5,730 research outputs found

    Student Discovery and Learning Through Precalculus CBL Projects

    Get PDF

    Calibration of pressure-dependent sensitivity and discrimination in Nier-type noble gas ion sources

    Get PDF
    The efficiency of many noble gas mass spectrometers to ionize gas species is known to be a function of the pressure of gas in the spectrometer. This work shows how the half plate voltage for maximum He or Ar signal depends on the spectrometer pressure and shows that the half plate voltage for maximum 4He sensitivity does not coincide with the half plate voltage for maximum 3He sensitivity. In addition, half plate voltage has a greater control on sensitivity at higher spectrometer pressures. Variations in He and Ar sensitivity and isotopic discrimination as a function of pressure are due, at least in part, to these variations in the position of maximum sensitivity with respect to half plate voltage. The maximum sensitivity settings shift to lower half plate voltage at high spectrometer pressures, irrespective of if the pressure increase is due to the gas being investigated or a different species. Therefore noble gas mass spectrometers should always be tuned at the maximum possible pressure; measurements at higher pressures should be avoided. Significant errors in the spectrometer sensitivity and discrimination can result from improper tuning and calibration of noble gas mass spectrometers

    Isobar-free neon isotope measurements of flux-fused potential reference minerals on a Helix-MC-Plus^(10K) mass spectrometer

    Get PDF
    This work presents new analytical techniques for extraction and analysis of neon from a suite of different mineral phases, including quartz, pyroxene, hematite, apatite, zircon, topaz, and fluorite. Neon was quantitatively extracted at 1100 °C from all of these minerals using an in-vacuum lithium borate-flux fusion technique. Evolved neon was purified using a cryogenic method capable of separating Ne from He present in abundances ~8 orders of magnitude higher, typical of samples carrying nucleogenic/radiogenic noble gases. The purified neon was measured on a Helix-MC-Plus^(10K) mass spectrometer that permits isobar-free measurement of all three neon isotopes. When operated at its highest mass resolving power (MRP) of ~10,300, the shoulder representing solely ²²Ne on the low mass-side of the ²²Ne-CO₂⁺² doublet is wide enough to permit measurement of isobar free ²²Ne. Operating in this mode comes with the penalty of a 50% reduction in neon sensitivity. Coupled with a mathematical isobar-stripping method, this approach excludes 99.5% of the CO₂⁺² while still collecting >99% of the ²²Ne beam. Routine edge-centering on the dynamic CO₂⁺² peak prior to introduction of a sample permits rapid and robust relocation of the desired measure point in the mass spectrum. Cosmogenic ²¹Ne and ²²Ne concentrations obtained using these methods on the Cronus-A quartz and Cronus-P pyroxene international reference materials are in excellent agreement with previous work or expectations. Similarly, the concentration of nucleogenic ²¹Ne and ²²Ne in Durango apatite and the CIT hematite standard agree well with previous work. Durango apatite has notable heterogeneity in neon concentrations, consistent with previous observations of heterogeneous He, U and Th concentrations in this apatite. Nucleogenic neon concentrations are also presented for previously unstudied minerals including a Sri Lanka zircon (SLC), a topaz from the Imperial Topaz mine in Brazil (ITP1), and a fluorite (W-90) from New Hampshire. Taken together this set of potential reference minerals and the associated dataset provide a starting point for intercalibration among multiple mineral phases carrying ²¹Ne and ²²Ne of cosmogenic or nucleogenic origin

    Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite

    Get PDF
    High-precision stepped-heating experiments were performed to better characterize helium diffusion from apatite using Durango fluorapatite as a model system. At temperatures below 265°C, helium diffusion from this apatite is a simple, thermally activated process that is independent of the cumulative fraction of helium released and also of the heating schedule used. Across a factor of ∼4 in grain size, helium diffusivity scales with the inverse square of grain radius, implying that the physical grain is the diffusion domain. Measurements on crystallographically oriented thick sections indicate that helium diffusivity in Durango apatite is nearly isotropic. The best estimate of the activation energy for He diffusion from this apatite is E_a = 33±0.5 kcal/mol, with log(D_0) = 1.5±0.6 cm^2/s. The implied He closure temperature for a grain of 100 μm radius is 68°C assuming a 10°C/Myr cooling rate; this figure varies by ±5°C for grains ranging from 50 to 150 μm radius. When this apatite is heated to temperatures from 265 to 400°C, a progressive and irreversible change in He diffusion behavior occurs: Both the activation energy and frequency factor are reduced. This transition in behavior coincides closely with progressive annealing of radiation damage in Durango apatite, suggesting that defects and defect annealing play a role in the diffusivity of helium through apatite

