreted as the effect of moving from the 25th
percentile to the 75th percentile in the distribution of proportional deviations from average census. The
regression also includes date, hospital x year, hospital x month, and hospital x day-of-week fixed effects.
The estimation sample is the sample of new hospital arrivals with coronary artery disease described in
Section 3.3. Standard errors are clustered at the hospital-date level. Statistical significance is denoted as
follows: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.4: Balance on scheduled procedure volume

Coef./SE on Independent Variables

Dependent variable Scaled ICU census Scaled OIP census N

Hip and knee procedures -0.0032 -0.0250∗∗ 149,428
(0.0059) (0.0077)

Spine surgery -0.0482 0.0012 135,991
(0.0274) (0.0221)

Hysterectomy 0.0298∗ -0.0122 148,438
(0.0127) (0.0204)

Cholecystectomy -0.0027 -0.0364∗∗ 149,428
(0.0086) (0.0120)

Note: This table reports the results of estimating equation (3.2) with the listed outcome, omitting
covariates. The dependent variables are the total volume of the listed procedure performed that day on
newly-arriving patients, scaled by the hospital-year mean volume. Hospitals with no volume of the listed
procedure during the hospital-year are excluded. The key independent variables are ICU and non-ICU
census at the start of the day the patient arrived, scaled so that a one unit change can be interpreted as
the effect of moving from the 25th percentile to the 75th percentile in the distribution of proportional
deviations from average census. The regression also includes date, hospital x year, hospital x month,
and hospital x day-of-week fixed effects. The estimation sample is the sample of new hospital arrivals
with coronary artery disease described in Section 3.3. Standard errors are clustered at the hospital-date
level. Statistical significance is denoted as follows: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

appear to be lower to a similar extent. The other coefficients are statistically insignificant. For

the reasons discussed above, it is not clear whether even the statistically significant coefficients

necessarily imply violations of the identifying assumption. Given that the effects of census on

scheduled surgery volume are small, however, I conclude that any violations of the identifying

assumption are small and unlikely to meaningfully affect the conclusions of this analysis.

Table 3.5 reports similar balance tests where the left-hand-side variables are measures of the

hospital’s current physician complement. Panel A reports results where the left-hand-side variables

are, respectively, the number of distinct physician identifiers listed on emergency department en-

counters starting that day, the number of distinct physician identifiers listed as attending physicians

for inpatient admissions starting that day, and the number of distinct physician identifiers listed as

operating physicians for inpatient admissions starting that day; I scale each by the average number

of each type of physician identifier appearing each day. Panel B reports results where the left-hand-

side variables are the total number of times that each physician identifier that is present that day
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appears over the course of the year. The results indicate that the total number of distinct physicians

appearing on the inpatient records of arriving patients is very slightly smaller when census is high

than when it is low, and the physicians present seem to have a slightly different experience profile.

Of course, the results pose the same interpretation problems as those presented in Table 3.4; they

could be an outcome of high census if hospitals cancel various scheduled admissions when beds are

tight. Suggestive evidence for this theory is that emergency department staffing, which should not

be subject to such pressures, does not appear to vary with inpatient census. In any case, I take

comfort in the fact that the estimated effects are small and conclude, as above, that these results

suggest that any failure of the identifying assumption that does exist is small.

3.4.2 Effects on patient treatment

In this subsection, I examine how hospital congestion affects patient treatment. Before proceeding

to the main results, however, I note that it will frequently be desirable to examine whether patients

with illnesses of differing severity are affected differently by congestion. The most natural way to

examine such questions is to estimate specifications separately by the diagnosis patients receive.

Such an approach is only valid, however, if diagnosis is not itself an outcome of congestion. To rule

out this possibility, I estimate a version of equation (3.2) in which the indicators for the patients’

diagnosis are placed on the left-hand-side as outcomes rather than included on the right-hand-side

as controls. Table 3.6 reports the results. There is no evidence that patients’ final diagnosis is

itself a function of congestion, so I conclude that subgroup analyses that stratify based on patient

diagnosis will give valid and interpretable results.10

I first examine how patients’ initial routing depends on hospital census. As I will throughout

the results, I separately examine effects on patient care at hospitals that can provide a full range

of care for patients with acute coronary illness – particularly 24-hour catheterization services – and

those that cannot. I identify full-service hospitals empirically as those that transfer less than 10

percent of patients who arrive at that hospital with acute myocardial infarction or unstable angina.

In practice, nearly all hospitals have transfer shares close to zero or close to 50 percent, so the

classification of hospitals into the two categories is quite insensitive to the precise threshold used.

10Similarly, these results indicate that including indicators for patient diagnosis as control variables in equa-
tion (3.2) is acceptable.
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Table 3.5: Balance on hospital staffing

Coef./SE on Independent Variables

Dependent variable Mean Scaled ICU census Scaled OIP census

A. Scaled number of physicians present
Emergency department 1.0039 -0.0013 0.0017

(0.0007) (0.0009)

Inpatient attending 1.0342 -0.0029∗∗ -0.0057∗∗

(0.0009) (0.0018)

Inpatient operating 1.0384 -0.0044∗∗∗ -0.0080∗∗∗

(0.0013) (0.0022)

B. Average annual volume of physicians present
Emergency department 2663.2 -1.8 -3.2

(1.8) (2.5)

Inpatient attending 237.8 -0.1 -1.2∗∗∗

(0.2) (0.3)

Inpatient operating 145.7 0.2 0.4∗

(0.1) (0.2)

N 149,428 149,428 149,428

Note: This table reports the results of estimating equation (3.2) with the listed outcome, omitting
covariates. In panel A, the dependent variables are, respectively, the total number of distinct physicians
listed on emergency department encounters starting that day, listed as attending physicians on inpatient
stays staring that day, or listed as operating physicians on inpatient stays starting that day, each scaled
by the relevant hospital-year mean. In panel B, the dependent variables are, respectively, the average
annual number of emergency department records on which each present emergency department physician
appears, the average number of inpatient records on which each present attending physician appears,
and the average number of inpatient records on which each present operating physician appears. The
key independent variables are ICU and non-ICU census at the start of the day the patient arrived, scaled
so that a one unit change can be interpreted as the effect of moving from the 25th percentile to the 75th
percentile in the distribution of proportional deviations from average census. The regression also includes
date, hospital x year, hospital x month, and hospital x day-of-week fixed effects. The estimation sample
is the sample of new hospital arrivals with coronary artery disease described in Section 3.3. Standard
errors are clustered at the hospital-date level. Statistical significance is denoted as follows: ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.6: Effect of hospital congestion on patient diagnosis

Coef./SE on Independent Variables

Dependent variable Mean Scaled ICU census Scaled OIP census

ST-elevation myocardial infarction 0.2260 0.0006 0.0009
(0.0012) (0.0016)

Non-ST elevation myocardial infarction 0.3282 0.0001 -0.0007
(0.0012) (0.0017)

Unstable angina 0.2560 -0.0004 -0.0013
(0.0012) (0.0017)

Other coronary artery disease 0.1898 -0.0002 0.0012
(0.0011) (0.0015)

N 149,428 149,428 149,428

Note: This table reports the results of estimating equation (3.2) where the outcome is an indicator for
whether the patient SSN is missing. The key independent variables are ICU and non-ICU census at the
start of the day the patient arrived, scaled so that a one unit change can be interpreted as the effect
of moving from the 25th percentile to the 75th percentile in the distribution of proportional deviations
from average census. The regression also includes a full set of age decile-sex interactions, a full set
of Elixhauser comorbidities, and date, hospital x year, hospital x month, and hospital x day-of-week
fixed effects. The estimation sample is the sample of new hospital arrivals with coronary artery disease
described in Section 3.3. Standard errors are clustered at the hospital-date level. Statistical significance
is denoted as follows: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.7 reports the results;11 it appears that patients are slightly less likely to be admitted

to the hospital when ICU census is high, but this effect is quite small. The point estimate for

non-ICU census is similar, but insignificant. Precisely where the non-admitted patients are sent

instead is unclear. All in all, however, these effects are very small, and unlikely to have meaningful

consequences for patient care.

I next examine where patients are cared for once admitted to the hospital. Unsurprisingly,

when scaled ICU census increases by one unit, patients are approximately 1 percentage point less

likely to be admitted to the hospital’s intensive care unit, and the total number of ICU days is

commensurately lower. Subject to the limits of precision, this estimate appears similar across low

and high-transfer hospitals. By contrast, ICU census appears to have little effect on either how

long the patient ultimately remains in the hospital or whether the patient is transferred to another

hospital during the stay. Census in the rest of the hospital seems to have little effect on care, except

that it seems to very modestly lengthen stays in the hospital’s ICU, likely a reflection of the fact

that when beds are at a premium in the rest of the hospital, the hospital’s best option is sometimes

to hold patients in the ICU longer.

In light of the modest, but meaningful effects on the probability of ICU admission found above,

it is interesting to examine which patients are being rationed out of the ICU. Table 3.9 reports re-

sults for the same set of outcomes, broken down by three patient groups: patients with ST-elevation

myocardial infarction (STEMI), non-STEMI acute coronary syndrome patients, and patients ex-

periencing manifestations of coronary artery disease that do not qualify as an acute coronary

syndrome. Judged as a share of the baseline probability of ICU admission for each group, the

reduction in the probability of ICU admission rises as patients become less sick, and the difference

between the STEMI patients and the non-ACS patients is nearly statistically significant. This

pattern of results is at least qualitatively consistent with a model in which hospitals are rationing

ICU beds in accordance with illness severity (and, presumably, expected clinical benefit).

