559 research outputs found
Josephson oscillation linewidth of ion-irradiated YBaCuO junctions
We report on the noise properties of ion-irradiated YBaCuO
Josephson junctions. This work aims at investigating the linewidth of the
Josephson oscillation with a detector response experiment at 132 GHz.
Experimental results are compared with a simple analytical model based on the
Likharev-Semenov equation and the de Gennes dirty limit approximation. We show
that the main source of low-frequency fluctuations in these junctions is the
broadband Johnson noise and that the excess () noise contribution
does not prevail in the temperature range of interest, as reported in some
other types of high-T superconducting Josephson junctions. Finally, we
discuss the interest of ion-irradiated junctions to implement frequency-tunable
oscillators consisting of synchronized arrays of Josephson junctions
Multi-band superconductivity and nanoscale inhomogeneity at oxide interfaces
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide
interfaces becomes superconducting when the carrier density is tuned by gating.
The measured resistance and superfluid density reveal an inhomogeneous
superconductivity resulting from percolation of filamentary structures of
superconducting "puddles" with randomly distributed critical temperatures,
embedded in a non-superconducting matrix. Following the evidence that
superconductivity is related to the appearance of high-mobility carriers, we
model intra-puddle superconductivity by a multi-band system within a weak
coupling BCS scheme. The microscopic parameters, extracted by fitting the
transport data with a percolative model, yield a consistent description of the
dependence of the average intra-puddle critical temperature and superfluid
density on the carrier density.Comment: 7 pages with 3 figures + supplemental material (4 pages and 5
figures
Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices
The recent development in the fabrication of artificial oxide
heterostructures opens new avenues in the field of quantum materials by
enabling the manipulation of the charge, spin and orbital degrees of freedom.
In this context, the discovery of two-dimensional electron gases (2-DEGs) at
LAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba
spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on
the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical
properties, including superconductivity and SOC, can be tuned over a wide range
by a top-gate voltage. We derive a phase diagram, which emphasises a
field-effect-induced superconductor-to-insulator quantum phase transition.
Magneto-transport measurements indicate that the Rashba coupling constant
increases linearly with electrostatic doping. Our results pave the way for the
realisation of mesoscopic devices, where these two properties can be
manipulated on a local scale by means of top-gates
Quantized conductance in a one-dimensional ballistic oxide nanodevice
Electric-field effect control of two-dimensional electron gases (2-DEG) has
enabled the exploration of nanoscale electron quantum transport in
semiconductors. Beyond these classical materials, transition metal-oxide-based
structures have d-electronic states favoring the emergence of novel quantum
orders absent in conventional semiconductors. In this context, the
LaAlO3/SrTiO3 interface that combines gate-tunable superconductivity and
sizeable spin-orbit coupling is emerging as a promising platform to realize
topological superconductivity. However, the fabrication of nanodevices in which
the electronic properties of this oxide interface can be controlled at the
nanoscale by field-effect remains a scientific and technological challenge.
Here, we demonstrate the quantization of conductance in a ballistic quantum
point contact (QPC), formed by electrostatic confinement of the LaAlO3/SrTiO3
2-DEG with a split-gate. Through finite source-drain voltage, we perform a
comprehensive spectroscopic investigation of the 3d energy levels inside the
QPC, which can be regarded as a spectrometer able to probe Majorana states in
an oxide 2-DEG
The Mw = 6.3, November 21, 2004, Les Saintes earthquake (Guadeloupe): Tectonic setting, slip model and static stress changes,
International audienceOn November 21, 2004, a magnitude 6.3 earthquake occurred offshore, 10 km south of Les Saintes archipelago in Guadeloupe (French West Indies). There were more than 30000 aftershocks recorded in the following two years, most of them at shallow depth near the islands of the archipelago. The main shock and its main aftershock of February 14, 2005 (Mw = 5.8) ruptured a NE-dipping normal fault (Roseau fault), mapped and identified as active from high-resolution bathymetric data a few years before. This fault belongs to an arc-parallel en echelon fault system that follows the inner edge of the northern part of the Lesser Antilles arc, accommodating the sinistral component of oblique convergence between the North American and Caribbean plates. The distribution of aftershocks and damage (destruction and landslides) are consistent with the main fault plane location and attitude. The slip model of the main shock, obtained by inverting jointly global broadband and local strong motion records, is characterized by two main slip zones located 5 to 10 km to the SE and NW of the hypocenter. The main shock is shown to have increased the Coulomb stress at the tips of the ruptured plane by more than 4 bars where most of the aftershocks occurred, implying that failures on fault system were mainly promoted by static stress changes. The earthquake also had an effect on volcanic activity since the Boiling Lake in Dominica drained twice, probably as a result of the extensional strain induced by the earthquake and its main aftershock
Competition between electron pairing and phase coherence in superconducting interfaces
In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spinâorbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high- energy dxz/dyz bands in the quantum well, more apt to host superconductivity
- âŠ