    Helium diffusion parameters of hematite from a single-diffusion-domain crystal

    Get PDF
    This contribution reports new parameters for helium diffusion in hematite useful for interpretation of cosmogenic ^3He and radiogenic ^4He chronometry. Fragments of a coarse, euhedral single crystal of hematite from Minas Gerais, Brazil were subjected to bulk step-heating helium diffusion experiments after proton irradiation to make a uniform distribution of ^3He. Aliquots of three different grain sizes ranging from ∼300 to ∼700 μm in equivalent-sphere radius yielded helium diffusion activation energies E_a∼170 kJ/mol, very similar to previous estimates for E_a in hematite. Uniquely in this specimen, diffusivity varies with the dimensions of the analyzed fragments in precisely the fashion expected if the diffusion domain corresponds to the physical grain. This contrasts with previous studies that concluded that the analyzed hematites consist of polycrystalline aggregates in which helium migration is governed by the size distribution of the constituent crystallites. These new data permit a direct estimate of the helium diffusivity at infinite temperature for hematite of ln(D_o) = -0.66 ± 0.35 cm^2/sec. The major implication of the new diffusion parameters is that hematite is very retentive of helium even at very small crystal sizes. For example, a 20 nm radius hematite crystal, at the smallest end of the size range so far described in dated polycrystalline hematite specimens, will retain more than 99% of its ingrown He over 1 Myr at 30°C, and more than 90% over 100 Myr. Under most conditions, hematite is close to quantitatively helium-retentive on the Earth's surface, simplifying radiogenic and cosmogenic helium dating of this phase. In a system cooling at 10°C/Myr, the 20 nm hematite crystal has a He closure temperature of ∼70°C, similar to a typical ∼100 μm apatite crystal. Helium is likely held tightly in hematite owing to its dense hexagonal closest packing structure and absence of migration-enhancing channels. The isostructural minerals corundum and sapphire are likely to be similarly helium retentive

    Passivation of pigment particles for thermal control coatings

    Get PDF
    The preparation of a matrix of 48 samples consisting of pigments and pigmented paints is described. The results obtained from testing these samples by electron spin resonance and by in situ spectral reflectance measurements in space simulation tests are presented. Conclusions and recommendations for further research are given

    Geochemistry of Kauai shield-stage lavas: Implications for the chemical evolution of the Hawaiian plume

    Get PDF
    We measured He, Sr, Nd, Pb, and Os isotope ratios and major and trace element concentrations in stratigraphically and paleomagnetically controlled shield-stage lavas from Kauai, Hawaii. The range of 3He/4He ratios (17–28 RA) from Kauai is similar to that reported from Loihi and thus challenges the prevailing notion that high 3He/4He ratios are restricted to the preshield stage of Hawaiian magmatism. 3He/4He ratios vary erratically with stratigraphic position, and chronostratigraphic control from paleomagnetic data indicates very rapid changes in the 3He/4He ratios (up to 8 RA in ~102 years). These variations in helium isotopic ratios are correlated with variations in radiogenic isotope ratios, suggesting rapid changes in melt composition supplying the magma reservoir. A three-component mixing model, previously proposed for Hawaiian shield lavas, does not adequately explain the isotopic data in Kauai shield lavas. The addition of a depleted-mantle (DM) component with the isotopic characteristics similar to posterosional basalts explains the isotopic variability in Kauai shield lavas. The DM component is most apparent in lavas from the Kauai shield and is present in varying proportion in other Hawaiian shield volcanoes. Shield lavas from Kauai sample a high 3He/4He end-member (Loihi component), but while lavas from western Kauai have a larger contribution from the Kea component (high 206Pb/204Pb, anomalously low 207Pb/204Pb relative to 206Pb/204Pb), lavas from eastern Kauai have a larger proportion of an enriched (Koolau) component. The systematic isotopic differences between eastern and western Kauai reflect a gradual migration of the locus of volcanism from west to east, or alternatively east and west Kauai are two distinct shield volcanoes. In the latter case, the two shield volcanoes have maintained distinct magma supply sources and plumbing systems. Our new geochemical data from Kauai are consistent with the existence of a single high 3He/4He reservoir in the Hawaiian plume and suggest that the proportion of the different mantle components in the plume have changed significantly in the past 5 Myr. The long-term evolution of the Hawaiian plume and the temporal variability recorded in Kauai lavas require more complex geochemical heterogeneities than suggested by radially zoned plume models. These complexities may arise from heterogeneities in the thermal boundary layer and through variable entrainment of ambient mantle by the upwelling plume

