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Abstract  
 The geomagnetic field prevents a portion of incoming cosmic rays from reaching 

Earth’s atmosphere. During magnetic reversals and excursions, the field strength can 

decrease by up to 90% relative to the modern-day value. During such anomalies, cosmic ray 

bombardment to Earth’s atmosphere increases as evident from atmospheric 10Be anomalies 

recorded in sediment and ice cores. However, how the flux of cosmic rays to Earth’s surface 

varies during such geomagnetic anomalies is not well constrained. We measured fossil 

cosmogenic 3He in olivine from the tops of two pairs of 40Ar/39Ar age-dated Tahitian lava 

flows that erupted during the Matuyama-Brunhes reversal precursor event. We corrected 

these raw values for the diffusive loss of helium caused by heating from the overlying flow 

with a diffusion model using cooling rates and maximum temperature conditions based on 

field measurements of active lava flows from Kilauea, Hawaii. We assume the maximum 

temperature suggested by field measurements and thus present a limiting case for the highest 

diffusive loss corrections and thus the highest paleo-production rates. Based on 

paleomagnetic field strength reconstructions and scaling factor models, the upper limits of 
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the corrected in situ 3He paleo-production rates (100 ± 23, 144 ± 35 atoms g-1 a-1) are in 

agreement with those expected during the period of a geomagnetic field strength low when 

these flow tops were exposed. However, the more plausible contact temperatures (<700oC 

maximum temperature in diffusion model) are associated with diffusion corrected paleo-

production rates lower than those predicted by scalar models. This potential 

underestimation is likely a function of changes in local non-dipole field components, 

atmospheric density and/or an overestimation of the dipole field strength reduction during 

the M-B precursor event. 

 

Keywords: Cosmogenic Nuclides; Paleomagnetism; Matuyama-Bruhnes; Magnetic Reversal; 

Helium-3; production rates; cosmic rays 

 

 

Introduction: 

 Earth’s magnetic field shields the planet and its biosphere from high energy galactic and 

solar cosmic rays (Elsasser et al., 1956; Mead, 1964). However, the character of Earth’s magnetic 

field changes during excursions and polarity reversals (Gubbins, 1999; Jarboe et al., 2011; 

McElhinny and McFadden, 1998; McFadden et al., 1991). During these anomalies the 

geomagnetic field decreases in intensity, changes in orientation and reveals non-dipole 

components (Coe and Glen, 2004; Jarboe et al., 2011; Valet and Plenier, 2008).  

 Particles with enough energy to pass through Earth’s magnetic field (primary particles) 

bombard the atmosphere producing a cascade of secondary particles including protons and 
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neutrons. Secondary particles (largely neutrons) interact with atoms in surface minerals producing 

in situ cosmogenic nuclides, such as 3He (Gosse and Phillips, 2001). The relationship between 

Earth’s magnetic field and the production rate of atmospheric cosmogenic nuclides is fairly well-

constrained over the past ~50 kyr (Menabreaz et al., 2012; Muscheler et al., 2005; Raisbeck et al., 

1981). Atmospheric cosmogenic nuclide production rates show a distinct increase during the 

Laschamp excursion field strength low (Leduc et al., 2006; McHargue et al., 1995; Ménabréaz et 

al., 2011). Records from ice and sediment cores during the field strength low associated with the 

Matuyama-Brunhes (M-B) reversal also show an increased production rate of atmospheric 10Be 

(Raisbeck et al., 2006; Simon et al., 2017; Suganuma et al., 2010) (Figure 1). However, no 

observations exist regarding the flux of secondary particles reaching Earth’s surface and the 

resulting change in in situ cosmogenic nuclide paleo-production rates during paleomagnetic 

anomalies.  

