32,726 research outputs found

    Public relations in the World Bank

    Full text link
    Thesis (M.S.)--Boston Universit

    Period Color and Amplitude Color relations for MACHO project LMC RR Lyraes

    Full text link
    In this paper, we analyze period color and amplitude color relations at minimum, mean and maximum VV band light for 6391 RRab stars in the Large Magellanic Cloud obtained by the MACHO project. Specifically, we find that color and amplitude are nearly independent of period at minimum light but that there exists a definite relation between period and color and amplitude and color at maximum light. These two properties are easily explained by the application of the Stefan Boltzmann law and the interaction of the photosphere and hydrogen ionization front at minimum light. When we examine the slope of the period color relation as a function of phase, we find that the slope varies significantly with phase and is small for a wide range of phases around minimum light. This suggests that another factor that needs to be considered when trying to understand RR Lyrae observed properties is their behavior at different phases during a pulsation cycle.Comment: Sumitted for publication to MNRAS Letter

    A Kolmogorov-Smirnov test for the molecular clock on Bayesian ensembles of phylogenies

    Get PDF
    Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in other words, if it follows a Poisson law. The ECD is computed from the discretized branch lengths and the parameter λ\lambda of the expected Poisson distribution is calculated as the average branch length over the ensemble of trees. To compensate for the auto-correlation in the ensemble of trees and pseudo-replication we take advantage of thinning and effective sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is observed that tree topologies with very long or very short branches lead to Poisson mixtures and in this case we propose the use of the two-sample KS test with samples from two continuous branch length distributions, one obtained from an ensemble of clock-constrained trees and the other from an ensemble of unconstrained trees. Moreover, in this second form the test can also be applied to test for relaxed clock models. The use of a statistically equivalent ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree, yields considerable reduction of the effects of small sample size and provides again of power.Comment: 14 pages, 9 figures, 8 tables. Minor revision, additin of a new example and new title. Software: https://github.com/FernandoMarcon/PKS_Test.gi

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving
    • 

    corecore