13 research outputs found

    Plant production of Cistus heterophyllus carthaginensis, species catalogued as Endangered in the Valencian Community (Spain)

    Get PDF
    Cistus heterophyllus subsp. carthaginensis (Cistaceae) es una especie catalogada como “En peligro de extinción” en la Comunidad Valenciana (España), representada por un único individuo silvestre, localizado en La Pobla de Vallbona (Valencia). Es una especie endémica de la Península Ibérica (Murcia y Valencia), considerando a menudo al ejemplar valenciano como el único individuo puro que existe en todo el mundo para este taxon, ya que el resto de poblaciones, halladas en Cartagena (Murcia), provienen de la hibridación con Cistus albidus. Recientemente, se ha publicado el Plan de recuperación para esta especie en la Comunidad Valenciana, que incluye la propagación y producción de nuevas plantas para la conservación a través de translocaciones, entre otras muchas acciones. Desde el punto de vista biológico, se trata de una especie auto-incompatible (aunque en ocasiones se ha registrado una pequeña producción de semillas viables), por lo que su propagación se convierte en un proceso complejo. Además, el uso alternativo de la multiplicación clonal in vitro es desaconsejable, debido a los cambios genéticos encontrados en las plantas producidas mediante esta técnica. En el Centro para la Investigación y Experimentación Forestal (CIEF-Servicio de Vida Silvestre) de la Generalitat Valenciana se han llevado a cabo trabajos experimentales de polinización manual para el cultivo y producción de semillas, así como para la multiplicación vegetativa por esquejes, lo que ha dado como resultado nuevos materiales de reproducción (semillas y plantas) de gran importancia para la conservación de esta especie.Cistus heterophyllus subsp. carthaginensis (Cistaceae) is an endangered species in the Valencian Community (Spain), represented by only one wild individual located in La Pobla de Vallbona (province of Valencia). It is an endemic species to the Iberian Peninsula (Murcia and Valencia), and the Valencian plant is often considered as the unique pure individual found worldwide. The remainder populations, found in Cartagena (Murcia) are thought to come from hybridization. Recently a recovery plan for this species has been approved, which includes the propagation and the production of new plants for conservation translocations, among other recovery actions. It deals with a self-incompatible species (although a small production of viable seeds has been recorded sometimes), so its propagation becomes a complex process. In addition, alternative use of in vitro propagation is inadvisable, due to apparent genetic changes found in the clones. The Centre for Forestry Research and Experimentation (CIEF, Valencian Wildlife Service) of the Generalitat Valenciana, has carried out experimental hand-pollination works for breeding and seed production, as well as vegetative propagation multiplication by cuttings that have successfully resulted in new reproductive material (seeds and plants) able to save this endangered species

    Conservación y distribución de las accesiones del Banco de Germoplasma de la Flora Silvestre Valenciana en la colección CIEF

    Get PDF
    The Germplasm Bank of Valencia Wild Flora is a network of collections for conservation of taxa listed in Valencia Catalog Endangered Species of Flora (VCESF). CIEF germplasm collection belongs to Generalitat Valenciana´s Forest Research and Experimentation Centre, and in addition to forest species, seeds of singular plants of VCESF are also preserved by the Wildlife Service team. From 1990 until now, in bank´s installations is preserved 2447 lots from 1445 species. It is conserved germplasm from 92% of the Endangered species and 94% as Vulnerable species according to VCESF. These data indicate that 67,6% of monitoring populations currently known for species listed as Endangered are preserved in the collection and 50% in the case of Vulnerable species. High-density areas of harvesting are the north and northwest of Alicante (dianic area and “Sierra de Aitana”), the southeast quadrant of Valencia (setabense zone), the Valencian coast (“El Saler”, “Sagunto”, etc.), and Castellón (“Islas Columbretes”, “Macizo del Penyagolosa”, “Cabanes”, “Peñiscola”). The aim to short-medium term is to keep up at least one accession of each monitoring population from VCESF species capable to be conserved in a genebank

    Corema album archaeobotanical remains in western Mediterranean basin. Assessing fruit consumption during Upper Palaeolithic in Cova de les Cendres (Alicante, Spain)