 Here we report in situ paleo-production rates of spallogenic 3He during a field strength low 

associated with the M-B reversal precursor event. First, we independently define the time a lava 

flow was exposed to cosmic rays by calculating the age difference between sequential overlapping 

flows. By subtracting the high-precision 40Ar/39Ar age of the overlying flow from the underlying 

flow, a surface exposure time is calculated. Next, 3He is measured in olivine grains that are 

separated from the top 4 cm of the underlying flow. Then we corrected for the diffusive loss of He 

due to heating from the overlying flow using the He in olivine diffusion parameters from Blard et 

al. (2008). Finally, we compared the modeled paleo-production rates with modern-day production 

rates for this site. The modeled paleo-production rates range from those expected during the 

magnetic field strength low associated with the precursor event and modern-day production rate 

values at this location.  
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Geologic Setting: 
 This experiment required a field site comprised of lava flows that were formed during a 

paleomagnetic field strength low associated with a known polarity reversal and field strength 

reduction. Olivine-bearing alkali basalts are ideal for this study because they contain both olivine 

for cosmogenic 3He measurements and enough potassium to yield high-precision 40Ar/39Ar age 

determinations. Field sites from the low latitudes are preferred because this region is likely to 

experience the largest relative change in production rates associated with geomagnetic field 

strength changes. This is because Earth’s magnetic field lines are generally parallel to the planet’s 

surface in the low latitudes and thus more effective at repelling charged particles when the field is 

at full strength (Elsasser et al., 1956). Lastly, our experiment requires consecutive overlain lava 

flows formed during a paleomagnetic field strength low.  

 A series of lava flows in the Punaruu valley of Tahiti-Nui meet all of the above criteria 

(Balbas et al., 2018; Mochizuki et al., 2011). The polarity orientation of these flows ranges through 

normal, reversed, and transitional, and record field intensity as low as ~5 µT during the time of 

formation (Mochizuki et al., 2011). This represents a field strength reduction of up to ~86% 

compared to modern-day (Thébault et al., 2015). The flows vary in age from 771 to 805 ka and 

cover both the precursor and transitional phases of the M-B polarity reversal (Balbas et al., 2018). 

This study focuses on hand-samples taken from four lava flows that span ~20 m horizontally and 

>6 m vertically (Balbas et al., 2018; Mochizuki et al., 2011). The series of flows are located at 186 

m elevation and the contacts between flows are clear with no discernable erosion or ash beds 

(Figure 2). Paleosol layers were not observed or expected given the slow rate of soil development 

on basaltic lava flows (~0.3 m/Ma) (Pillans, 1997). The thickness of overlying flows (~4 m) was 

sufficient to ensure no significant post-burial production of 3He. This sequence was exposed in 
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road cuts during the 1990’s implying negligible contributions from modern exposure. Flows are 

clinopyroxene and olivine bearing alkali basalts with cryptocrystalline to holocrystalline 

groundmass matrices.  

 This study focuses on contacts between lava flows B1-B2 and B3-B4 (Balbas et al., 2018; 

Mochizuki et al., 2011). Flow B1 was exposed during a field strength low shown in the PISO1500 

(Channell et al., 2009) and PADM2M (Ziegler et al., 2011) paleo-intensity stacks (Figure 1) at 

~800-790 ka. Flow B3 formed during a time of slight field strength recovery (790-780 ka), prior 

to the final reversal phase (Figure 1). Both lava flows would have been exposed to surface 

radiation during a time-interval of reduced paleomagnetic field intensity known as the M-B 

precursor event (Channell et al., 2009; Hartl and Tauxe, 1996; Raisbeck et al., 2006; Singer et al., 

2005). Flow B1 has an 40Ar/39Ar age of 801.7 ± 2.9 ka (2σ; n=6) and B3 has an age of 792.2 ± 4.8 

ka (n=4) (Balbas et al., 2018). The overlying flows B2 and B4 have ages of 793.7 ± 4.1 (n=5) and 

781.3 ± 3.9 ka (n=4) respectively (Balbas et al., 2018). The resulting exposure times for B1-B2 is 

8.0 ± 5.0 ka and B3-B4 is 10.9 ± 6.2 ka.  