11One feature of Table 3.7 merits additional comment. Comparing the estimates for the full sample to the
estimates in the two hospital sub-samples demonstrates that the full sample estimates are not simply sample-size-
weighted averages of the coefficients in the sub-samples; the full sample estimate is much closer to the estimate for
the high-transfer hospitals. The main reason for this is that the average effect estimated by a pooled regression is
weighted by both the relative sample sizes and the amount of residual variance in the treatment variable in the two
samples (see, for example, Angrist and Pischke (2009)). Because the low-transfer hospitals are typically larger, the
residual variance in the scaled census is smaller for these hospitals, and so the estimated effect for the low-transfer
hospitals receives considerably lower weight in the pooled estimate.
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Figure 3.3: Non-linearity in the effect of ICU congestion on ICU admission probability
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Notes: This figure reports the results of estimating equation (3.2) with scaled ICU census replaced
by indicators for each octile of scaled ICU census and where the outcome is an indicator for ICU
admission. The coefficient on each octile indicator is plotted at the average ratio of ICU census to
hospital-year mean ICU census in that octile. Error bars depict 90 percent confidence intervals for
the indicators; failure of confidence intervals for two estimated coefficients to overlap corresponds
approximately to rejection of the hypothesis that they are the same at the 5 percent level. The
regression includes a full set of age decile-sex interactions, a full set of Elixhauser comorbidities,
indicators for primary diagnosis as described in the text, and date, hospital x year, hospital x
month, and hospital x day-of-week fixed effects. The underlying sample is the sample of new hospital
arrivals with coronary artery disease described in Section 3.3. Standard errors are clustered at the
hospital-date level.

A check on whether these results do indeed represent a casual effect of congestion on ICU

admission is whether they rise non-linearly with ICU census. At low levels of ICU census, where

the ICU capacity constraint does not bind, the probability of ICU admission should be reasonably

insensitive to changes in patient census, while the probability of admission should become highly

sensitive to ICU census at higher census levels. To test this assumption, I estimate a version of

equation (3.2) in which the scaled ICU census variable is replaced with indicator variables for octiles

of scaled ICU census. Figure 3.3 plots the results and indicates that the responsiveness of the ICU

admission probability does indeed demonstrate the predicted non-linear pattern.
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I next examine the effect of congestion on the procedures patients undergo, specifically car-

diac catheterization and PCI. Table 3.10 reports these results. There do appear to be effects on

treatment receipt. These effects are apparently confined to the low-transfer hospitals, which is un-

surprising since the catheterization capabilities of the high-transfer hospitals are generally limited

or non-existent. Focusing on the low-transfer hospitals, a one unit increase in scaled ICU census

appears to reduce the probability of catheterization and PCI by the first or second day of the stay

by approximately one percentage point. For catheterization, this effect appears to fade out by

discharge, while for PCI most of the effect remains at discharge. There is no statistically significant

evidence that non-ICU census has an effect on treatment receipt, although the relevant coefficients

are frequently negative.

Once again, to gain more insight into these effects, I break them down by patient diagnosis,

focusing solely on low-transfer hospitals since these are the only hospitals for which there is evidence

of an effect of congestion on utilization. Table 3.11 reports the results. For STEMI patients, there is

no evidence that high ICU census reduces the probability of catheterization or PCI receipt; indeed

the point estimates for this group of patients are generally positive. Rather, the effect of high ICU

census appear concentrated among less ill patients. For the non-STEMI acute coronary syndrome

patients, a one unit increase in scaled ICU census at arrival reduces the probability of PCI and

catheterization early in the hospitalization by approximately one percentage point, although these

effects largely fade by discharge. There is also suggestive evidence that high ICU census reduces

catheterization and PCI receipt for the non-ACS patients, and these effects appear durable. Because

prompt PCI is considered to be extremely important for STEMI patients, while timeliness of PCI

is considered relatively less important for other ACS and non-ACS patients, these results appear

consistent with rationing according to expected clinical benefit. As before, there is no evidence

that non-ICU census has an effect on treatment receipt.

3.4.3 Effects on patient outcomes

I turn finally to evaluating the effects of congestion on two types of patient health outcomes: patient

mortality risk and a composite outcome of mortality or subsequent hospital admission.12 I evaluate

12Note that a subsequent admission might not technically be a “readmission” since some of the patients included in
this sample are never admitted initially and instead seen only in a the hospital’s emergency department or observation
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these outcomes at horizons of 30, 90, 180, and 365 days after hospital arrival. Due to the required

post-arrival follow-up period, the sample sizes are modestly smaller for these analyses.13,14

Table 3.12 reports the effect of congestion on patient outcomes for the full sample and for the

two hospital sub-samples previously examined. There is no evidence of an effect of either congestion

measure on mortality in the full sample. Due to limited precision, however, I cannot rule out the

hypothesis that a one unit change in the census measures has an effect on mortality on the order of

0.2-0.3 percentage points, an effect that would be clinically and economically meaningful. For the

composite outcome of mortality and hospital admission, on the other hand, the point estimates are

generally negative and, as a result, I can come close to ruling out the hypothesis that congestion

leads to clinically and economically meaningful degradation in patient outcomes. Overall, however,

the most reasonable conclusion is that these analyses are underpowered for the health outcomes of

interest.

In light of the evidence from the last subsection that the pattern of changes in procedure receipt

varies with patient diagnosis at low-transfer hospitals, Table 3.13 breaks down the outcome results

by patient diagnosis at low-transfer hospitals. There is no statistically significant evidence that

either measure of hospital congestion affects patient outcomes, but the estimates are quite imprecise.

Furthermore, even though the point estimates for the effect of both congestion measures are almost

uniformly negative, in essentially all cases, I cannot exclude the hypothesis that congestion leads to

increases in mortality or hospital admission that would be clinically and economically meaningful.

I conclude once again, therefore, that these analyses do not have sufficient power to reach firm

conclusions about the effect of congestion on health outcomes.

unit.

13In particular, as described previously, I only observe hospital discharges occurring in 2009Q3 or earlier. I
therefore only treat my database of hospital admissions as being complete for admissions occurring in 2009Q2 or
earlier. A 365-day follow-up window with respect to admission outcomes is therefore only possible for admission
occurring in 2008Q2 or earlier. Note that because death certificates are available through the end of 2009, observing
mortality outcomes is not the binding constraint.

14I also exclude patient records that do not report a valid SSN.

160



T
a
b

le
3
.1

2
:

E
ff

e
c
t

o
f

c
o
n

g
e
st

io
n

o
n

p
a
ti

e
n
t

o
u

tc
o
m

e
s

a
t

v
a
ri

o
u

s
ti

m
e

h
o
ri

z
o
n

s
b
y

h
o
sp

it
a
l

ty
p

e

C
o
lu

m
n

:
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)

H
o
sp

it
a
l

sa
m

p
le

:
A

ll
h

os
p

it
al

s
L

ow
-t

ra
n
sf

er
h

os
p

it
al

s
H

ig
h

-t
ra

n
sf

er
h

os
p

it
al

s

In
d

ep
en

d
en

t
va

ri
ab

le
In

d
ep

en
d

en
t

va
ri

ab
le

In
d

ep
en

d
en

t
va

ri
ab

le

D
e
p

e
n

d
e
n
t

v
a
ri

a
b

le
M

ea
n

IC
U

ce
n

s.
O

IP
ce

n
s.

M
ea

n
IC

U
ce

n
s.

O
IP

ce
n

s.
M

ea
n

IC
U

ce
n

s.
O

IP
ce

n
s.

A
.

P
a
ti

e
n
t

d
e
a
th

b
y
.
.
.

30
d

ay
s

0
.0

73
9

0.
00

0
7

-0
.0

00
1

0.
06

06
-0

.0
01

2
0.

00
08

0.
08

16
0.

00
09

-0
.0

00
2

(0
.0

0
0
8)

(0
.0

01
0)

(0
.0

02
1)

(0
.0

02
3)

(0
.0

00
9)

(0
.0

01
2)

9
0

d
ay

s
0
.1

04
7

0.
00

0
2

-0
.0

00
9

0.
08

69
-0

.0
02

5
-0

.0
00

2
0.

11
52

0.
00

05
-0

.0
00

9
(0

.0
0
0
9)

(0
.0

01
2)

(0
.0

02
4)

(0
.0

02
7)

(0
.0

01
0)

(0
.0

01
3)

1
80

d
ay

s
0
.1

3
12

0
.0

00
5

0.
00

01
0.

11
02

-0
.0

02
6

0.
00

02
0.

14
35

0.
00

10
0.

00
05

(0
.0

0
1
0)

(0
.0

01
3)

(0
.0

02
6)

(0
.0

03
0)

(0
.0

01
1)

(0
.0

01
5)

3
65

d
ay

s
0
.1

6
98

0
.0

00
2

0.
00

02
0.

14
44

0.
00

03
0.

00
02

0.
18

46
0.

00
05

0.
00

07
(0

.0
0
1
1)

(0
.0

01
4)

(0
.0

02
9)

(0
.0

03
4)

(0
.0

01
2)

(0
.0

01
6)

B
.

P
a
ti

e
n
t

d
e
a
th

o
r

h
o
sp

it
a
l

a
d

m
is

si
o
n

b
y
.
.
.

3
0

d
ay

s
0
.2

48
4

-0
.0

0
06

-0
.0

01
6

0.
23

49
-0

.0
06

7
-0

.0
05

1
0.

25
63

-0
.0

00
1

-0
.0

00
9

(0
.0

0
1
3)

(0
.0

01
8)

(0
.0

03
7)

(0
.0

04
2)

(0
.0

01
4)

(0
.0

02
0)

9
0

d
ay

s
0
.4

15
0

-0
.0

0
28

-0
.0

02
8

0.
39

26
-0

.0
08

1
∗

-0
.0

00
4

0.
42

81
-0

.0
02

2
-0

.0
03

1
(0

.0
0
1
5)

(0
.0

02
0)

(0
.0

04
1)

(0
.0

04
8)

(0
.0

01
6)

(0
.0

02
2)

1
80

d
ay

s
0
.5

3
01

-0
.0

01
9

-0
.0

02
6

0.
50

61
-0

.0
07

9
0.

00
03

0.
54

41
-0

.0
01

2
-0

.0
03

2
(0

.0
0
1
5)

(0
.0

02
0)

(0
.0

04
2)

(0
.0

04
9)

(0
.0

01
6)

(0
.0

02
2)

3
65

d
ay

s
0
.6

5
41

-0
.0

02
5

-0
.0

00
8

0.
62

92
-0

.0
03

5
0.