    Full text link
    [EN] Information about plant gathering by Palaeolithic hunter-gatherers in Europe is scarce because of the problems of preservation of plant remains in archaeological sites and due to the lack of application of archaebotanical analysis in many of them. Botanical macroremains wood charcoal, seeds, fruits, leaves, etc. - provide information not only about palaeoeconomy of hunter-gatherers, but also about climate, landscape and vegetation dynamics. In Gravettian and Solutrean levels of Cova de les Cendres (Alicante, Spain), Corema album pyrenes (Empetraceae or crowberries family) have been identified. On the contrary, wood charcoal of this species has not been documented among the remains of firewood. This differential presence of plant organs, together with the nutritional value of its fruits, which is presented here, make us hypothesize the systematic gathering of C. album fruits for human consumption. They have a high content in vitamin C, as well as potassium, magnesium and copper. Corema album (camariria) is a unique species, nowadays in danger of extinction. Its main population is located on the Atlantic coast of Iberian Peninsula, but in 1996 a small population was discovered on the Mediterranean Iberian coast (Benidorm, Spain). Archaeobotanical data from Cova de les Cendres (Teulada-Moraira, Spain) presented here point to a larger population of camariria during Upper Palaeolithic on the coast of Alicante. The harsh climatic conditions of the Last Glacial Maximum during Solutrean period, with colder temperatures and aridity increase, could explain the reduction of the presence of C album remains until its absence in Magdalenian. The climatic amelioration during Upper Magdalenian did not mean the recovery of camariria population in the Moraira headland area. Probably, the rising of the sea level would affect them destroying its dune habitat. (C) 2019 Elsevier Ltd. All rights reserved.Archaeological research at Cova de les Cendres was funded by Spanish Ministerio de Ciencia e Innovacion (HAR2011-24878; CGL2012-34717; HAR2014-5267 degrees 1-P; HAR2017-85153/P) and by Generalitat Valenciana (Grant PROMETEOII/2013/016; PROMETEO/2017/060). Seed analyses were carried out as doctoral research at the Departament de Prehistoria, Arqueologia i Historia Antiga (Universitat de Valencia) with the financial support of an "Atraccio de Talent" of VLC-Campus predoctoral grant to C.M. Martinez-Varea. Thanks to the Donana Biological Reserve for having allowed us to use the Singular Technical Scientific Installation for the Corema sampling. Authors want to thank M. Macias from Universitat Politecnica de Valencia for software development to draw the charcoal diagram and Eva Arnau from Universitat de Valencia for 3D modeling.Martínez-Varea, CM.; Ferrer-Gallego, P.; Raigón Jiménez, MD.; Badal, E.; Ferrando-Pardo, I.; Laguna-Lumbreras, E.; Real, C.... (2019). Corema album archaeobotanical remains in western Mediterranean basin. Assessing fruit consumption during Upper Palaeolithic in Cova de les Cendres (Alicante, Spain). Quaternary Science Reviews. 