 The modern-day production rate for 3He in olivine at our field site is 76 ± 12 (2σ) atoms*g-

1*a-1, which is calculated using the 3He production rates in olivine from Goehring et al. (2010) 

(120 ± 18.8, 2σ, at sea level and high latitude) and a latitude-elevation-field strength production 

rate scaling factor of 0.63 which is calculated using the LSD model of Lifton et al. (2014) and 

includes corrections for the dip of the flow and topographic shielding. If continual subsidence of 

Tahiti-Nui is assumed to have occurred over the past 790 kyrs then the lava flows would have been 

emplaced at a higher elevation. Subsidence rates of Tahiti are reported at -0.05 ( 2.0) mm/yr 

(Fadil et al., 2011). If considered at this value, the total subsidence would be 40 m resulting in a 

3% increase of the scalar-derived paleo-production rate. However, due to the large uncertainty of 
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the subsidence rate, we have chosen not to include this increase in the LSD modeled paleo-

production rates. During the M-B precursor event the production rate at this site is assumed to 

increase due to the decreased strength of the magnetic field. The increased production rate can be 

calculated using the LSD scalar model (Lifton et al., 2014), which uses the magnetic field paleo-

intensity stack PADM2M (Ziegler et al., 2011). This stack includes multiple records of the field 

intensity low of the precursor event, and thus the scaling factor for samples exposed at this time is 

larger than during modern day. The mean modeled scalar value for the time period when these two 

flow tops were exposed is 1.03, which corresponds to a 3He production rate of 124 ± 19 atoms*g-

1*a-1 for our field site location during the precursor event. The uncertainty includes the production 

rate uncertainty from Goehring et al. (2010). It is important to note, these uncertainties only include 

the error on the 3He production rate (15.7%; 2σ) and do not include errors associated with the 

scalar or paleomagnetic field strength reconstructions used in the scalar as it has been argued that 

it is not possible to make uniform assessments of the inherent errors in scaling production rates 

(Desilets et al., 2006).  

Methods: 
 To ensure samples contained fossil cosmogenic 3He, bulk samples were taken from 

sections that had the clearest identifiable contacts between pairs of consecutive flows (Figure 2). 

The top 4 cm of the underlying flow, directly below the contact, were collected to produce olivine 

mineral separates for 3He analysis. 

 The 3He in olivine phenocrysts can come from both cosmogenic and magmatic sources. To 

isolate the cosmogenic component we used the methods outlined in Kurz (1986). This method 

involves crushing olivine grains in vacuo to determine the inherited (atmospheric and magmatic) 

3He/4He held within inclusions and grain defects. To obtain the inherited 3He concentration of the 
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lava flows, ~200 mg of olivine (0.5 – 1 mm size fraction) was separated from samples collected 

from the core of the lava flow (shielded at ~0.5- 1.0 m from the paleosurface). These separates 

were loaded into stainless steel crushers and crushed in vacuo at the Oregon State University 

laboratory following procedures outlined in Konrad et al. (2018).  

 Fusion analyses of the surface-exposed samples were carried out in the noble gas laboratory 

at Caltech. Olivine grains (150 - 500 µm) were hand-picked under a binocular microscope in order 

to provide a homogenous separate with minimal alteration. The olivine separates were crushed to 

a fine powder (<40 µm) under ethanol to release any magmatic helium in fluid inclusions while 

avoiding absorption of atmospheric He into the grains (Cox et al., 2017; Protin et al., 2016). 

Between 302 and 984 mg of crushed olivine were loaded into a high temperature furnace and 

brought under vacuum. Separates were heated to ~1300oC for 15 minutes, prior to being inlet into 

a gas processing line. Released gases were sequentially exposed to two SAES NP10 getters kept 

at 250oC and room temperature, respectively. Purified helium was then quantitatively cryo-focused 

on charcoal at ~14 K. Helium was released from the cryo-trap at 34 K and inlet into either a MAP 

215-50 (B3-CN-1, B3-CN-3) or GV Helix-SFT (B1-CN-1, B3-CN-4) mass spectrometer. For the 

