1,472 research outputs found

    Synthesis and structural characterisation of bismuth(III) hydroxamates and their activity against Helicobacter pylori

    Get PDF
    Seven new bismuth(III) hydroxamate complexes derived from the hydroxamic acids N-methylfurohydroxamic acid (H-MFHA), N-benzoyl-N-phenylhydroxamic acid (H-BPHA), salicylhydroxamic acid (H2-SHA), benzohydroxamic acid (H2-BHA), and acetohydroxamic acid (H2-AHA) have been synthesized and characterized. The complexes formed are either tris-hydroxamato complexes containing only mono-anionic ligands, [Bi(H-SHA)3], [Bi(MFHA)3] and [Bi(BPHA)3]; mixed-anion complexes, [Bi(SHA)(H-SHA)] and [Bi(AHA)(H-AHA)]; and potassium bismuthate complexes, K[Bi(SHA)2] and K[Bi(BHA)2]. The solid-state structure of three complexes has been determined through single crystal X-ray diffraction; [Bi(MFHA)3]2·Me2C[double bond, length as m-dash]O, {[Bi(SHA)(H-SHA)(DMSO)2][Bi(SHA)(H-SHA)(DMSO)]·DMSO}∞ and [Bi(BPHA)3]2·2EtOH. All the complexes and their parent acids were assessed for the bactericidal activity against three strains of Helicobacter pylori (26695, B128 and 251). Of the acids, only acetohydroxamic acid showed any activity at low concentrations (MIC 6.25 μg mL−1; 83.26 µM) while the others were not toxic below 25 μg mL−1. In contrast, their bismuth(III) complexes all showed excellent activity across all three strains (e.g. 0.28 μM for [Bi(H-SHA)3] to 6.01 μM for K[Bi(BHA)2] against strain 251) with only minor variations in activity being both ligand and composition dependant

    Secretion of flagellin by the LEE-encoded type III secretion system of enteropathogenic Escherichia coli

    Get PDF
    Background: Enteropathogenic Escherichia coli (EPEC) is an attaching and effacing (A/E) pathogen that possesses a type III secretion system (T3SS) encoded within the locus of enterocyte effacement (LEE). The LEE is essential for A/E lesion formation and directs the secretion and translocation of multiple LEE-encoded and non-LEE encoded effector proteins into the cytosol of infected cells. In this study we used proteomics to compare proteins exported to the culture supernatant by wild type EPEC E2348/69, a Delta espADB mutant and a Delta escF T3SS mutant

    Thermal, mechanical, and molecular relaxation properties of frozen sucrose and fructose solutions containing hydrocolloids

    Get PDF
    Model frozen systems formulated with 20wt% sucrose or fructose and with the addition of 0.3 or 0.5wt% of xanthan gum (XG), guar gum (GG), locust bean gum (LBG), or a 50wt% mixture of XG and LBG were studied by differential scanning calorimetry, dynamic mechanical analysis, and 1H-pulsed nuclear magnetic resonance. Melting onset of either the sucrose or fructose model systems was not affected by the addition of hydrocolloids. As expected, ice content was lower in fructose than in sucrose systems. Addition of hydrocolloids had no effect on ice content, except when the blend of XG and LBG was added to the fructose system, where ice content was significantly diminished. Hydrocolloids decreased molecular mobility for both frozen sucrose or fructose solutions, especially for the addition of XG/LBG blend. Relaxation times and storage modulus of the frozen systems with added hydrocolloids were significantly lower than the control frozen sugar solutions.Centro de Investigación y Desarrollo en Criotecnología de Alimento

    Effects of real versus phantom stock option plans on shareholder wealth

    Get PDF
    Helicobacter pylori causes chronic gastritis and avoids elimination by the immune system of the infected host. The commensal bacterium Lactobacillus acidophilus has been suggested to exert beneficial effects as a supplement during H. pylori eradication therapy. In the present study, we applied whole-genome microarray analysis to compare the immune responses induced in murine bone marrow-derived macrophages (BMDMs) stimulated with L. acidophilus, H. pylori, or both bacteria in combination. While L. acidophilus induced a Th1-polarizing response characterized by high expression of interferon beta (IFN-β) and interleukin 12 (IL-12), H. pylori strongly induced the innate cytokines IL-1β and IL-1α. In BMDMs prestimulated with L. acidophilus, H. pylori blocked the expression of L. acidophilus-induced IFN-β and IL-12 and suppressed the expression of key regulators of the Rho, Rac, and Cdc42 GTPases. The inhibition of L. acidophilus-induced IFN-β was independent of H. pylori viability and the virulence factor CagPAI; however, a vacuolating cytotoxin (vacA) mutant was unable to block IFN-β. Confocal microscopy demonstrated that the addition of H. pylori to L. acidophilus-stimulated BMDMs redirects intracellular processing, leading to an accumulation of L. acidophilus in the endosomal and lysosomal compartments. Thus, our findings indicate that H. pylori inhibits the development of a strong Th1-polarizing response in BMDMs stimulated with L. acidophilus by blocking the production of IFN-β in a VacA-dependent manner. We suggest that this abrogation is caused by a redirection of the endocytotic pathway in the processing of L. acidophilus. IMPORTANCE Approximately half of the world's population is infected with Helicobacter pylori. The factors that allow this pathogen to persist in the stomach and cause chronic infections have not yet been fully elucidated. In particular, how H. pylori avoids killing by macrophages, one of the main types of immune cell underlying the epithelium, remains elusive. Here we have shown that the H. pylori virulence factor VacA plays a key role by blocking the activation of innate cytokines induced by the probiotic Lactobacillus acidophilus in macrophages and suppresses the expression of key regulators required for the organization and dynamics of the intracellular cytoskeleton. Our results identify potential targets for the treatment of H. pylori infection and vaccination, since specific inhibition of the toxin VacA possibly allows the activation of an efficient immune response and thereby eradication of H. pylori in the host