207:1-12. https://doi.org/10.1016/j.quascirev.2019.01.004S112207Allué, E., Martínez-Moreno, J., Alonso, N., & Mora, R. (2012). Changes in the vegetation and human management of forest resources in mountain ecosystems at the beginning of MIS 1 (14.7–8 ka cal BP) in Balma Guilanyà (Southeastern Pre-Pyrenees, Spain). Comptes Rendus Palevol, 11(7), 507-518. doi:10.1016/j.crpv.2012.04.004Anderberg, A. A. (1994). Phylogeny of the Empetraceae, with Special Emphasis on Character Evolution in the Genus Empetrum. Systematic Botany, 19(1), 35. doi:10.2307/2419710Andrade, S. C., Guiné, R. P. F., & Gonçalves, F. J. A. (2017). Evaluation of phenolic compounds, antioxidant activity and bioaccessibility in white crowberry (Corema album). Journal of Food Measurement and Characterization, 11(4), 1936-1946. doi:10.1007/s11694-017-9576-4Asouti, E., Ntinou, M., & Kabukcu, C. (2018). The impact of environmental change on Palaeolithic and Mesolithic plant use and the transition to agriculture at Franchthi Cave, Greece. PLOS ONE, 13(11), e0207805. doi:10.1371/journal.pone.0207805Aura, J. E., Carrión, Y., Estrelles, E., & Jordà, G. P. (2005). Plant economy of hunter-gatherer groups at the end of the last Ice Age: plant macroremains from the cave of Santa Maira (Alacant, Spain) ca. 12000–9000 b.p. Vegetation History and Archaeobotany, 14(4), 542-550. doi:10.1007/s00334-005-0002-1Badal García, E., & Martínez Varea, C. M. (2018). Different parts of the same plants. Charcoals and seeds from Cova de les Cendres (Alicante, Spain). Quaternary International, 463, 391-400. doi:10.1016/j.quaint.2016.12.020Baines, J. A., Riehl, S., Conard, N., & Zeidi-Kulehparcheh, M. (2014). Upper Palaeolithic archaeobotany of Ghar-e Boof cave, Iran: a case study in site disturbance and methodology. Archaeological and Anthropological Sciences, 7(2), 245-256. doi:10.1007/s12520-014-0191-6BEDCA. Base de datos Española de Composición de Alimentos. http://www.bedca.net/bdpub/index.php (accessed 14 May 2018).Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., … Petraglia, M. D. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences, 113(23), 6388-6396. doi:10.1073/pnas.1525200113Briggs, J. M., Spielmann, K. A., Schaafsma, H., Kintigh, K. W., Kruse, M., Morehouse, K., & Schollmeyer, K. (2006). Why ecology needs archaeologists and archaeology needs ecologists. Frontiers in Ecology and the Environment, 4(4), 180-188. doi:10.1890/1540-9295(2006)004[0180:wenaaa]2.0.co;2Calviño-Cancela, M. (2004). Ingestion and dispersal: direct and indirect effects of frugivores on seed viability and germination of Corema album (Empetraceae). Acta Oecologica, 26(1), 55-64. doi:10.1016/j.actao.2004.03.006Erlandson, J. M., & Braje, T. J. (2013). Archeology and the Anthropocene. Anthropocene, 4, 1-7. doi:10.1016/j.ancene.2014.05.003Gil-López, M. J. (2011). Etnobotánica de la camarina (Corema album, Empetraceae) en Cádiz. Ethnobotany of Corema album (Empetraceae) in Cadiz. Acta Botanica Malacitana, 36, 137-144. doi:10.24310/abm.v36i1.2784Hardy, B. L. (2010). Climatic variability and plant food distribution in Pleistocene Europe: Implications for Neanderthal diet and subsistence. Quaternary Science Reviews, 29(5-6), 662-679. doi:10.1016/j.quascirev.2009.11.016Hardy, K. (2018). Plant use in the Lower and Middle Palaeolithic: Food, medicine and raw materials. Quaternary Science Reviews, 191, 393-405. doi:10.1016/j.quascirev.2018.04.028Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44-54. doi:10.1016/j.jhevol.2013.12.014Hernández-Molina, F. ., Somoza, L., Rey, J., & Pomar, L. (1994). Late Pleistocene-Holocene sediments on the Spanish continental shelves: Model for very high resolution sequence stratigraphy. Marine Geology, 120(3-4), 129-174. doi:10.1016/0025-3227(94)90057-4Hockett, B. (2012). The consequences of Middle Paleolithic diets on pregnant Neanderthal women. Quaternary International, 264, 78-82. doi:10.1016/j.quaint.2011.07.002Holst, D. (2010). Hazelnut economy of early Holocene hunter–gatherers: a case study from Mesolithic Duvensee, northern Germany. Journal of Archaeological Science, 37(11), 2871-2880. doi:10.1016/j.jas.2010.06.028Humphrey, L. T., De Groote, I., Morales, J., Barton, N., Collcutt, S., Bronk Ramsey, C., & Bouzouggar, A. (2014). Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proceedings of the National Academy of Sciences, 111(3), 954-959. doi:10.1073/pnas.1318176111Kron, K. A., & Chase, M. W. (1993). Systematics of the Ericaceae, Empetraceae, Epacridaceae and Related Taxa Based Upon rbcL Sequence Data. Annals of the Missouri Botanical Garden, 80(3), 735. doi:10.2307/2399857Kubiak-Martens, L. (1999). The plant food component of the diet at the late Mesolithic (Ertebolle) settlement at Tybrind Vig, Denmark. Vegetation History and Archaeobotany, 8(1-2), 117-127. doi:10.1007/bf02042850Laguna, E., Deltoro, V. ., Pèrez-Botella, J., Pèrez-Rovira, P., Serra, L., Olivares, A., & Fabregat, C. (2004). The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biological Conservation, 119(3), 421-426. doi:10.1016/j.biocon.2004.01.001León-González, A. J., Mateos, R., Ramos, S., Martín, M. Á., Sarriá, B., Martín-Cordero, C., … Goya, L. (2012). Chemo-protective activity and characterization of phenolic extracts from Corema album. Food Research International, 49(2), 728-738. doi:10.1016/j.foodres.2012.09.016León-González, A. J., Truchado, P., Tomás-Barberán, F. A., López-Lázaro, M., Barradas, M. C. D., & Martín-Cordero, C. (2013). Phenolic acids, flavonols and anthocyanins in Corema album (L.) D. Don berries. Journal of Food Composition and Analysis, 29(1), 58-63. doi:10.1016/j.jfca.2012.10.003Lev, E., Kislev, M. E., & Bar-Yosef, O. (2005). Mousterian vegetal food in Kebara Cave, Mt. Carmel. Journal of Archaeological Science, 32(3), 475-484. doi:10.1016/j.jas.2004.11.006LI, J. (2002). Phylogenetic relationships of Empetraceae inferred from sequences of chloroplast gene matK and nuclear ribosomal DNA ITS region. Molecular Phylogenetics and Evolution, 25(2), 306-315. doi:10.1016/s1055-7903(02)00241-5Lopez-Doriga, I. (2018). The Archaeobotany and Ethnobotany of Portuguese or White Crowberry (Corema album). Ethnobiology Letters, 9(2), 19-32. doi:10.14237/ebl.9.2.2018.1069Macedo, D., Tavares, L., McDougall, G. J., Vicente Miranda, H., Stewart, D., Ferreira, R. B., … Santos, C. N. (2014). (Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, 24(6), 1717-1732. doi:10.1093/hmg/ddu585Martínez Varea, C. M., & Badal García, E. (2017). Plant use at the end of the Upper Palaeolithic: archaeobotanical remains from Cova de les Cendres (Teulada-Moraira, Alicante, Spain). Vegetation History and Archaeobotany, 27(1), 3-14. doi:10.1007/s00334-017-0616-0Martinoli, D., & Jacomet, S. (2004). Identifying endocarp remains and exploring their use at Epipalaeolithic �k�zini in southwest Anatolia, Turkey. Vegetation History and Archaeobotany, 13(1), 45-54. doi:10.1007/s00334-003-0029-0McEwen, M. C. (1894). The Comparative Anatomy of Corema alba and Corema Conradii. Bulletin of the Torrey Botanical Club, 21(7), 277. doi:10.2307/2477916Milton, K. (1999). Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition, 15(6), 488-498. doi:10.1016/s0899-9007(99)00078-7Morales, J., Mulazzani, S., Belhouchet, L., Zazzo, A., Berrio, L., Eddargach, W., … Peña-Chocarro, L. (2015). First preliminary evidence for basketry and nut consumption in the Capsian culture (ca. 10,000–7500BP): Archaeobotanical data from new excavations at El Mekta, Tunisia. Journal of Anthropological Archaeology, 37, 128-139. doi:10.1016/j.jaa.2014.12.005Noli, D., & Avery, G. (1988). Protein poisoning and coastal subsistence. Journal of Archaeological Science, 15(4), 395-401. doi:10.1016/0305-4403(88)90037-4De Oliveira, P. B., & Dale, A. (2012). Corema album (L.) D. Don, the white crowberry – a new crop. Journal of