MAP 215-50, 3He was analyzed using a channeltron pulse counting electron multiplier, while 4He 

was analyzed on a faraday cup using magnetic peak-hopping. For the Helix-SFT, 3He and 4He 

were measured by pulse counting using a Pfeiffer SEM 217 discrete dynode multiplier while using 

accelerating voltage to hop between masses. Hot blanks were run prior to each analysis (~1300oC) 

for background corrections and after each analysis (~1350oC) to ensure the sample was completely 

degassed. Blank corrections constituted between 0.6 to 21% (median = 8.1%) of the total 3He 

measurements. A standard with a ratio of 2.01 RA was run frequently during the time of analysis 

with multiple low He concentration splits analyzed to calibrate pressure non-linearity. 
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Uncertainties on 3He concentration represent the analytical uncertainty on the measurement 

coupled with the uncertainty on the blank correction calculated in quadrature. Paleo-exposure 

times are measured by subtracting the 40Ar/39Ar age of the overlying flow from the analyzed flow 

and propagating the internal uncertainties. The paleo 3He production rate was calculated using the 

measured 3He concentration and the calculated exposure time. The uncertainty on the paleo 

production rate includes the age uncertainty associated with the lava flows and the uncertainty on 

the 3He concentration (2σ). 

   

Results: 
 One olivine separate from a single hand sample was analyzed from lava flow-top B1, while 

three separate hand samples were analyzed from flow-top B3. The in vacuo crushed olivine 

separate from B1 contained 3He concentrations that were below detection limit. The detection limit 

was calculated using three times the standard deviation of the blanks run during the period of 

analyses (Konrad et al., 2018). The detection limit was 5.4 x104 atoms (2 x 10-15 ccSTP) with an 

average analyzed mass of 0.2 grams resulting in an upper limit concentration of 3He in this sample 

of 2.7 x 105 atoms/g. The fusion experiment for flow B1 contained 4.49 x 105 atoms/g of 3He 

(Table 2). No crushing experiment was undertaken for flow B3, but numerous other flows from 

the local sequence contained detection limited (<2.7 x 105 atoms) magmatic 3He concentrations 

(Table 1). Three fusion experiments for flow B3 contained 4.95, 4.31 and 4.14 x 105 atoms/g 3He, 

resulting in an error-weighted mean concentration of 4.27 x 105 atoms/g. The calculated paleo-

production rates for flow-tops B1 and B3 are 56 ± 35 and 39 ± 23 atoms*g-1*a-1 respectively (Table 

2). 
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Discussion: 
 

Paleo-production rates for 3He 

 We make the following important assumptions and observations, regarding 3He loss or 

inheritance in these olivine: (1) Lava flow tops appeared well preserved with no discernable 

erosional features or paleosol horizons. Additionally, the flows go from a holocrystalline center to 

a cryptocrystalline, slightly fractured and sometimes glassy flow top with no root casts or evidence 

of organic material, thus we assume minimal surface erosion between eruption and burial. (2) We 

assume no post-burial exposure to cosmic rays because overlying flows were a minimum of 4 m 

in thickness. We assume zero erosion of this overlying flow resulting in a maximum post burial 

production rate within the 10-10 atoms*g-1*s-1 range (Lal 1987), which corresponds to a 3He 

production that corresponds to a maximum of 2.7% (B1) and 2.8% (B3) of our total measured 

cosmogenic He. (3) That inherited magmatic-derived 3He is negligible given the lack of 3He 

released during in vacuo crushing of lava flows from this sequence (Table 1). (4) Diffusive loss 

of 3He occurs during likely heating by emplacement of the overlying flows and can be corrected. 

Our method of crushing samples in ethanol prior to total fusion analyses (Cox et al., 2017; Protin 

et al., 2016), coupled with detection limited 3He concentrations during crushing analyses imply 

that all measured 3He is likely cosmogenic with no significant input from inter-crystalline 

magmatic or atmospheric 3He (Table 1).  

