18 research outputs found

    Potentiel de la formulation omega-3 EPA/DHA 6/1 à améliorer la dysfonction endothéliale liée à l’âge

    Get PDF
    EPA:DHA 6:1 omega-3 formulation has been shown to induce a sustained endothelial NO synthase-derived formation of nitric oxide. This study examined if the intake of EPA:DHA 6:1 improves an established ageing-related endothelial dysfunction. Ageing-related endothelial dysfunction was characterized by a blunted NO-mediated component of relaxation, abolished EDH-mediated component and increased COX-derived endothelium-dependent contractile responses. Ageing increased vascular oxidative stress, expression of NADPH oxidase subunits, COX-2, eNOS, ACE, AT1R, and senescence markers, whereas COX-1 was down-regulated. Chronic intake of EPA:DHA 6:1 improved the NO-mediated relaxations, reduced EDCFs, vascular oxidative stress and normalized the expression of protein markers. In conclusion, chronic intake of EPA:DHA 6:1 prevented the ageing-related endothelial dysfunction in old rats, most likely by preventing activation of the local angiotensin system and the subsequent vascular oxidative stress.La présente étude évalue la capacité de la formulation d’oméga-3 EPA:DHA 6:1, une formulation capable d’induire la formation continue de monoxyde d’azote par la NO synthase endothéliale, à améliorer la dysfonction endothéliale liée à l’âge établie chez le rat. La dysfonction endothéliale liée à l’âge est caractérisée par une altération des composantes de la relaxation et une augmentation des réponses contractiles dépendantes de l’endothélium. L’âge augmente le stress oxydant vasculaire, l’expression de la NADPH oxydase, COX-2, eNOS, ACE, AT1R, et des marqueurs de senescence, alors que la COX-1 est sous-exprimé. La formulation EPA:DHA 6:1 améliore la composante NO, diminue l’EDCF et le stress oxydant vasculaire, et normalise l’expression des protéines cibles. En conclusion, la consommation chronique de EPA:DHA 6:1 améliore la dysfonction endothéliale liée à l’âge chez le rat, probablement en prévenant l’activation du système angiotensine locale et le stress oxydant en résultant

    Fluorinated hexagonal boron nitride as a spacer with silver nanorods for surface enhanced Raman spectroscopy analysis

    No full text
    This manuscript presents a unique SERS substrate consisting of different number of silver nanorods (AgNRs) layers with fluorinated hexagonal boron nitride nanosheets (F-BN) as a spacer. The presentation of fabricated SERS nanostructure was examined and found that the SERS effect has been amplified by increasing the number of AgNRs layers. Sensitivity of SERS substrates was also examined by calculating the enhancement factor (EF) and limit of detection (LOD) down to concentrations 10 −12 and 10 −11 for the targeted dyes rodamine (R6G) and crystal violet (CV), respectively. Our results demonstrated that SERS performance of proposed nanostructure can be ascribed due to the production of topmost hot spots on AgNRs layers. It is believed that stronger electromagnetic field might be generated at the tapering gap between AgNRs and F-BN layers which brings out a higher EF and superior detection limit. Consequently, it is hoped that the concept of usage of F-BN as spacer with plasmonic materials for the fabrication of SERS can broadly be employed to improve SERS sensitivity and detection capability for variety of targeted analytes.</p

    A comprehensive phytochemical, biological, and toxicological studies of roots and aerial parts of <i>Crotalaria burhia</i> Buch.-Ham:An important medicinal plant

    No full text
    This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2′-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses

    Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1

    No full text
    International audienceAgeing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1

    Data_Sheet_1_A comprehensive phytochemical, biological, and toxicological studies of roots and aerial parts of Crotalaria burhia Buch.-Ham: An important medicinal plant.docx

    No full text
    This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2′-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.</p
    corecore