Berry Research, 2(3), 123-133. doi:10.3233/jbr-2012-033Pimpão, R. C., Dew, T., Oliveira, P. B., Williamson, G., Ferreira, R. B., & Santos, C. N. (2013). Analysis of Phenolic Compounds in Portuguese Wild and Commercial Berries after Multienzyme Hydrolysis. Journal of Agricultural and Food Chemistry, 61(17), 4053-4062. doi:10.1021/jf305498jPower, R. C., & Williams, F. L. (2018). Evidence of Increasing Intensity of Food Processing During the Upper Paleolithic of Western Eurasia. Journal of Paleolithic Archaeology, 1(4), 281-301. doi:10.1007/s41982-018-0014-xPryor, A. J. E., Steele, M., Jones, M. K., Svoboda, J., & Beresford-Jones, D. G. (2013). Plant foods in the Upper Palaeolithic at Dolní Vӗstonice? Parenchyma redux. Antiquity, 87(338), 971-984. doi:10.1017/s0003598x00049802Redfield, J. H. (1884). Corema Conradii and Its Localities. Bulletin of the Torrey Botanical Club, 11(9), 97. doi:10.2307/2477643Reveal, J. L., & Chase, M. W. (2011). APG III: Bibliographical Information and Synonymy of Magnoliidae. Phytotaxa, 19(1), 71. doi:10.11646/phytotaxa.19.1.4Revedin, A., Longo, L., Mariotti Lippi, M., Marconi, E., Ronchitelli, A., Svoboda, J., … Aranguren, B. (2015). New technologies for plant food processing in the Gravettian. Quaternary International, 359-360, 77-88. doi:10.1016/j.quaint.2014.09.066Richards, M. P., & Trinkaus, E. (2009). Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences, 106(38), 16034-16039. doi:10.1073/pnas.0903821106Ruddiman, W. F., Ellis, E. C., Kaplan, J. O., & Fuller, D. Q. (2015). Defining the epoch we live in. Science, 348(6230), 38-39. doi:10.1126/science.aaa7297Santos, M. S., de Oliveira, C. M., Valdiviesso, T., & de Oliveira, P. B. (2014). Effects of pretreatments on Corema album (L.) D. Don (subsp. album) seeds’ germination. Journal of Berry Research, 4(4), 183-192. doi:10.3233/jbr-140079Slavin, J. L., & Lloyd, B. (2012). Health Benefits of Fruits and Vegetables. Advances in Nutrition, 3(4), 506-516. doi:10.3945/an.112.002154Snir, A., Nadel, D., Groman-Yaroslavski, I., Melamed, Y., Sternberg, M., Bar-Yosef, O., & Weiss, E. (2015). The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming. PLOS ONE, 10(7), e0131422. doi:10.1371/journal.pone.0131422Speth, J. D., & Spielmann, K. A. (1983). Energy source, protein metabolism, and hunter-gatherer subsistence strategies. Journal of Anthropological Archaeology, 2(1), 1-31. doi:10.1016/0278-4165(83)90006-5Villaverde, V., Real, C., Roman, D., Albert, R. M., Badal, E., Bel, M. Á., … Pérez-Ripoll, M. (2019). The early Upper Palaeolithic of Cova de les Cendres (Alicante, Spain). Quaternary International, 515, 92-124. doi:10.1016/j.quaint.2017.11.051Villaverde Bonilla, V., Román, D., Ripoll, M. P., Bergadà, M. M., & Real, C. (2012). The end of the Upper Palaeolithic in the Mediterranean Basin of the Iberian Peninsula. Quaternary International, 272-273, 17-32. doi:10.1016/j.quaint.2012.04.025Weiss, E., Kislev, M. E., Simchoni, O., & Nadel, D. (2004). Small-Grained Wild Grasses as Staple Food at the 23 000-Year-Old Site of Ohalo II, Israel. Economic Botany, 58(sp1), S125-S134. doi:10.1663/0013-0001(2004)58[s125:swgasf]2.0.co;2Weiss, E., Wetterstrom, W., Nadel, D., & Bar-Yosef, O. (2004). The broad spectrum revisited: Evidence from plant remains. Proceedings of the National Academy of Sciences, 101(26), 9551-9555. doi:10.1073/pnas.0402362101Zunzunegui, M., Díaz Barradas, M. C., Clavijo, A., Alvarez Cansino, L., Ain Lhout, F., & García Novo, F. (2005). Ecophysiology, growth timing and reproductive effort of three sexual foms of Corema album (Empetraceae). Plant Ecology, 183(1), 35-46. doi:10.1007/s11258-005-9004-