 The uncorrected paleo-production rates of 39 +/- 23 and 56 +/- 35 (2) overlap with 

modern-day values with a probability of 3.3 and 33.1 percent, respectively. These measured paleo-

production rates represent minimum values, as 3He is likely diffusively lost when covered by an 

overlying lava flow.  
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3He loss due to diffusion 

 To model diffusive loss of He caused by heating from the overlying flow, we base our 

boundary conditions on observations of active ocean island lava flows from Kilauea, Hawaii (Hon 

et al., 1994; Keszthelyi, 1995). These flows are excellent analogues for our Tahitian lava flows 

because they are similar in size and composition. Keszthelyi (1995) reports that basal temperatures 

from underneath a molten flow directly after emplacement reach 740oC within one minute. In 

addition, the temperature within the molten flow increases by 100oC with every two vertical 

millimeters above the base of the newly emplaced flow (towards the center of the molten flow). 

We use the maximum temperature and the vertical temperature variations from Keszthelyi (1995) 

to inform the temperature conditions in the bottom flows of our study pairs from which our 

cosmogenic nuclide samples were taken. Because the bottom flow is previously crystalline, fully 

cooled, includes pore water, and the temperatures in molten flows decrease by 50oC per mm from 

the center of the flow, we conservatively define the maximum temperature for the olivine in the 

top 4 cm (40 mm) of the underlying flows (from each flow pair) to be between 640oC and 740oC. 

Certainly, the uppermost few centimeters of the bottom flow must be cooler than the lowermost 

millimeters of the upper flow. Thus, we use the maximum temperature of the base of the upper 

flow (740oC) to define a limiting case for the maximum temperature conditions in the underlying 

flow where we sampled. The Keszthelyi (1995) study did not collect temperatures beyond 20 

minutes after lava emplacement. Fortunately, another study reports measurements taken from the 

surface to 0.1 m depth (within the flow) indicate cooling begins ~1 hr after emplacement, with 

only the core of the lava flow remaining at maximum temperature for up to 10 hours (Hon et al., 

1994). Thus, our diffusion model assumes the underlying flow quickly reaches and then stays at a 

temperature between 640oC to 740oC for one hour. Then it begins cooling at a rate expressed by 

T = -354log(t)+835 
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where T is temperature (oC) and t is hours (Hon et al., 1994). The diffusive loss of He due to 

heating from the overlying flow was calculated assuming spherical grain geometry using the 

equations from Crank (1979). A conservative spherical radius of 150 µm was assumed and an Ea 

of 127 kj/mol and Ln(Do) of -4.7 cm2/s (Blard et al., 2008). The model scenario results in a 

diffusive He loss of 31% (640oC; best estimate) and a firm upper limit of 61% (740oC) from olivine 

in the underlying flow-top (Figure 3). 

 After correcting for diffusive loss, the new paleo-production rates for olivine from the 

flow-tops of B1 and B3 are 82 ± 35 and 57 ± 23 atoms*g-1*a-1 respectively for a maximum basal 

temperature of 640oC and 144 ± 35 and 100 ± 23 atoms*g-1*a-1 for a maximum basal temperature 

of 740oC (Table 3; Figure 3). Uncertainties include the error on the He measurements and 

40Ar/39Ar age determinations. These corrected paleo-production rates range from within error of 

the modern-day production rate (76 ± 12 atoms*g-1*a-1) to the theoretically modeled production 

rate (124 ± 19 atoms*g-1*a-1) during the time interval when these flow tops were exposed and the 

paleomagnetic field strength is expected to be low. This suggests the applicability of this method 

to reconstruct short-lived in situ paleo-production rates. The resulting paleo-production rates from 

the flow tops of B1 and B3 fall within the range of values we can expect even given the large range 

of temperature values (100oC) we use to correct for the diffusive loss of He. Due to the highly 

diffusive nature of He and the assumed temperature variations associated with lava emplacement, 

we cannot report a definitive paleo-production rate for the time interval represented by this sample 

set. However, we can reasonably rule out scenarios where the production rate increases by more 

than our upper limit paleo-production rate values (740oC). These values overlap within error with 

those defined by the PADM2M field strength estimates and LSD scaling factor model (Lifton et 

al., 2014; Ziegler et al., 2011). While the upper limits of the 3He modeled production rate (740oC) 
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agree with the LSD modeled values, the more likely maximum contact temperatures (<700oC) 