00
55

0.
66

87
-0

.0
02

2
-0

.0
01

8
(0

.0
0
1
4)

(0
.0

01
9)

(0
.0

04
1)

(0
.0

04
6)

(0
.0

01
5)

(0
.0

02
1)

N
12

6
,7

39
1
2
6,

73
9

12
6,

73
9

46
,6

92
46

,6
92

46
,6

92
80

,0
47

80
,0

47
80

,0
47

N
ot

e:
T

h
is

ta
b

le
re

p
or

ts
th

e
re

su
lt

s
of

es
ti

m
at

in
g

eq
u

a
ti

o
n

(3
.2

)
w

it
h

th
e

li
st

ed
o
u

tc
o
m

e
in

th
e

li
st

ed
h

o
sp

it
a
l

sa
m

p
le

.
L

ow
-t

ra
n

sf
er

h
o
sp

it
a
ls

a
re

th
os

e
th

at
tr

an
sf

er
(a

t
an

y
p

oi
n
t

af
te

r
ar

ri
va

l)
le

ss
th

a
n

1
0

p
er

ce
n
t

o
f

th
ei

r
a
cu

te
co

ro
n

a
ry

sy
n

d
ro

m
e

p
a
ti

en
ts

.
T

h
e

ke
y

in
d

ep
en

d
en

t
va

ri
a
b

le
s

a
re

IC
U

an
d

n
on

-I
C

U
ce

n
su

s
at

th
e

st
ar

t
of

th
e

d
ay

th
e

p
a
ti

en
t

a
rr

iv
ed

,
sc

a
le

d
so

th
a
t

a
o
n

e
u

n
it

ch
a
n

g
e

ca
n

b
e

in
te

rp
re

te
d

a
s

th
e

eff
ec

t
o
f

m
ov

in
g

fr
om

th
e

25
th

p
er

ce
n
ti

le
to

th
e

75
th

p
er

ce
n
ti

le
in

th
e

d
is

tr
ib

u
ti

o
n

o
f

p
ro

p
o
rt

io
n

a
l

d
ev

ia
ti

o
n
s

fr
o
m

av
er

a
g
e

ce
n

su
s.

T
h

e
re

g
re

ss
io

n
a
ls

o
in

cl
u

d
es

a
fu

ll
se

t
of

ag
e

d
ec

il
e-

se
x

in
te

ra
ct

io
n

s,
a

fu
ll

se
t

o
f

E
li

x
h

a
u

se
r

co
m

o
rb

id
it

ie
s,

in
d

ic
a
to

rs
fo

r
p
ri

m
a
ry

d
ia

g
n

o
si

s
a
s

d
es

cr
ib

ed
in

th
e

te
x
t,

a
n

d
d

a
te

,
h

os
p

it
al

x
ye

ar
,

h
os

p
it

al
x

m
on

th
,

an
d

h
os

p
it

a
l

x
d

ay
-o

f-
w

ee
k

fi
x
ed

eff
ec

ts
.

T
h

e
u

n
d

er
ly

in
g

sa
m

p
le

is
th

e
sa

m
p

le
o
f

n
ew

h
o
sp

it
a
l

a
rr

iv
a
ls

w
it

h
co

ro
n

ar
y

ar
te

ry
d

is
ea

se
d

es
cr

ib
ed

in
S

ec
ti

on
3
.3

.
S

ta
n

d
a
rd

er
ro

rs
a
re

cl
u

st
er

ed
a
t

th
e

h
o
sp

it
a
l-

d
a
te

le
v
el

.
S

ta
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

is
d

en
o
te

d
a
s

fo
ll

ow
s:
∗
p
<

0.
05

,
∗∗
p
<

0
.0

1,
∗∗
∗
p
<

0.
00

1.

161



T
a
b

le
3
.1

3
:

E
ff

e
c
t

o
f

c
o
n

g
e
st

io
n

o
n

p
a
ti

e
n
t

o
u

tc
o
m

e
s

a
t

lo
w

-t
ra

n
sf

e
r

h
o
sp

it
a
ls

b
y

p
a
ti

e
n
t

ty
p

e

C
o
lu

m
n

:
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)

P
ri

m
a
ry

d
ia

g
n

o
si

s:
S

T
-e

le
va

ti
on

M
I

N
on

-S
T

E
M

I
A

C
S

O
th

er
co

ro
n

ar
y

ar
te

ry
d

is
ea

se

In
d

ep
en

d
en

t
va

ri
ab

le
In

d
ep

en
d

en
t

va
ri

ab
le

In
d

ep
en

d
en

t
va

ri
ab

le

D
e
p

e
n

d
e
n
t

v
a
ri

a
b

le
M

ea
n

IC
U

ce
n

s.
O

IP
ce

n
s.

M
ea

n
IC

U
ce

n
s.

O
IP

ce
n

s.
M

ea
n

IC
U

ce
n

s.
O

IP
ce

n
s.

A
.

P
a
ti

e
n
t

d
e
a
th

b
y
.
.
.

30
d

ay
s

0.
14

0
3

0
.0

0
05

0.
00

88
0.

05
10

-0
.0

03
9

0.
00

13
0.

01
63

0.
00

12
0.

00
26

(0
.0

0
8
1)

(0
.0

09
2)

(0
.0

02
5)

(0
.0

02
8)

(0
.0

02
9)

(0
.0

03
5)

90
d

ay
s

0.
16

3
7

-0
.0

03
5

0.
00

13
0.

08
14

-0
.0

04
7

0.
00

05
0.

03
24

-0
.0

01
4

0.
00

30
(0

.0
0
8
4)

(0
.0

09
8)

(0
.0

02
9)

(0
.0

03
3)

(0
.0

04
3)

(0
.0

04
7)

18
0

d
ay

s
0.

18
1
5

-0
.0

01
9

-0
.0

00
7

0.
10

74
-0

.0
04

6
0.

00
10

0.
05

26
-0

.0
07

2
0.

00
29

(0
.0

0
8
6)

(0
.0

10
0)

(0
.0

03
3)

(0
.0

03
8)

(0
.0

05
2)

(0
.0

06
2)

36
5

d
ay

s
0.

20
4
3

-0
.0

00
5

0.
00

14
0.

14
65

-0
.0

02
7

0.
00

10
0.

08
21

0.
00

33
0.

00
06

(0
.0

0
8
9)

(0
.0

10
2)

(0
.0

03
7)

(0
.0

04
3)

(0
.0

06
2)

(0
.0

07
6)

B
.

P
a
ti

e
n
t

d
e
a
th

o
r

h
o
sp

it
a
l

a
d

m
is

si
o
n

b
y
.
.
.

30
d

ay
s

0.
28

6
2

-0
.0

15
3

0.
00

71
0.

22
73

-0
.0

07
4

-0
.0

03
0

0.
21

10
0.

00
14

-0
.0

16
8

(0
.0

1
0
8)

(0
.0

12
2)

(0
.0

04
7)

(0
.0

05
3)

(0
.0

09
3)

(0
.0

11
5)

90
d

ay
s

0.
40

8
4

-0
.0

11
7

-0
.0

12
0

0.
39

20
-0

.0
09

1
0.

00
68

0.
37

99
-0

.0
00

3
-0

.0
05

5
(0

.0
1
1
4)

(0
.0

12
9)

(0
.0

05
3)

(0
.0

06
1)

(0
.0

10
9)

(0
.0

13
4)

18
0

d
ay

s
0.

49
6
2

-0
.0

06
8

-0
.0

14
7

0.
51

07
-0

.0
09

5
0.

00
66

0.
50

10
-0

.0
08

6
-0

.0
08

4
(0

.0
1
1
5)

(0
.0

13
0)

(0
.0

05
4)

(0
.0

06
2)

(0
.0

11
1)

(0
.0

13
5)

36
5

d
ay

s
0.

59
4
9

-0
.0

06
3

-0
.0

13
9

0.
63

58
-0

.0
04

9
0.

01
04

0.
64

03
-0

.0
01

8
-0

.0
00

5
(0

.0
1
1
2)

(0
.0

13
0)

(0
.0

05
2)

(0
.0

05
8)

(0
.0

10
6)

(0
.0

13
0)

N
8
,6

06
8
,6

0
6

8,
60

6
28

,8
26

28
,8

26
28

,8
26

9,
26

0
9,

26
0

9,
26

0

N
ot

e:
T

h
is

ta
b

le
re

p
or

ts
th

e
re

su
lt

s
of

es
ti

m
at

in
g

eq
u

a
ti

o
n

(3
.2

)
w

it
h

th
e

li
st

ed
o
u

tc
o
m

e
fo

r
p

a
ti

en
ts

w
it

h
th

e
li

st
ed

p
ri

m
a
ry

d
ia

g
n

o
si

s,
w

it
h

th
e

sa
m

p
le

li
m

it
ed

to
h

os
p

it
al

s
th

at
tr

an
sf

er
(a

t
a
n
y

p
o
in

t
a
ft

er
a
rr

iv
a
l)

le
ss

th
a
n

1
0

p
er

ce
n
t

o
f

th
ei

r
a
cu

te
co

ro
n

a
ry

sy
n

d
ro

m
e

p
a
ti

en
ts

.
T

h
e

ke
y

in
d

ep
en

d
en

t
va

ri
ab

le
s

ar
e

IC
U

an
d

n
on

-I
C

U
ce

n
su

s
a
t

th
e

st
a
rt

o
f

th
e

d
ay

th
e

p
a
ti

en
t

a
rr

iv
ed

,
sc

a
le

d
so

th
a
t

a
o
n

e
u

n
it

ch
a
n

g
e

ca
n

b
e

in
te

rp
re

te
d

a
s

th
e

eff
ec

t
of

m
ov

in
g

fr
om

th
e

25
th

p
er

ce
n
ti

le
to

th
e

7
5
th

p
er

ce
n
ti

le
in

th
e

d
is

tr
ib

u
ti

o
n

o
f

p
ro

p
o
rt

io
n

a
l
d

ev
ia

ti
o
n

s
fr

o
m

av
er

a
g
e

ce
n

su
s.