    Segunda reunión del Grupo de Trabajo “Situación Crítica de Cistus heterophyllus subsp. carthaginensis”. Valencia, 27-28 de mayo de 2019

    Full text link
    La jara de Cartagena es una especie incluida en el Real Decreto 139/2011 del Catálogo Español de Especies Amenazadas (CEEA), con la categoría de “En Peligro de Extinción”. A nivel autonómico está incluida en la Comunidad Valenciana (Decreto 70/2009 modificado por la Orden 6/2013) y en la Región de Murcia (Decreto 50/2003) igualmente como “En Peligro de Extinción”. En la actualidad se conoce un único ejemplar silvestre en la Comunidad Valenciana, localizado en 1986 en La Pobla de Vallbona (Valencia) y 11 ejemplares adultos (algunos de ellos con cierto grado de introgresión con Cistus albidus) en la Región de Murcia (Llano del Beal, Cartagen

    Conservation status of Narcissus perezlarae Font Quer (Amaryllidaceae) in the Valencian Community

    Get PDF
    Narcissus perezlarae está incluido en el Catálogo Valenciano de Especies de Flora Amenazadas de la Comunidad Valenciana (Orden 6/2013) en la categoría "En peligro de extinción". Estudios recientes han demostrado su origen híbrido (= N. cavanillesii × N. miniatus [= N. serotinus auct.]). Por otro lado, el mayor especialista y monografía del género reclamó recientemente su autonomía como especie independiente, como N. piifontianus. Esta especie es endémica de la península Ibérica, presente en Alto Alentejo (Portugal), Sevilla y Cádiz (España), y en la parte oriental de la Cordillera Bética, entre Alicante y Valencia. Sin embargo, si se tratara como una especie independiente, sería un endemismo exclusivamente restringido a la Comunidad Valenciana. Siete poblaciones naturales han sido monitoreadas, cuyos datos censales oscilan anualmente. El último censo contiene 1.634 plantas. Desde 2010, se han llevado a cabo cinco experiencias de translocación en la provincia de Alicante. De un total de 8.970 ejemplares introducidos se ha registrado una tasa de supervivencia del 28,4% (2.545 plantas) en el último censo. Las poblaciones recién creadas aumentan el número de localidades conocidas de la especie en la Comunidad Valenciana y amplían considerablemente su distribución a lo largo del territorio.Narcissus perezlarae is included in the Valencian Catalogue of Threatened Species of the Valencian Community (Order 6/2013) in the category "In danger of extinction". Recent studies have demonstrated its hybridogenic origin (= N. cavanillesii × N. miniatus [= N. serotinus auct.]). On the other hand, the greatest specialist and monograph of the genus has most recently claimed its autonomy as an independent species, as N. piifontianus. This species is endemic to the Iberian Peninsula, present in Alto Alentejo (Portugal), Sevilla and Cadiz (Spain), and in the eastern part of the Baetic Mountains, between Alicante and Valencia. However, if treated as an independent species, it would be an endemism exclusively restricted to the Valencian Community. Seven natural populations have been monitored, whose census data oscillate annually. The latest census contains 1634 plants. Since 2010, five translocation experiences have been carried out in Alicante province. A total amount of 8,970 plants were translocated and a survival rate of 28,4% (2,545 plants) was observed in the latest census. The newly created populations increase the number of known locations of the species in the Valencian Community and considerably expand their distribution range along the territory

    Conservació de l’endemisme vegetal de la serra d’Irta (Castelló) Limonium irtaense