    A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization.

    Get PDF
    The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as "lipid rafts." Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248) with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01). HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05), and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05). Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen

    Helicobacter pylori-Induced Histone Modification, Associated Gene Expression in Gastric Epithelial Cells, and Its Implication in Pathogenesis

    Get PDF
    Histone modifications are critical in regulating gene expression, cell cycle, cell proliferation, and development. Relatively few studies have investigated whether Helicobacter pylori, the major cause of human gastric diseases, affects histone modification. We therefore investigated the effects of H. pylori infection on histone modifications in a global and promoter-specific manner in gastric epithelial cells. Infection of gastric epithelial cells by wild-type H. pylori induced time- and dose-dependent dephosphorylation of histone H3 at serine 10 (H3 Ser10) and decreased acetylation of H3 lysine 23, but had no effects on seven other specific modifications. Different cag pathogenicity island (PAI)-containing-clinical isolates showed similar abilities to induce H3 Ser10 dephosphorylation. Mutation of cagA, vacA, nonphosphorylateable CagA mutant cagAEPISA, or disruption of the flagella showed no effects, while deletion of the entire cagPAI restored the H3 Ser10 phosphorylation to control levels. Analysis of 27 cagPAI mutants indicated that the genes that caused H3 Ser10 dephosphorylation were similar to those that were previously found to induce interleukin-8, irrespective of CagA translocation. This effect was independent of ERK or p38 pathways and type I interferon signaling. Additionally, c-Jun and hsp70 gene expression was associated with this histone modification. These results demonstrate that H. pylori alters histone modification and host response via a cagA-, vacA-independent, but cagPAI-dependent mechanisms, which contribute to its persistent infection and pathogenesis

    Hyperactive gp130/STAT3-driven gastric tumourigenesis promotes submucosal tertiary lymphoid structure development

    Get PDF
    Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis

    Loss of gastrokine-2 drives premalignant gastric inflammation and tumor progression

    Get PDF
    Chronic mucosal inflammation is associated with a greater risk of gastric cancer (GC) and, therefore, requires tight control by suppressive counter mechanisms. Gastrokine-2 (GKN2) belongs to a family of secreted proteins expressed within normal gastric mucosal cells. GKN2 expression is frequently lost during GC progression, suggesting an inhibitory role; however, a causal link remains unsubstantiated. Here, we developed Gkn2 knockout and transgenic overexpressing mice to investigate the functional impact of GKN2 loss in GC pathogenesis. In mouse models of GC, decreased GKN2 expression correlated with gastric pathology that paralleled human GC progression. At baseline, Gkn2 knockout mice exhibited defective gastric epithelial differentiation but not malignant progression. Conversely, Gkn2 knockout in the IL-11/STAT3-dependent gp130[superscript F/F] GC model caused tumorigenesis of the proximal stomach. Additionally, gastric immunopathology was accelerated in Helicobacter pylori–infected Gkn2 knockout mice and was associated with augmented T helper cell type 1 (Th1) but not Th17 immunity. Heightened Th1 responses in Gkn2 knockout mice were linked to deregulated mucosal innate immunity and impaired myeloid-derived suppressor cell activation. Finally, transgenic overexpression of human gastrokines (GKNs) attenuated gastric tumor growth in gp130[superscript F/F] mice. Together, these results reveal an antiinflammatory role for GKN2, provide in vivo evidence that links GKN2 loss to GC pathogenesis, and suggest GKN restoration as a strategy to restrain GC progression

    Membrane vesicles from Pseudomonas aeruginosa activate the non-canonical inflammasome through caspase-5 in human monocytes

    Get PDF
    Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and non-canonical inflammasomes. P.\ua0aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1β and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the non-canonical caspase-11 pathway. Moreover, P.\ua0aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H.\ua0pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5, we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P.\ua0aeruginosa LPS transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines. This article is protected by copyright. All rights reserved
    • …
    corecore