T
h

e
re

g
re

ss
io

n
al

so
in

cl
u

d
es

a
fu

ll
se

t
of

ag
e

d
ec

il
e-

se
x

in
te

ra
ct

io
n

s,
a

fu
ll

se
t

o
f

E
li

x
h

a
u

se
r

co
m

o
rb

id
it

ie
s,

in
d

ic
a
to

rs
fo

r
p

ri
m

a
ry

d
ia

g
n

o
si

s
a
s

d
es

cr
ib

ed
in

th
e

te
x
t,

an
d

d
at

e,
h

os
p

it
al

x
ye

ar
,

h
os

p
it

al
x

m
on

th
,

a
n

d
h

o
sp

it
a
l

x
d

ay
-o

f-
w

ee
k

fi
x
ed

eff
ec

ts
.

T
h

e
u

n
d

er
ly

in
g

sa
m

p
le

is
th

e
sa

m
p

le
o
f

n
ew

h
o
sp

it
a
l

ar
ri

va
ls

w
it

h
co

ro
n

ar
y

ar
te

ry
d
is

ea
se

d
es

cr
ib

ed
in

S
ec

ti
o
n

3
.3

.
S

ta
n

d
a
rd

er
ro

rs
a
re

cl
u

st
er

ed
a
t

th
e

h
o
sp

it
a
l-

d
a
te

le
ve

l.
S

ta
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

is
d

en
ot

ed
as

fo
ll

ow
s:
∗
p
<

0
.0

5,
∗∗
p
<

0.
01

,
∗∗
∗
p
<

0.
0
0
1
.

162



3.5 Discussion and conclusion

I find that residual variation in hospital patient census does appear to meet the conditions required

to identify the effects of hospital congestion on patient care and patient outcomes. In general, a

one unit change in scaled ICU census appears to reduce the probability of ICU admission by one

percentage point and, at low-transfer hospitals, a one unit change in scaled ICU census appears

to reduce early receipt of catheterization procedures by approximately the same amount. In both

cases, these reductions in utilization appear concentrated among the patients likely to have the

smallest clinical benefit. There is no evidence that the observed reductions in utilization have an

adverse effect on patient health outcomes, but power is lacking.

One question in interpreting the results is why ICU census seems to have an effect on care, but

non-ICU census does not. With respect to ICU admission, of course, this is a simple reflection of the

ICU capacity constraint. With respect to receipt of catheterization and PCI, however, the reason

for this pattern is less clear. One hypothesis might be that changes in procedure utilization are a

direct result of the changes in ICU admission patterns, perhaps because the physicians managing

patient care in the ICU have different views on appropriate patient care than those in the rest of

the hospital. This hypothesis, however, is inconsistent with the fact that the effects on procedure

utilization are larger than the effect on ICU admission, so even if every patient excluded from the

ICU had his care modified in this way (which seems highly unlikely) this mechanism would not

be enough to account for the results. It seems more likely that ICU census is a marker of the

hospital’s current complement of seriously ill patients and, thus, a marker of stress on a broad set

of hospital resources, including catheterization facilities and perhaps physician time. Gaining more

insight into this question is a priority for future work.

The most important open question left by these results, however, is whether congestion has a

meaningful effect on patient outcomes. Whether the application of these estimates is ultimately

gauging the benefits of additional capacity or testing theories about the cross-sectional pattern of

hospital productivity, obtaining precise answers to this question is essential. Obtaining access to

larger datasets that permit more precise estimation should therefore be the top priority for future

work.
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Appendix A

Appendix to Chapter 1

A.1 Estimating the distribution of latent VBAC/TOLAC rates

At various points in the paper, I wish to estimate the distribution of “latent” hospital-level VBAC

rates (or TOLAC rates): the probability that a randomly chosen woman delivering at that hospital

would undergo VBAC (or TOLAC). Focusing on this distribution of latent rates purges cross-

hospital variation in TOLAC or VBAC rates that is attributable solely to small-sample variation

and permits me to focus on the permanent differences in practice style that are of interest.

I estimate this distribution of latent rates using a simple beta-binomial mixture model. For

simplicity, I focus only on estimate the distribution of latent VBAC rates, but the method used to

estimate the distribution of latent TOLAC rates is totally identical. I suppose that, in each year t,

each hospital h has a latent VBAC rate νht drawn from a beta distribution with parameters αt and

βt. For each hospital, I observe its total number of deliveries by women with a history of cesarean

delivery (Nht), as well as the number of those women who deliver vaginally (Vht). I assume that

Vht ∼ binomial(νht, Nht).

Under these assumptions, the likelihood function for the parameter vector (αt, βt) is given by

L(αt, βt|Vt,Nt) =
∏
i

(
Nti

Vti

)
B(Vti + αt, Nti − Vti + βt)

B(αt, βt)
, (A.1)

where B(a, b) is the beta function, Vt is the vector of observations of Vht for year t, and Nt is the

vector of observations of Nht for year t. I estimate (αt, βt) for each t using data from the Nationwide

Inpatient Sample by maximizing this likelihood numerically in Stata using the default optimization
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settings. When doing so, I limit the sample to hospitals with at least 20 deliveries by women with

a prior cesarean delivery. The excluded hospitals account for 2 percent of all deliveries. I weight

each hospital’s contribution to the likelihood by its HCUP-assigned sampling weight. In practice,

the results are insensitive to the inclusion or exclusion of sampling weights.

A.2 Clinical literature search terms

As described in section 1.3, I identify articles that may report TOLAC case series via a search

in the Thomson Reuters World of Science database. Specifically, I include any English language

article (excluding letters to the editor) that matches one of the following search expressions:

• (vagina* NEAR/3 (birth* OR born OR deliver*) NEAR/7 ((after* OR follow* OR previous*

OR prior OR history) NEAR/3 (cesarean* OR caesarean*)))

• VBAC

• TOLAC

• trial of labor

• trial of labour

I also include English language articles that match both of the following search expressions:

• ((uterine or uterus) NEAR/5 (ruptur* OR tear* OR torn OR perforat* OR lacera* OR

trauma* OR damag* OR injur*))

• ((after* OR follow* OR previous* OR prior OR history) NEAR/3 (cesarean* OR caesarean*))

These search expressions are adapted from Guise et al. (2010a).

A.3 Estimated distribution of OB/GYNs across practice types

Table A.1 reports the distribution of obstetricians/gynecologists across practice types based on the

physician survey component of the Center for Studying Health System Change’s (HSC) Community

Tracking Study (CTS) and its successor, the Health Tracking Study (HTS). The CTS is available
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Table A.1: Distribution of OB/GYNs across practice types by survey wave

Practice type

Solo or Group
HMO

Medical Hospital-
Other

CTS/HTS Wave 2-person (≥ 3) school based Total

1996-1997 41 35 4 5 9 6 100
1998-1999 44 30 3 5 10 8 100
2000-2001 41 32 5 7 9 7 100
2004-2005 39 32 6 9 9 6 100
2008 33 45 4 8 8 2 100

Notes: This table reports the share of obstetrician/gynecologists in each practice type in the
Community Tracking Study and Health Tracking Study. These data are described in detail in
Appendix A.3.

in four waves 1996-1997, 1998-1999, 2000-2001, and 2004-2005, while the HTS has so far released

a single wave for 2008.1

The CTS used a stratified sampling design that significantly oversampled 60 specific communi-

ties to enable calculation of community-specific estimates for those communities; national estimates

can be obtained using the provided sampling weight. The HTS used a simpler stratified sampling

scheme that also permits obtaining national estimates via a national sampling weight. HSC advises

against directly comparing the 2004-2005 and 2008 waves to the earlier waves or to each other.

Detailed documentation are available from the technical publications section of the HSC website

(HSC, 2013).

A.4 Proofs of learning model propositions

This appendix reports the proofs of the propositions stated in the exposition of the learning model

in section 1.2.

Proof of Proposition 1. We start by taking a conditional expectation with respect to the number

of additional attempts of labor that occur by a time s > t. Because new labor attempts arrive

according to the Poisson process λ(t)yh(t) and the probability of multiple events is negligible for

1These data were accessed via the data archive maintained by the Inter-university Consortium for Political and
Social Research, study numbers 2597, 3267, 3820, 4584, 27202.
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small differences s− t, we obtain

E[p̃h(s)|Rh(t), Lh(t), ph] = [1− λ(t)yh(t)(s− t)− o(s− t)]
[

α(s) +Rh(t)

α(s) + β(s) + Lh(t)

]
+ λ(t)yh(t)(1− ph)(s− t)

[
α(s) +Rh(t)

α(s) + β(s) + Lh(t) + 1

]
+ λ(t)yh(t)ph(s− t)

[
α(s) +Rh(t) + 1

α(s) + β(s) + Lh(t) + 1

]
+ o(s− t).

Switching into the alternative parametrization (µ(t), φ(t)), subtracting p̃h(t) from both sides, di-

viding both sides by s − t, taking the limit as s → t, and then doing a modest amount of algebra

yields the result. The derivation of d
dsE[yh(s)|Rh(t), Lh(t), ph]|s=t is similar and omitted.

Proof of Proposition 2. The assumptions on the arrival process, together with assumptions (i) and

(ii) imply that the instantaneous rate at which a provider with current experience ` makes a new

attempt of labor can be bounded below by

δ` =
¯
λ

[
1− F

(
µ̄
¯
c+ `

¯
c+ `

)]
> 0.

Since Lh(s) increases monotonically, we have

P(Lh(t) = 0) ≤ exp[−δ0t]P(Lh(0) = 0),

which implies that P(Lh(t) = 0)→ 0 as t→∞. Similarly, for k > 0, we have for any time s and t

with s ≥ t,

P(Lh(s) ≤ `) ≤ P(Lh(t) ≤ `− 1) + exp[−δ`(s− t)]P(Lh(t) = k),

which, by induction, implies that P(Lh(s) ≤ `)→ 0 for all `. This implies in turn that Lh(t)
a.s.−→∞

as t→∞.