    Delayed antibiotic prescriptions for respiratory infections

    Get PDF
    Background: Concerns exist regarding antibiotic prescribing for respiratory tract infections (RTIs) owing to adverse reactions, cost, and antibacterial resistance. One proposed strategy to reduce antibiotic prescribing is to provide prescriptions, but to advise delay in antibiotic use with the expectation that symptoms will resolve first. This is an update of a Cochrane Review originally published in 2007, and updated in 2010 and 2013. Objectives: To evaluate the effects on clinical outcomes, antibiotic use, antibiotic resistance, and patient satisfaction of advising a delayed prescription of antibiotics in respiratory tract infections. Search methods: For this 2017 update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 4, 2017), which includes the Cochrane Acute Respiratory Infection Group's Specialised Register; Ovid MEDLINE (2013 to 25 May 2017); Ovid Embase (2013 to 2017 Week 21); EBSCO CINAHL Plus (1984 to 25 May 2017); Web of Science (2013 to 25 May 2017); WHO International Clinical Trials Registry Platform (1 September 2017); and ClinicalTrials.gov (1 September 2017). Selection criteria: Randomised controlled trials involving participants of all ages defined as having an RTI, where delayed antibiotics were compared to immediate antibiotics or no antibiotics. We defined a delayed antibiotic as advice to delay the filling of an antibiotic prescription by at least 48 hours. We considered all RTIs regardless of whether antibiotics were recommended or not. Data collection and analysis: We used standard Cochrane methodological procedures. Three review authors independently extracted and collated data. We assessed the risk of bias of all included trials. We contacted trial authors to obtain missing information. Main results: For this 2017 update we added one new trial involving 405 participants with uncomplicated acute respiratory infection. Overall, this review included 11 studies with a total of 3555 participants. These 11 studies involved acute respiratory infections including acute otitis media (three studies), streptococcal pharyngitis (three studies), cough (two studies), sore throat (one study), common cold (one study), and a variety of RTIs (one study). Five studies involved only children, two only adults, and four included both adults and children. Six studies were conducted in a primary care setting, three in paediatric clinics, and two in emergency departments. Studies were well reported, and appeared to be of moderate quality. Randomisation was not adequately described in two trials. Four trials blinded the outcomes assessor, and three included blinding of participants and doctors. We conducted meta-analysis for antibiotic use and patient satisfaction. We found no differences among delayed, immediate, and no prescribed antibiotics for clinical outcomes in the three studies that recruited participants with cough. For the outcome of fever with sore throat, three of the five studies favoured immediate antibiotics, and two found no difference. For the outcome of pain related to sore throat, two studies favoured immediate antibiotics, and three found no difference. One study compared delayed antibiotics with no antibiotic for sore throat, and found no difference in clinical outcomes. Three studies included participants with acute otitis media. Of the two studies with an immediate antibiotic arm, one study found no difference for fever, and the other study favoured immediate antibiotics for pain and malaise severity on Day 3. One study including participants with acute otitis media compared delayed antibiotics with no antibiotics and found no difference for pain and fever on Day 3. Two studies recruited participants with common cold. Neither study found differences for clinical outcomes between delayed and immediate antibiotic groups. One study favoured delayed antibiotics over no antibiotics for pain, fever, and cough duration (moderate quality evidence for all clinical outcomes - GRADE assessment). There were either no differences for adverse effects or results favoured delayed antibiotics over immediate antibiotics (low quality evidence - to GRADE assessment) with no significant differences in complication rates. Delayed antibiotics resulted in a significant reduction in antibiotic use compared to immediate antibiotics prescription (odds ratio (OR) 0.04, 95% confidence interval (CI) 0.03 to 0.05). However, a delayed antibiotic was more likely to result in reported antibiotic use than no antibiotics (OR 2.55, 95% CI 1.59 to 4.08) (moderate quality evidence - GRADE assessment). Patient satisfaction favoured delayed over no antibiotics (OR 1.49, 95% CI 1.08 to 2.06). There was no significant difference in patient satisfaction between delayed antibiotics and immediate antibiotics (OR 0.65, 95% CI 0.39 to 1.10) (moderate quality evidence - GRADE assessment). None of the included studies evaluated antibiotic resistance. Authors' conclusions: For many clinical outcomes, there were no differences between prescribing strategies. Symptoms for acute otitis media and sore throat were modestly improved by immediate antibiotics compared with delayed antibiotics. There were no differences in complication rates. Delaying prescribing did not result in significantly different levels of patient satisfaction compared with immediate provision of antibiotics (86% versus 91%) (moderate quality evidence). However, delay was favoured over no antibiotics (87% versus 82%). Delayed antibiotics achieved lower rates of antibiotic use compared to immediate antibiotics (31% versus 93%) (moderate quality evidence). The strategy of no antibiotics further reduced antibiotic use compared to delaying prescription for antibiotics (14% versus 28%). Delayed antibiotics for people with acute respiratory infection reduced antibiotic use compared to immediate antibiotics, but was not shown to be different to no antibiotics in terms of symptom control and disease complications. Where clinicians feel it is safe not to prescribe antibiotics immediately for people with respiratory infections, no antibiotics with advice to return if symptoms do not resolve is likely to result in the least antibiotic use while maintaining similar patient satisfaction and clinical outcomes to delaying prescription of antibiotics. Where clinicians are not confident in using a no antibiotic strategy, a delayed antibiotics strategy may be an acceptable compromise in place of immediate prescribing to significantly reduce unnecessary antibiotic use for RTIs, and thereby reduce antibiotic resistance, while maintaining patient safety and satisfaction levels. Editorial note: As a living systematic review, this review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review