    Get PDF
    L’ensopeguera d’Irta (Limonium irtaense Ferrer et al.), és un endemisme vegetal exclusiu de la serra d’Irta (el Baix Maestrat, NE de Castelló, Espanya), descobert per a la ciència al 2011 i descrit al 2015. En aquell moment es van comptabilitzar només 19 exemplars, que fan tota la població mundial de l’ensopeguera. Atesa la minsa població i molt escassa distribució espacial de la planta, és de notable interès analitzar l’evolució de les seues poblacions. També és important conèixer l’efecte del temporal Glòria (gener 2020), donat el fort risc d’extinció d’aquesta espècie. Entre 2013 i 2020 s’han censat entre un mínim de 10 exemplars (en 2020) i un màxim de 21 (en 2016). La Glòria ha afectat greument el nombre total de peus, reduint una de les dues poblacions a només 1 exemplar. Per tal de reduir el risc d’extinció, des de 2012 s’han plantat 279 exemplars en 3 àrees pròximes, i s’han constatat els primers reclutaments de nous exemplars. L’avaluació d’aquest treball confirma la classificació de l’espècie a la categoria CR (Críticament amenaçada) de la classificació de la UICN (Unió Internacional per a la Conservació de la Natura), i reforça la necessitat de mantenir la propagació ex situ i les translocacions de conservació.Irta’s sea lavender (Limonium irtaense Ferrer et al.) is an endemic plant species exclusive to Serra d’Irta (el Baix Maestrat, NE Castelló, Spain). It was first discovered in 2011 and subsequently described in 2015. At that time, only 19 specimens were counted, making up the entire world population of this sea lavender. Given the small population and very little spatial distribution of this plant, it is of great interest to analyze the evolution of its populations. It is also important to know the effect of the storm Gloria (January 2020), given the high risk of extinction of this species. Between 2013 and 2020, a minimum of 10 exemplars (in 2020) and a maximum of 21 (in 2016) were counted. Gloria has severely affected the total number of specimens, reducing one of the two populations to just 1 specimen. In order to reduce the risk of extinction, since 2012, 279 specimens have been planted in 3 nearby areas, and the first recruitments of new specimens have been already recorded. The evaluation of this work confirms the classification of the species in the CR (Critically Endangered) category of the IUCN (International Union for Conservation of Nature) classification, and reinforces the need to maintain ex situ propagation. and conservation translocations tasks

    Conservation and recovery program for Boerhavia repens L. (Nyctaginaceae), an endangered species in the Valencian Community (Spain)

    Get PDF
    Boerhavia repens está incluida en el Catálogo Valenciano de Especies de Flora Amenazadas de la Comunidad Valenciana (Orden 6/2013) en la categoría “En peligro de Extinción”. La única población española conocida está localizada en Teulada (Alicante, España), siendo la segunda población conocida en toda Europa. La población alicantina desapareció en 2012, y hasta el momento se han realizado 10 plantaciones en la provincia de Alicante. De un total de 615 plantas introducidas se ha registrado una tasa de supervivencia del 8,7% (54 plantas) en el último censo. Diferentes trabajos con la germinación de las semillas y cultivo de esta planta han sido realizados en el CIEF.Boerhavia repens is included in the Valencian Catalogue of Threatened Species of the Valencian Community (Order 6/2013) in the category “In danger of extinction”. The only known Spanish population is located in Teulada (Alicante, Spain), being the second known population in Europe. This population disappeared in 2012, and so far 10 plantations have been made in the province of Alicante. A total amount of 615 plants were translocated and a survival rate of 8,7% (54 plants) was observed in the latest census. Different works with the germination of seeds and cultivation of plants have been carried out at CIEF

    Estrategias de conservación para Cotoneaster granatensis (Rosaceae), especie catalogada En Peligro de Extinción en la Comunitat Valenciana (España)

    Get PDF
    Cotoneaster granatensis (Rosaceae) is an endangered species in the Valencian Community with two natural populations known and 37 wild plants located in Alicante province. The strategy applied for conservation of this species comprises three steps in a cyclical method: in situ (first step) - ex situ - in situ (second step). Current conservation status for this species has been evaluated as a part of the first step in situ actions. Ex situ conservation activities consisted of germplasm conservation on seed banks, creation and maintenance of collections of livings plants and production of new plants in order to develop reintroductions (in situ actions: second step) in natural populations. The seed germination is a complex issue, but an effective protocol has been established reaching values over 60% of germination. The plant propagation by cuttings has not been successful. In situ actions such as reducing the threat of herbivory has been also essential to enhance natural populations. The initial results on plantations in the natural habitat show high survival rates of specimens
    corecore