The time at which each provider reaches ` deliveries, denoted Th(`), is therefore well-defined

with probability one. Define the discrete sub-process R∗h(`) = Rh(Th(`)), which is the number of

ruptures experienced by the provider after ` attempts. For each provider h, Rh(`) is simply the

sum of ` Bernoulli trials with success probability ph, so we must have `−1Rh(`)
a.s.−→ ph as `→∞.

Since Rh(t)/Lh(t) = R∗h(Lh(t))/Lh(t), we have Rh(t)/Lh(t)
a.s.−→ ph as well.
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Finally, if the first part of condition (iii) holds, we write

p̃h(t) =
α(t)/Lh(t) +Rh(t)/Lh(t)

[α(t) + β(t)]/Lh(t) + 1
,

and we see that terms other that Rh(t)/Lh(t) vanish since Lh(t)
a.s.−→ ∞. Applying the fact that

Rh(t)/Lh(t)
a.s.−→ ph then completes the proof. If, on the other hand, the second part of condition

(iii) holds, then write

p̃h(t) =
p0[α(t) + β(t)] + {α(t)− p0[α(t) + βt]}+ p0Lh(t) + {Rh(t)− p0Lh(t)}

α(t) + β(t) + Lh(t)

= p0 +
{α(t)− p0[α(t) + β(t)]}+ {Rh(t)− p0Lh(t)}

α(t) + β(t) + Lh(t)
,

from which the result follows immediately.

A.5 Additional econometric details

In this appendix, I provide additional detail on the event study estimator used in this paper. The

first subsection provides a a proof of Lemma 2. The second subsection discusses the estimator’s

small-sample properties.

A.5.1 Proof of Lemma 2

Before proving Lemma 2, it will be helpful to establish an additional lemma, which is essentially a

law of large numbers for hierarchical settings like the current one.

Lemma 4. Let {(Gi, Zi)}i∈N be an i.i.d. sequence of random tuples where Gi ∈ N and Zi is a

Gi × k matrix. Define Si(Z) = {j : Zij ∈ Z}. For any set Z such that 0 < E∗(|Si(Z)|) < ∞ and

function h such that E∗[|
∑

j∈Si(Z) h(Zij)|] exists,

1∑M
i=1 |Si(Z)|

M∑
i=1

∑
j∈Si(Z)

h(Zij)
p−→ E[h(Zij) |Zij ∈ Z]. (A.2)

as M → ∞, where E∗[·] denotes expectation with respect to the distribution of (Gi, Zi) and E[·]

denotes expectation with respect to the population marginal distribution of Zij.

Proof. Since E[|Si(Z)|] > 0, the left-hand-side of (A.2) is well-defined with probability approaching
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one, so we can safely focus on this case. We can re-write the left-hand-side of (A.2) as follows:

1∑M
i=1 |Si(Z)|

M∑
i=1

∑
j∈Si(Z)

h(Zij) =

(
1

M

M∑
i=1

|Si(Z)|

)−1
 1

M

M∑
i=1

∑
j∈Si(Z)

h(Zij)

 .

Applying a standard law of large numbers to each term on the right-hand-side then implies that

the right-hand-side converges to E∗[|Si(Z)|]−1E∗[
∑

j∈Si(Z) h(Zij)].

The population marginal distribution of Zij satisfies

P(Zij ∈ A) =
1

E∗[Gi]

∫
N

[
g∑

k=1

P∗(Zij ∈ A |Gi = g)

]
dP∗(Gi = g).

It follows immediately that

E[h(Zij) |Zij ∈ Z] =

∫
z∈Z h(z) dP(z)

E[1{Zij ∈ Z}]
=

E∗[
∑

j∈Si(Z) h(Zij)]/E∗[Gi]
E∗[|Si(Z)]| /E∗[Gi]

=
E∗[
∑

j∈Si(Z) h(Zij)]

E∗[|Si(Z)]|
,

completing the proof.

Proof of lemma 2. By condition OO, B(e, x)
p−→ 1 for all (e, x) ∈ C. Then, applying lemma 4

separately to each group sum in the definition of ∆̂q and pointwise to ŴWTOT demonstrates that

each converges to its population counterpart. The result follows.

A.5.2 Estimator small sample properties

Lemma 2 establishes that the event study estimator used herein is consistent, but the proof relies

on an argument that the relevant means are consistent for the desired quantities for each tuple

(e, x) ∈ C. In the current application, however, the number of providers with events can be small or

zero for many (e, x) tuples, which raises the question of whether the asymptotic results provide a

good guide to the estimator’s properties in practice. In this appendix, I show that, under plausible

conditions, the estimator is conditionally unbiased for a weighted average of conditional average

causal effects (see Imbens and Wooldridge (2009) for a discussion of such estimands). Although

this causal effect may differ from the weighted average causal effect described in Lemma 1, this

result provides reassurance regarding the estimator’s small-sample properties.

Formally, we are interested in the properties of the estimator for any number of sampled

providers M . The operator EM [·] will denote expectation with respect to the joint distribution
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of an M -provider random sample. I establish the properties of the small-sample properties of the

estimator under the following condition:

Condition CT′ (Finite sample common trends). For all provider sample sizes M , all event time
and characteristic tuples (e, x) ∈ C, and all times-since-event q, r ∈ H, the following two conditions
holds:

EM

 1

N q
1 (e, x)

∑
(i,j)∈Sq

1(e,x)

Y q
ij(0)

∣∣∣∣∣∣B(e, x) = 1, {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C


− EM

 1

N r
1 (e, x)

∑
(i,j)∈Sr

1(e,x)

Y r
ij(0)

∣∣∣∣∣∣B(e, x) = 1, {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C


= EM

 1

N q
0 (e, x)

∑
(i,j)∈Sq

0(e,x)

Y q
ij(0)

∣∣∣∣∣∣B(e, x) = 1, {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C


− EM

 1

N r
0 (e, x)

∑
(i,j)∈Sr

0(e,x)

Y r
ij(0)

∣∣∣∣∣∣B(e, x) = 1, {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C

 .

Condition CT′ replaces Condition CT. This new condition states that, conditional on the

realized estimate of the weighting function and the set of cells containing a positive number of

deliveries, the counterfactual trend for event units is the same as the realized trend for non-event

units.

Condition CT is not sufficient to ensure that the estimator has good finite-sample properties

for two reasons. The first is that the birth-level marginal distribution in any finite sample may

differ from the population marginal distribution used to state Condition CT, so Condition CT may

not directly apply in finite samples; this will occur if providers’ level and time pattern of volume

is predictive of the potential outcomes for their associated deliveries.2 The second is that, in finite

samples, the desired weighting function W (e, x) may be estimated with error. To the extent the

error in W (e, x) covaries with the deviation from common trends in any particular sample, bias can

result. Once again, the most plausible source of such a correlation is correlation between providers’

2To see why this is the case, it may be helpful to consider a simple numerical example. Consider a cluster-sampling
setting with two types of units. Type A units have 1 sub-unit and mean µA, while type B units have 9 sub-units and
mean µB . Assuming both types of units are equally likely to be drawn, it easy to see that the population marginal
mean is (1/10)µA + (9/10)µB . Under these assumptions, however, the mean of the sub-unit marginal distribution
for a consisting of one provider, however, is (1/2)µA + (1/2)µB . As the number of sampled providers increases, the
marginal distribution will converge toward the population marginal distribution.
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level and time pattern of volume and the potential outcomes for their associated deliveries.

With Condition CT in place, the following lemma can be proved using arguments parallel to

those used to prove Lemma 1.

Lemma 5. If conditions NPE and CT′ hold, then

EM [∆̂q − ∆̂r | {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C ] =
∑

(e,x)∈C:B(e,x)=1

Ŵ (e, x)·

EM

 1

N q
1 (e, x)

∑
(i,j)∈Sq

1(e,x)

Y q
ij(1)− Y q

ij(0)

∣∣∣∣∣∣B(e, x) = 1, {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C


for all M and all q, r ∈ H such that q > 0 and r < 0. In addition,

EM [∆̂q | {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C ] = EM [∆̂r | {(B(e′, x′), Ŵ (e′, x′))}(e′,x′)∈C ]

for all q, r ∈ H with q, r < 0.

The first part of Lemma 5 demonstrates that the difference-in-difference estimator is (condi-

tionally) unbiased for a weighted average of expected conditional sample average treatment effects

on the treated.3 This estimand is closely related to, but distinct from the estimand in Lemmas 1

and 2. In practice, the most important differences is that different (e, x) cells are weighted by the

estimated version of W (e, x), rather than the true version; for choices of weights like WWTOT, the

present estimand will therefore afford more weight to cells that happen to have a large number

of “treated” births in the realized sample. The second part of Lemma 5 indicates that, as in the

large-sample case, we should expect the difference between event and non-event units to be constant

prior to event occurrence. Thus, as in the large-sample case, the research design permits a direct

test of the required common trends assumption.

A.6 Modeling the use of ICD-9-CM code 665.1

As discussed in detail in Section 1.3, the ICD-9-CM diagnosis code 665.1 can be used either for

uterine rupture (the event of interest) or for relatively minor uterine injuries that can occur during

3For this interpretation to be valid, it must also be the case that Ŵ (e, x) ≥ 0 for all (e, x) ∈ C and∑
(e,x)∈C:B(e,x)=1 Ŵ (e, x) = 1. Virtually any sensible estimator Ŵ (e, x) will satisfy these properties.
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Figure A.1: Incidence of code 665.1 versus trial of labor rate by state and year
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Notes: This figure plots the trial of labor rate and the rate of use of the ICD-
9-CM diagnosis code 665.1 among women with a prior cesarean delivery in
the SID and OSHPD discharge records. The rate of use of code 665.1 is
plotted on the left y-axis. The trial of labor rate is plotted on the right
y-axis.

cesarean section. Understanding the prevalence of the two uses of this code is important for

interpreting the event study estimates. This appendix describes the procedure used to estimate the

relative prevalence of the two uses of this code.