result in production rates lower than the LSD predictions. The diffusion corrected 3He production 

rates for 640 to 700oC are 82 to 108 atoms*g-1*a-1 (B1) and 57 to 75 atoms*g-1*a-1 (B3). While we 

acknowledge the considerable uncertainty on our paleo-production rates given diffusion 

corrections and 40Ar/39Ar age errors, they are the only observations yet available for this important 

polarity transition and they suggest that the LSD model may overestimate production rate changes 

during major paleomagnetic field strength excursions. The potential overestimation may be due to 

difficulties in quantifying the effects of local non-dipole field components and a possible 

overestimation of the dipole field strength reduction associated with the M-B precursor event. 

Additional uncertainties may arise from the use of modern-day atmosphere models (NOAA, 1976; 

Uppala et al., 2005), which may not accurately represent past atmospheric density.  

 In this study we have demonstrated that recovering archived cosmogenic nuclide 3He is 

feasible using sequential lava flow deposits. As the only known method for determining short-

lived in situ paleo-production rates into deep-time this method has the potential of answering 

fundamental questions about the behavior of Earth’s magnetic field and the role of non-dipole field 

components in shielding Earth’s surface from cosmic rays.  Future similar studies should 

incorporate less diffusive cosmogenic nuclides that are better preserved to accurately define paleo-

production rates. 21Ne represents the most studied  stable cosmogenic nuclide that is less diffusive 

than 3He in olivine and pyroxene from basalt flows (Gourbet et al., 2012). The diffusive loss of Ne 

is estimated to be less than 1% when using the same temperature conditions (640-740oC) applied 

to the He diffusion model and the activation energy and diffusivity constants from Gourbet et al. 

(2012). An alternative approach would be to reconstruct a cosmogenic depth profile of 3He in the 

underlying flow where the shape of the profile would likely deviate from the expected attenuation 
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profile owing to diffusive loss in a temperature gradient. Alternatively, using rhyolitic lava flows, 

such as those found in intraplate continental volcanic systems (e.g. Ellis et al., 2013; Manley, 1996) 

may allow for the use of 10Be and 26Al in quartz phenocrysts. However, both 10Be and 26Al are 

unstable isotopes and thus their use may be temporally restricted to million-year timescales. The 

best option would be to analyze two cosmogenic nuclides within a single mineral separate or bulk 

rock sample to best observe and correct for potential diffusion among the cosmogenic nuclides. 

This would result in the most robust reconstruction of short-lived cosmogenic nuclide paleo-

production rates.  

Conclusions: 
 These measurements represent the first reported short-lived in situ paleo-production rates 

coincident with a paleomagnetic field strength low associated with a polarity reversal. In addition, 

we report the only known means for reconstructing short-lived paleo-production rates (millennial 

timescales) that occur hundreds of thousands of years ago. Due to the diffusivity of He in olivine, 

we are unable to report an absolute 3He paleo-production but have defined the upper limit of in 

situ paleo-production rates during the M-B reversal precursor event. The upper limit (Tmax = 

740oC) of the diffusion corrected 3He paleo-production rate values are in agreement with the LSD 

model prediction. However, the more plausible maximum contact temperatures (Tmax<700oC) 

result in corrected 3He paleo-production rates that are lower than predicted. This suggests further 

investigation is required to better constrain non-dipole field horizontality components, paleo-

magnetic field strength and paleo-atmospheric density during this time interval. This supports this 

method’s viability while using a less diffusive element to reconstruct paleo-production rates in 

volcanic flows with higher K content to reduce age uncertainties. This new method can be used to 

determine regional short-lived in situ paleo-production rates using mineral targets producing 21Ne, 
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10Be, and/or 26Al cosmogenic nuclides in independently age dated lava flows. Thus, the method 

can be used to look at paleo-production rate changes associated paleomagnetic anomalies, secular 

variation, and non-dipole field characteristics. Arguably, constraining this method further using 