    Cretaceous-to-recent record of elevated 3He/4He along the Hawaiian-Emperor volcanic chain

    Get PDF
    Helium isotopes are a robust geochemical tracer of a primordial mantle component in hot spot volcanism. The high 3He/4He (up to 35 RA, where RA is the atmospheric 3He/4He ratio of 1.39 × 10−6) of some Hawaiian Island volcanism is perhaps the classic example. New results for picrites and basalts from the Hawaiian-Emperor seamount chain indicate that the hot spot has produced high 3He/4He lavas for at least the last 76 million years. Picrites erupted at 76 Ma have 3He/4He (10–14 RA), which is at the lower end of the range for the Hawaiian Islands but still above the range of modern mid-ocean ridge basalt (MORB; 6–10 RA). This was at a time when hot spot volcanism was occurring on thin lithosphere close to a spreading ridge and producing lava compositions otherwise nearly indistinguishable from MORB. After the hot spot and spreading center diverged during the Late Cretaceous, the hot spot produced lavas with significantly higher 3He/4He (up to 24 RA). Although 3He/4He ratios stabilized at relatively high values by 65 Ma, other chemical characteristics such as La/Yb and 87Sr/86Sr did not reach and stabilize at Hawaiian-Island-like values until ~45 Ma. Our limited 3He/4He record for the Hawaiian hot spot shows a poor correlation with plume flux estimates (calculated from bathymetry and residual gravity anomalies [Van Ark and Lin, 2004]). If 3He is a proxy for the quantity of primordial mantle material within the plume, then the lack of correlation between 3He/4He and calculated plume flux suggests that variation in primordial mantle flux is not the primary factor controlling total plume flux

    Constraining in situ cosmogenic nuclide paleo-production rates using sequential lava flows during a paleomagnetic field strength low

    Get PDF
    The geomagnetic field prevents a portion of incoming cosmic rays from reaching Earth’s atmosphere. During magnetic reversals and excursions, the field strength can decrease by up to 90% relative to the modern-day value. During such anomalies, cosmic ray bombardment to Earth’s atmosphere increases as evident from atmospheric ¹⁰Be anomalies recorded in sediment and ice cores. However, how the flux of cosmic rays to Earth’s surface varies during such geomagnetic anomalies is not well constrained. We measured fossil cosmogenic ³He in olivine from the tops of two pairs of ⁴⁰Ar/³⁹Ar age-dated Tahitian lava flows that erupted during the Matuyama-Brunhes reversal precursor event. We corrected these raw values for the diffusive loss of helium caused by heating from the overlying flow with a diffusion model using cooling rates and maximum temperature conditions based on field measurements of active lava flows from Kilauea, Hawaii. We assume the maximum temperature suggested by field measurements and thus present a limiting case for the highest diffusive loss corrections and thus the highest paleo-production rates. Based on paleomagnetic field strength reconstructions and scaling factor models, the upper limits of the corrected in situ 3He paleo-production rates (100 ± 23, 144 ± 35 atoms g⁻¹ a⁻¹) are in agreement with those expected during the period of a geomagnetic field strength low when these flow tops were exposed. However, the more plausible contact temperatures (<700°C maximum temperature in diffusion model) are associated with diffusion corrected paleo-production rates lower than those predicted by scalar models. This potential underestimation is likely a function of changes in local non-dipole field components, atmospheric density and/or an overestimation of the dipole field strength reduction during the M-B precursor event
    corecore