To do so, I exploit time series variation in trial of labor rates. Intuitively, if non-rupture uses of

code 665.1 are rare, then the prevalence of code 665.1 should vary approximately proportionally with

trial of labor rates since rupture is extremely rare among women who do not labor. In contrast, if

non-rupture uses are common, then the prevalence of code 665.1 should fall less than proportionally

when the trial of labor rate falls. Figure A.1 plots trial of labor rates and the prevalence of code

665.1 for each state included in the event study analysis; we see that the use of code 665.1 generally

falls with trial of labor rates, but less than proportionally, suggesting that non-rupture uses of code

665.1 occur with some regularity.

A.6.1 Statistical model

In order to convert this qualitative time series evidence into an estimate of the share of uses of code

665.1 that are attributable to rupture and non-rupture events, I develop and estimate a statistical
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model for the use of code 665.1.

For each delivery, I observe an indicator for cesarean delivery (C) and an indicator for the

use of code 665.1 (R). I also observe an indicator L that is equal to one under the following two

conditions: (1) the mother actually labored; or (2) the code 665.1 is used, but the mother did not

labor. The indicator L reflects labor status as actually observed in my data since, as described

in Section 1.3, use of code 665.1 are taken to indicate labor. Of interest but unobserved is the

indicator variable R∗, which is equal to one if the code 665.1 is used for a true rupture event.

Each delivery proceeds as follows. A woman with a prior cesarean section in state s and quarter

q attempts labor with probability φsq, and the remaining 1−φsq undergo elective cesarean section.

Women who attempt labor experience uterine rupture with some probability γ. The probability

that an attempt of labor ends in cesarean section depends on the whether rupture has occurred

and is given by αr = P(C = 1|R∗ = r). A cesarean section before or after labor can lead to a

non-rupture injury that is recorded using code 665.1, and the probability of such an injury is δ.

Figure A.2 depicts the full probability tree corresponding to this model.

The object of interest is the “true positive rate,” the share of uses of code 665.1 that are

attributable to uterine rupture events. For a patient i in state s and quarter q, it is straightforward

to show that the true positive rate can be written as

TPRsq ≡ P(R∗isq = 1|Risq = 1)

=
φsqγ

φsqγ + φsq(1− γ)α0δ + (1− φsq)δ

≈ P(Lisq = 1)γ

P(Lisq = 1)γ + P(Cisq = 1)δ
,

(A.3)

where the approximate equality holds whenever γ and δ are small. As is intuitive, the true positive

rate is higher when the true risk of rupture (γ) is large and when the probability of non-rupture

uses of code 665.1 (δ) is small. Note that an estimate of the true positive rate for the full sample

can be obtained by averaging TPRsq over state-quarter cells, weighting each state-quarter cell by

th enumber of uses of code 665.1.

I estimate the model by maximum likelihood. For patient i, the likelihood of the observed tuple
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Figure A.2: Probability tree depicting model of use of ICD-9-CM diagnosis code 665.1

L = 1, R = 1, C = 0

vaginal1− α
1

L = 1, R = 1, C = 1

ces
area

n

α1

ruptureγ

L = 1, R = 0, C = 0

vaginal1− α
0

L = 1, R = 1, C = 1

injury
δ

L = 1, R = 0, C = 1

no injury

1−
δ

ces
area

n

α0

no ru
ptu

re

1−
γ

trial of labor

φ
sq

L = 1, R = 1, C = 1

injury
δ

L = 0, R = 0, C = 1

no injury

1−
δ

el
ec

ti
ve

C
S

1
−
φ s
q

Notes: This figure depicts the model for the use of ICD-9-CM code 665.1 (uterine rupture during
labor) that is described in Appendix A.6. The probability of traversing each branch is indicated
underneath the branch. The leaf labels show the tuple (L,C,R) that will be observed for a delivery
that reaches that leaf. The probability of reaching any particular leaf can be computed by multiplying
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Table A.2: Estimated parameters for model of use of ICD-9-CM code 665.1

Parameter Estimate SE

True uterine rupture rate (γ) 0.00711 0.00018
Probability of coded 665.1 injury given c-section (δ) 0.00096 0.00005
C-section probability given rupture (α0) 0.905 0.005
C-section probability without rupture (α1) 0.262 0.001

Auxiliary statistics
Implied true positive rate for code 665.1 0.649
N 2,982,279

Notes: The table reports the estimated parameters from estimating the model defined in Ap-
pendix A.6 for the use of ICD-9-CM code 665.1 (uterine rupture during labor). The model is
estimated by maximum likelihood, and the likelihood is defined equation (A.4). The true positive
rate is defined in equation (A.3).

(Lisq, Cisq, Risq) is then given by

L(Lisq, Cisq, Risq|{φsq}, γ, δ, {αr}) =

(1− φsq)(1− δ) if Lisq = 0, Risq = 0, and Cisq = 1

φsqγα1 + φsq(1− γ)α0δ + (1− φsq)δ if Lisq = 1, Risq = 1, and Cisq = 1

φsq(1− γ)α0(1− δ) if Lisq = 1, Risq = 0, and Cisq = 1

φsq(1− γ)(1− α0) if Lisq = 1, Risq = 0, and Cisq = 0

φsqγ(1− α1) if Lisq = 1, Risq = 1, and Cisq = 0

. (A.4)

Estimation is carried out in Stata using the default optimization settings. Estimation using appro-

priately collapsed data and frequency weights takes a few seconds.

A.6.2 Estimation results

Table A.2 reports the parameter estimates from estimating equation (A.4). The table also reports

the true positive rate for the sample. Just under two thirds of cases in which code 665.1 is used

appear to be true cases of uterine rupture.

The underlying parameters are precisely estimated and reasonable. The estimated risk of rup-

ture during labor (γ) is approximately 7 in 1,000, which is well within the range of estimates

obtained in Section 1.5 of this paper and within the 95 percent confidence interval of the meta-
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analysis conducted by Guise et al. (2010b).

The estimated probability that cesarean delivery leads to a non-rupture use of code 665.1 (δ)

is approximately 10 in 10,000. While no other estimates of this parameter exist in the literature, I

do compare this estimate to alternative estimates of δ by examining the rate at which which code

665.1 appears on records for deliveries by women who: (1) are at low baseline risk of rupture; and

(2) have a medical indication for elective cesarean section. Among women meeting these criteria,

the risk of rupture should be virtually zero, meaning that all uses of code 665.1 will be for uterine

injuries occurring during cesarean section. I examine cesarean deliveries among two such groups:

(1) women with placenta previa; and (2) women delivering multiple infants. Code 665.1 appears

on 7 in 10,000 records in the first group and 3 in 10,000 records in the second group. This suggests

that the estimate obtained from estimating equation (A.4) modestly overstates δ and, thus, the

true positive rate reported in Table A.2 may modestly understate the true positive rate.

Figure A.3 plots estimated true positive rates by state and time. As expected, true positive rates

fall over time as trial of labor and, hence, cases of true uterine rupture become less common. As a

specification check, Figure A.3 also plots estimates obtained from fitting the model separately for

each state, which allows for cross-state differences in uterine rupture rates and coding practices.4

In general, the true positive rates estimated on state-specific samples are very similar to those

estimated using the full sample. The exceptions are Massachusetts and Washington, where the

available time series are relatively short and the model is correspondingly weakly identified.

A.7 Additional event study heterogeneity specifications

This appendix reports evidence on whether the size of the response appears to vary by patient

characteristics (Tables A.3 and A.4) or event severity (Table A.5). For the patient characteristic

analyses, I estimate equation (1.7) separately for each indicated patient population. For the event

severity specifications, I categorize uterine rupture events into a “high severity” subgroup and a

“low severity” subgroup and estimate equation (1.7) separately for each treatment subgroup; that

is, I first estimate (1.7) excluding births associated with a “low severity” event and then estimate

it excluding births associated with a “high severity” event. I define “high severity” uterine rupture

4I do not estimate the model for Colorado, as the available time series is too short to provide reliable estimates.
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Figure A.3: Estimated true positive rates by state and time
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Notes: This figure plots the true positive rates for the use of ICD-9-CM
code 665.1 (uterine rupture during labor) obtained by estimating the model
defined in Appendix A.6 for the full sample and then separately for each
state. Additional details on estimation are provided in the text. The for-
mula for the true positive rate appears in equation (A.3).

events as those cases in which the discharge record also reports transfusion, hysterectomy, or a

maternal hospital stay in excess of five days. This definition is similar to that proposed by Callaghan

et al. (2008) and encompasses approximately 17 percent of all rupture events. It is important to

note, however, that because it is not possible to link maternal and neonatal records in these data,

this definition does not include any information on adverse neonatal outcomes, which are typically

the most serious outcomes in this context and need not coincide with serious maternal outcomes.