21Ne would prove most valuable as it can be used to define short-lived paleo-production rate 

changes into deep-time because it is a stable isotope.  
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Table 1: Crush-derived Helium isotopic values 

Sample Weight Total 3He Released Total 4He Released    

  g pcc/g ncc/g    

B1 0.1717 DL 0.42    

A2 0.2454 DL 0.60    

B5 0.2281 DL 0.44    

A7 0.2484 0.02 2.18    

A15 0.2037 DL 0.29    

A16 0.2593 DL 0.48    

DL = ‘Detection Limited’ defined as three times the standard deviation of the blanks run during 

time of analyses (2 x 10-15 ccSTP), see Konrad et al. (2018) for details. 

 

Table 2: 3He values and exposure ages 

Sample Weight 

Total 
3He 

Released 

Total 
3He 

Released 

40Ar/39Ar 

age 

difference 

40Ar/39Ar 

uncertainty 

Production 

Rate 

Production 

Rate 

 g 
105 

atoms/g 

105 

atoms/g 

(2σ) 
years years (2σ) 

atoms*g-

1*a-1 

atoms*g-

1*a-1 (2σ) 

B1-CN-1 0.723 4.49 0.33 8000 5022 56 35 

B3-CN-1 0.316 4.95 0.77 10900 6185 45 27 

B3-CN-3 0.302 4.14 0.38   38 22 

B3-CN-4 0.984 4.31 0.29   40 23 

B3-Total  4.27 0.18   39 23 
40Ar/39Ar age determinations from Balbas et al. (2018). 

 

Table 3: 3He Paleo-production Rates 

Flow Top 
Peak 

Temperature 
Production Rate 

± Production Rate 

 oC atoms*g-1*a-1 atoms*g-1*a-1 (2σ) 

B1 - 56 35 

 640 82 “ 

 740 144 “ 

B3 - 39 23 

 640 57 “ 

 740 100 “ 

Peak temperature represents the maximum equilibration temperature with the overlying flow, see text for 

details. 
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Figure 1: Variations in atmospheric 10Be concentration and paleomagnetic field intensity through 

the Matuyama-Bruhnes reversal and precursor event. (A) Standardized 10Be/9Be record from 

marine sediment cores MD97-2143 (dashed line) and stacked MD05-2920, MD05-2930 and 

MD90-0961 (solid line) (Simon et al., 2018a; Simon et al., 2018b). (B) 10Be flux recorded in an 

ice core from EPICA Dome C (Raisbeck et al., 2006) on the age model AICC2012 (Bazin et al., 

2013). (c) Virtual axial dipole moment (VADM) through time determined from stacked 

sedimentary core records (PISO-1500, Channell et al., 2009) and stacked sedimentary/lava flow 

records (PADM2M, Ziegler et al., 2011). The exposure durations for flows B1 and B3 are shown 

with grey shading. 
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Figure 2: The contact between lava flows B3 and B4. The yellow chalk line represents the contact 

between the rubbly top of B3 and the solid base of B4. Samples B3-CN were taken from below 

the yellow chalk line. A yellow notebook is shown for a scale with a length of ~12.7 cm.   

Jo
ur

na
l P

re
-p

ro
of



18 
 

 

 

Figure 3: Modeled He diffusion in olivine and corresponding paleo-production rates after 

diffusive loss corrections. (A) Models of He diffusion in olivine using the temperatures and cooling 

rates discussed in the text. The model uses a Ln(Do) of -4.7 cm2/s and an Ea of 127 kJ/mol for 

olivine (Blard et al., 2008). The diffusion model conservatively assumes spherical grain sizes at a 

radius of 150 µm. (B) Calculated paleo-production rates for 3He corrected using diffusion results 

from (A). The modern day and M-B precursor production rates and corresponding error for the 

field site are shown as grey circles and calculated using the Goehring et al. (2010) production rate, 

scaled using the LSD model (Lifton et al., 2014). The production rate uncertainties include the 

coupled 3He and 40Ar/39Ar uncertainties shown with 2σ confidence. The modeled corrected 

production rate uncertainties do not include the error on Ea and Ln(Do).Jo
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