For this reason, the event severity results should be taken with a significant grain of salt.
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Table A.5: Heterogeneity by event severity in the effect of a uterine rupture event on
management of subsequent patients

Column: (1) (2) (3) (4)

Outcome: Trial of labor Vaginal delivery

Event severity/
Post-event horizon

Low High Low High

+ 1 quarter -0.0042∗∗ -0.0061∗ -0.0041∗∗ -0.0040
(0.0014) (0.0025) (0.0015) (0.0025)

+ 2 quarters -0.0031∗ -0.0032 -0.0032∗ -0.0024
(0.0016) (0.0029) (0.0016) (0.0026)

+ 3 quarters -0.0055∗∗∗ -0.0068∗ -0.0053∗∗ -0.0055∗

(0.0016) (0.0028) (0.0017) (0.0026)

+ 4 quarters -0.0073∗∗∗ -0.0057+ -0.0068∗∗ -0.0047+

(0.0019) (0.0029) (0.0022) (0.0025)

+ 5 quarters -0.0073∗∗∗ -0.0059 -0.0081∗∗∗ -0.0072∗

(0.0022) (0.0037) (0.0023) (0.0033)

+ 6 quarters -0.0079∗∗∗ -0.0041 -0.0086∗∗∗ -0.0052
(0.0023) (0.0036) (0.0025) (0.0032)

Pooled -0.0059∗∗∗ -0.0053∗ -0.0060∗∗∗ -0.0048∗

(0.0016) (0.0026) (0.0018) (0.0024)

Auxiliary information
Common trends p-value 0.611 0.012 0.935 0.026
Unique births 2,944,522 2,720,625 2,944,522 2,720,625
Nominal N 26,846,042 16,390,236 26,846,042 16,390,236

Notes: This table reports event study estimates of the effect of a uterine rupture event on hospitals’
subsequent management of deliveries by women with a prior cesarean delivery. The reported esti-
mates are obtained by estimating equation (1.7) separately for each event severity group, where the
groups are as defined in Appendix A.7. Events are defined at the hospital level. Estimation uses
HCUP State Inpatient Databases for the states and years described in the text and the OSHPD Pa-
tient Discharge Data for 1993-2010. The point estimate reported in the row labeled “+q quarters” is
defined as ∆̂q − 1

6

∑−1
r=−6 ∆̂r; the results in the text show that this may be interpreted as the causal

effect of an event q quarters later. The “pooled” estimate is defined as 1
6

∑6
q=1 ∆̂q − 1

6

∑−1
q=−6 ∆̂q;

this quantity may be interpreted as the average causal effect over the first six post-event quarters.
Standard errors are obtained via a block bootstrap at the hospital level using 200 replications and
displayed in parentheses. The common trends p-value is obtained from a standard χ2 test of the of
the hypothesis that ∆q = ∆r for all q, r < 0. Statistical significance is denoted as follows: + p < .1,
∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.
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Appendix B

Appendix to Chapter 2

B.1 Data appendix

This appendix provides additional details on the processing of the MedPAR data used in this

analysis. The first subsection of this appendix describes construction of the hospital universe,

while the second subsection of this appendix describes the codes we used to identify particular

diagnoses and procedures of interest.

B.1.1 Hospital universe

In order to construct the hospital universe for this analysis, we first limited the MedPAR file to

acute care admissions to short-term hospitals. We identify short-term hospitals by matching the

MedPAR file to the CMS Provider of Services (POS) file using the reported CMS provider numbers,

which reports a variety of facility characteristics for registered Medicare institutional providers.

We retain facilities identified in the POS file as short-term hospitals, critical access hospitals,

or children’s hospitals; we retain the last of these because many hospitals that are technically

considered children’s hospitals by Medicare serve a non-trivial number of adult patients.1 We

also exclude any admissions to specialized units of included facilities (e.g. long-term care units

and psychiatric units) and “swing bed” skilled-nursing facility stays that occur in a critical access

1We also retain CMS provider numbers in the range 271225-271299. These provider numbers correspond to
Montana medical assistance facilities, which were predecessors to critical access hospitals created as part of an early
1990s demonstration project. We exclude a small number of reported admissions to hospitals that do not participate
in Medicare (typically military hospital and foreign hospitals).
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hospital bed.2

After this initial processing step, we address the fact that the raw CMS provider numbers re-

ported on the MedPAR file are not a full satisfactory panel identifier. Over the period observed,

many hospitals convert to critical access hospital (CAH) status and consequently experience a

change of provider number. In addition, many multi-campus hospitals switch from reporting under

multiple provider numbers to report under a single provider number; mergers of truly unrelated hos-

pitals create similar problems. In order to ensure that each “unit” in the panel analysis corresponds

to a common set of physical facilities over time, we group provider numbers that are “related” in

one of these ways under a single consolidated identifier. We identify related provider numbers using

the provider number transition matrix created by the Dartmouth Institute for Health Policy and

Clinical Practice.3

After consolidating hospital identifiers in this fashion, we exclude facilities that average less than

50 discharges per year during the quarters in which the hospital is active; the 406 facilities excluded

by this restriction account for 0.03 percent of the total admissions reported in the MedPAR file. The

resulting hospital universe still includes some facilities that, notwithstanding their categorization

in the POS file, are primarily specialty hospitals (e.g. cancer hospitals and specialty surgical

hospitals) or long-term care hospitals and thus should not be included in the present analysis.

To exclude hospitals that do not primarily provide acute care, we exclude any hospital in which

fewer than 5 percent of admissions report a primary diagnosis falling in a specified set of acute

cardiac diagnoses, which is described in greater detail in the next subsection of this appendix; this

restriction excludes 280 hospitals that account for just approximately 0.6 percent of all admissions.

We also exclude any hospital with a length of stay at least 7 days above the sample average after

adjusting for the quarters in which the hospital operates; this restriction excludes an additional 94

hospitals that account for 0.01 percent of all admissions.4 We are left with 5,156 hospitals, which

2Admission to one of these specialized units is indicated by a one-character “special unit” code reported on the
MedPAR file.

3The transition matrix is available for download at http://www.intensity.dartmouth.edu/?q=node/129.

4The cross-hospital distribution of both acute cardiac share and length of stay consists of two largely-isolated
modes, with the larger mode containing the desired hospitals and the smaller mode containing various types of
specialty hospitals. The 5 percent threshold and the 7 day threshold were chosen so as to cleanly separate the two
modes in each case.
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is reduced further to the 5,094 hospitals reported in Table 2.1 because 62 hospitals start operation

after 2005Q2.

B.1.2 Diagnosis and procedure coding

We identify AMI, CABG, and PCI discharges using raw ICD-9-CM procedure codes. The codes

and criteria used are as follows:

• AMI discharges: The primary diagnosis code has the form 410.XX.

• PCI discharges: Any procedure code field contains 36.01, 36.02, 36.05, 36.09, 36.00, 36.0,

or 00.66.

• CABG discharges: Any procedure code field contains a code of the form 36.1X.

We identify other categories of discharges by mapping the raw ICD-9-CM codes to the multi-

level Clinical Classification Software codes defined by the Healthcare Cost and Utilization Project.

The codes and criteria used are as follows:

• Acute cardiovascular discharges: The primary diagnosis code falls in CCS categories 7.1,

7.2.3, 7.2.5, 7.2.6, 7.2.9, 7.2.11, 7.3.1, or 7.3.4. These particular codes were chosen on the basis

of a preliminary analysis in Nationwide Inpatient Sample data indicating that patients with

these diagnoses were very likely to have been admitted on an emergency basis. As described

in the prior subsection of this appendix, this category is used in defining the hospital universe.

• Cardiovascular discharges: The primary diagnosis code falls in CCS category 7. Tallies

of discharges falling in this category are reported in Table 2.1.
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Appendix C

Appendix to Chapter 3

C.1 Estimation with high-dimensional fixed effects

As described in the main text, I estimate equation (3.2), which contains multiple high-dimensional

fixed effects, by applying an algorithm due to Gaure (2013). This appendix provides a brief discus-

sion of why naive approaches fail and then a brief exposition of the algorithm, portions of which

are adapted from Gaure (2013). For a full treatment, see Gaure (2013).

Consider a general fixed-effects regression model written in dummy variable form:

Y = Xβ +
G∑
g=1

Dgγg + ε. (C.1)

The vector Y contains the values of the dependent variable for each observation, X is the matrix of

covariates, and D1, D2, . . . , DG are matrices coding the categorical dummy variables corresponding

to each set of fixed effects. The coefficient vector β is the estimand of interest. In the present

context, the fixed effects themselves γg are nuisance parameters that are not of independent interest,

although this need not always be the case (e.g. Abowd et al. (1999) and Carneiro et al. (2012)).

Direct approaches to computing the least squares estimates of β are infeasible in this context.

To see why, write D = [D1 D2 · · ·DG] and γ′ = [γ′1 γ
′
2 · · · γ′G]. The standard approach to obtaining

the full least squares estimates is to numerically solve the so-called normal equations

(
[X D]′[X D]

)β̂
γ̂

 = [X D]′Y (C.2)
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for the least squares estimates (β̂′ γ̂′).1 This system has dimension m = k +
∑

g dg, where k is

the number of covariates included in X and dg is the number of categories in the gth set of fixed

effects. In the present context, m is greater than 3500. Directly solving a linear system of this size

using general-purpose solvers is prohibitively expensive.

To reduce the dimensionality of the problem, it is common to instead consider the projected

regression

MDY = MDXβ +MDε, (C.3)

where MD = I − D(D′D)−1D′ is the matrix that projects vectors onto the space orthogonal to

the column space of D.2 By the Frisch-Waugh-Lovell theorem, the projected regression in (C.3)

yields the same estimates of β and the same residuals as the full regression in (C.1). Similarly, after

a degrees-of-freedom correction that accounts for the estimation of the fixed effects (discussed in

more detail below), the regression generates correct standard errors. Furthermore, provided that

MDY and MDX are computationally inexpensive to obtain, this approach can be very fast, since

the projected regression is only k-dimensional and, thus, easy to compute.

The ease with which one can obtain MDY and MDX depends upon the number of sets of

fixed effects G. When there is only one set of fixed effects (G = 1), then MD is just the familiar

“de-meaning” operator that subtracts the group mean from each observation, so computing MDY

and MDX is trivial; this is the standard “within estimator” for unobserved effects models (see,

for example, Wooldridge (2010)). When G > 1, however, MD does not have a simple form, and

obtaining MDY and MDX is more difficult.

To solve this problem, Gaure (2013) turns to a result of Halperin (1962) that shows that as

n→∞

(MDG
MDG−1

· · ·MD2MD1)n →MD,

where MDg = I − Dg(D
′
gDg)

−1D′g is the matrix that projects onto the space orthogonal to Dg;

1In order to focus on the matter at hand, I am glossing over the fact that the matrix D does not, in general, have
full rank and, thus, there is not a unique vector γ̂ that satisfies equation (C.2). This can be remedied by normalizing
a suitable number of fixed effects to zero and deleting the corresponding columns from D. In most applications, these
normalizations will not appreciably reduce the dimension of the system. Note also that, regardless, there is a unique
vector β̂ that satisfies the system provided that X ′MDX has full rank, where MD is the matrix that projects onto
the orthogonal complement of D.

2Again, I am glossing over the fact that, when G > 1, D does not have full rank. In this case, MD = I −
D(D′D)+D′, where A+ denotes the Moore-Penrose pseudoinverse of A.
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convergence here is strong convergence. Gaure cites results of Deutsch and Hundal (1997) that

demonstrate that this convergence is uniform, occurs at a geometric rate, and will be particularly

fast when the column spaces of the matrices Dg are close to orthogonal.

Based on these results and the fact that each matrix MDg is just the demeaning operator

corresponding to the gth set of fixed effects, Gaure suggests a simple algorithm for computing

MDX and MDY . Specifically, starting with a vector v, we demean with respect to the first set of

fixed effects, then demean the result with respect to the second set of fixed effects, and continue in

this fashion through the Gth set. At this point, we compare the current vector in memory to the

vector in memory after the last full round of demeaning. If the change is acceptably small, we stop

and use the current vector as our approximation of MDv. Otherwise, we undertake another round

of demeaning.

This algorithm has the key advantage of being exceptionally simple to code. Furthermore,

when implemented in Stata and applied to the present problem, it is modestly faster than both the

accelerated Gauss-Seidel algorithm proposed by Guimarães and Portugal (2010) and an adapted

version of the method proposed by Abowd et al. (2002).3 An algorithm based on Abowd et al.

(2002) might be faster than the present algorithm if implemented in a language with facilities for

handling sparse matrices (which Stata lacks), but I have not explored this possibility.

One implementation detail remains to be addressed. As noted above, obtaining correct standard

errors from estimating equation (C.3) requires adjusting the regression degrees of freedom to account

for estimation of the fixed effects. The appropriate adjustment reduces the degrees of freedom by

the rank of D. When G = 1, D has full rank, so determining the appropriate adjustment is trivial.

However, as noted in footnotes 1 and 2, when G > 1, D does not have full rank, so determining

the appropriate adjustment is harder. For the case G = 2, Abowd et al. (2002) have developed

a general algorithm for computing the appropriate adjustment, but, to my knowledge, no general

algorithm exists for the case G > 2.

In the present application, however, the structure of the fixed effects makes it easy to directly

3The original algorithm proposed by Abowd et al. (2002) use a conjugate gradient algorithm that exploits the
sparseness of the matrix [X D]′[X D] in order to efficiently solve equation (C.2). This approach does not provide an
easy way of obtaining standard errors for β, so it is not suitable for the present problem. However, one can instead
use a similar conjugate gradient algorithm to obtain MDX and MDY and then estimate equation (C.3) as described
above.
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calculate the rank of D. Recall that the main empirical results were obtained from a regression of

the following form:

Yiht = α+ Ñ ICU
ht βICU + ÑOIP

ht βOIP +Xihtγ + ψt +
∑
τ∈S

φτh×τ(t) + εiht,

where the notation is as defined in the main text.

To calculate the rank of D, let W be the space spanned by the dummies corresponding to the

hospital-time effects, and let V be the space spanned by the dummies corresponding the calendar-

date effects. We wish to find dim(W + V ). It is a standard result in linear algebra that

dim(W + V ) = dim(W ) + dim(V )− dim(W ∩ V ).

We compute each quantity in turn:

• dim(W ): For any given hospital h, it is easy to see the we can obtain a linearly independent

set from the dummies for that hospital by dropping one column for each set of hospital-time

effects after the first. Letting H denote the total number of hospitals, we therefore conclude

that dim(W ) is the total number of hospital-time effects minus H(|S| − 1).

• dim(V ): The date dummies are mutually orthogonal, so this space has dimension equal to

the total number dates for which observations exist in the dataset.

• dim(W ∩V ): The space W ∩V is spanned by a set that contains the full set of time dummies

corresponding to each τ ∈ S. We obtain a linearly independent set from these dummies by

removing one dummy corresponding to each element of S beyond the first. Thus, we see that

this space has dimension
∑

τ∈S |{τ(t) : t ∈ T}| − (|S| − 1), where T is the set of time indexes

appearing in the dataset.

To summarize, the rank of D is the width of D minus

H(|S| − 1) + [
∑
τ∈S
|{τ(t) : t ∈ T}| − (|S| − 1)] =

∑
τ∈S
|{τ(t) : t ∈ T}|+ (H − 1)(|S| − 1).
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C.2 Coding appendix

C.2.1 Diagnosis categories for analysis sample definition

The ICD-9-CM diagnosis codes I use to define the diagnosis categories of interest are as follows:

• Acute myocardial infarction (AMI): Patients are classified as having a diagnosis of AMI

if the primary diagnosis code has the form 410.xx. The subgroup of AMI patients who are

experiencing an ST-elevation MI (STEMI) are identified by presence of a digit other “7” in

the fourth position of the code.

• Unstable angina: Patients are classified as having a diagnosis of unstable angina if either

of the following holds: (1) the primary diagnosis code has the form 411.1x or 411.8x; or (2)

the primary diagnosis code has the form 414.xx and the record reports a secondary diagnosis

code of the form 411.1x or 411.8x.

• Other acute coronary artery disease: Patients are classified as having a diagnosis of

other acute coronary artery disease if either: (1) the patient has a primary diagnosis code of

the form 414.xx and does not have unstable angina as defined above; or (2) the patient has

a primary diagnosis code of the form 413.xx (stable angina).

Records reporting a primary diagnosis code of 411.1x, 411.8x, or 413.xx are technically coded

incorrectly, as these codes correspond to symptoms rather than underlying medical conditions

and, thus, should not be used as primary diagnoses (Smith, 2011). Use of such codes as primary

diagnoses seems reasonably common in practice, however, so excluding such records would fail to

capture a large number of records that should be included.

ICD-9-CM codes of the form 414.xx are frequently reported as the primary diagnosis for sched-

uled hospital admissions for PCI or bypass surgery. For obvious reasons, I do not wish to include

claims of this type in my cohort of arriving patients. Thus, patients who are classified as having

unstable angina or other acute coronary artery disease on the basis of a primary diagnosis code of

the form 414.xx are only included in the analysis cohort if the patient’s record also demonstrates

interaction with the hospital’s emergency department.

I classify a record as demonstrating emergency department interaction if one of the following

applies: (1) it is an emergency department record; (2) it is an inpatient record and reports a billing
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code for emergency services (see the subsection below on billing codes); or (3) it is an outpatient

observation record and the “ED flag” provided by the hospital is set. I impose an exception to

criterion (2) for one small hospital that does not appear to consistently report billing codes for

emergency department services; in this case, I use the hospital-reported “ED flag” to identify

emergency department interaction.

C.2.2 Main procedure outcomes

I identify the main procedures of interest, cardiac catheterization and PCI, using both ICD-9-CM

procedures codes and, on records that report them, CPT codes. The ICD-9-CM codes used are as

follows:

• Cardiac catheterization: Patients are classified as having received cardiac catheterization

if at least one of the codes 37.22, 37.23, 88.55, 88.56, or 88.57 is present in any procedure

code field.

• PCI: Patients are classified as having received PCI if at least one of the code 36.01, 36.02,

36.05, 36.06, 36.07, or 00.66 is present in any procedure code field.

I identify the list of CPT codes associated with each of these procedures from existing data

sources. Specifically, I start with the Clinical Classification Software (CCS) groupings of CPT

codes available from the Healthcare Cost and Utilization Project.4 CPT codes falling in groups

46 and 47 correspond to cardiac catheterization, while CPT codes falling in group 45 correspond

to PCI. Unfortunately, the CCS file only reports ranges of codes, rather than individual codes.

I convert the code ranges to lists of individual codes by matching the ranges to the Medicare

Physician Fee Schedule for each year 2002-2009, which provides an exhaustive list of the CPT

codes that are active in any particular year. The resulting list is available upon request.

Any patient undergoing PCI is coded as undergoing cardiac catheterization as well.

4The CCS groupings are available in machine-readable form from the HCUP website at http://www.hcup-
us.ahrq.gov/toolssoftware/ccs svcsproc/ccssvcproc.jsp.
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C.2.3 Processing UB-92/UB-04 codes

I use UB-92/UB-04 codes to identify inpatient stays that include an ICU admission or that included

emergency department services. I classify an inpatient stay as including an ICU stay if it reports a

UB-92/UB-04 revenue code indicating a stay in a medical/surgical ICU (0200), a burn unit (0207),

a coronary care unit (0210), a pulmonary coronary care unit (0212), or an ICU bed of type “other”

(0209). I classify an inpatient stay as including emergency department services if it reports the

revenue code “0450.”

C.2.4 CCS categories used in balance tests

For the balance tests in Section 3.4, I use diagnosis and procedure categories defined using the

Healthcare Cost and Utilization Project’s multi-level Clinical Classification Software for ICD-9-

CM.5

The definitions of the diagnosis categories used are as follows: diabetes (CCS code 3.2 or 3.3);

hypertension (CCS code 7.1); chronic obstructive pulmonary disease (CCS code 8.2). Because these

categories are used for comorbidity balance checks, the indicator corresponding to each of these

categories is equal to one if any secondary diagnosis field contains an ICD-9-CM code falling in the

relevant CCS category.

The definitions of the procedure categories used are as follows: spinal procedures (CCS code

1.3 or 14.11); cholecystectomy (CCS code 9.16.1 or 9.16.2); hysterectomy (12.5); and hip or knee

procedure (CCS code 14.7.1 or 14.7.2). An inpatient stay is included in these procedure categories

if any procedure field contains an ICD-9-CM code falling into the relevant CCS category.

5The CCS definitions are available in machine-readable form from the HCUP website at http://www.hcup-
us.ahrq.gov/toolssoftware/ccs/ccs.jsp.
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