1,068 research outputs found
Comparison of D2 dopamine receptor occupancy after oral administration of quetiapine fumarate immediate-release and extended-release formulations in healthy subjects
Quetiapine is an established drug for treatment of schizophrenia, bipolar disorder, and major depressive disorder. While initially manufactured as an immediate-release (IR) formulation, an extended-release (XR) formulation has recently been introduced. Pharmacokinetic studies show that quetiapine XR provides a lower peak and more stable plasma concentration than the IR formulation. This study investigated if the pharmacokinetic differences translate into different time curves for central D2 dopamine receptor occupancy. Eleven control subjects were examined with positron emission tomography (PET) and the radioligand [11C]raclopride. Eight subjects underwent all of the scheduled PET measurements. After baseline examination, quetiapine XR was administered once-daily for 8 d titrated to 300 mg/d on days 5–8, followed by 300 mg/d quetiapine IR on days 9–12. PET measurements were repeated after the last doses of quetiapine XR and IR at predicted times of peak and trough plasma concentrations. Striatal D2 receptor occupancy was calculated using the simplified reference tissue model. Peak D2 receptor occupancy was significantly higher with quetiapine IR than XR in all subjects (50±4% and 32±11%, respectively), consistent with lower peak plasma concentrations for the XR formulation. Trough D2 receptor occupancy was similarly low for both formulations (IR 7±7%, XR 8±6%). The lower peak receptor occupancy associated with quetiapine XR may explain observed pharmacodynamic differences between the formulations. Assuming that our findings in control subjects are valid for patients with schizophrenia, the study supports the view that quetiapine, like the prototype atypical antipsychotic clozapine, may show antipsychotic effect at lower D2 receptor occupancy than typical antipsychotics
Differential chromatin binding preference is the result of the neo-functionalization of the TB1 clade of TCP transcription factors in grasses
The understanding of neo-functionalization of plant transcription factors (TFs) after gene duplication has been extensively focused on changes in protein–protein interactions, the expression pattern of TFs, or the variation of cis-elements bound by TFs. Yet, the main molecular role of a TF, that is, its specific chromatin binding for the direct regulation of target gene expression, continues to be mostly overlooked. Here, we studied the TB1 clade of the TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) TF family within the grasses (Poaceae). We identified an Asp/Gly amino acid replacement within the TCP domain, originated within a paralog TIG1 clade exclusive for grasses. The heterologous expression of Zea mays TB1 and its two paralogs BAD1 and TIG1 in Arabidopsis mutant plants lacking the TB1 ortholog BRC1 revealed distinct functions in plant development. Notably, the Gly acquired in the TIG1 clade does not impair TF homodimerization and heterodimerization, while it modulates chromatin binding preferences. We found that in vivo TF recognition of target promoters depends on this Asp/Gly mutation and directly impacts downstream gene expression and subsequent plant development. These results provided new insights into how natural selection fine-tunes gene expression regulation after duplication of TFs to define plant architecture.Fil: Mansilla, Natanael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Fonouni-farde, Camille Audrey. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Ariel, Federico Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Lucero, Leandro Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin
Introduction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73564/1/j.1365-2125.2000.00146.x.pd
Individual differences in the proneness to have flow experiences are linked to dopamine D2-receptor availability in the dorsal striatum
Flow is a subjective experience of high but effortless attention, enjoyment, and low self-awareness that can occur during the active performance of challenging tasks. The dispositional proneness to experience flow is associated with personality traits that are known to be influenced by dopaminergic neural systems. Here, for the first time, we investigated relations between flow proneness and dopaminergic function. Specifically, we tested the hypothesis that the availability of dopamine D2-receptors in the striatum is positively associated with flow proneness. Striatal D2-receptor availability was measured in a sample of 25 healthy adults using positron emission tomography and [ 11 C]raclopride. Flow proneness was measured using the Swedish Flow Proneness Questionnaire. As hypothesized, there was a significant correlation (r = .41) between striatal D2-receptor availability and flow proneness. An exploratory analysis of striatal subregions showed that the relation was mainly driven by the dorsal striatum, with a significantly higher correlation in the putamen than in the ventral striatum. The findings constitute the first demonstration of an association between flow proneness and dopaminergic function. We suggest that the proneness to experience flow is related to personality dimensions that are under dopaminergic control and characterized by low impulsiveness, stable emotion, and positive affect
Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [11C]PBR28.
Abstract
Several lines of evidence are indicative of a role for immune activation in the pathophysiology of schizophrenia. Nevertheless, studies using positron emission tomography (PET) and radioligands for the translocator protein (TSPO), a marker for glial activation, have yielded inconsistent results. Whereas early studies using a radioligand with low signal-to-noise in small samples showed increases in patients, more recent studies with improved methodology have shown no differences or trend-level decreases. Importantly, all patients investigated thus far have been on antipsychotic medication, and as these compounds may dampen immune cell activity, this factor limits the conclusions that can be drawn. Here, we examined 16 drug-naive, first-episode psychosis patients and 16 healthy controls using PET and the TSPO radioligand [11C]PBR28. Gray matter (GM) volume of distribution (VT) derived from a two-tissue compartmental analysis with arterial input function was the main outcome measure. Statistical analyses were performed controlling for both TSPO genotype, which is known to affect [11C]PBR28 binding, and gender. There was a significant reduction of [11C]PBR28 VT in patients compared with healthy controls in GM as well as in secondary regions of interest. No correlation was observed between GM VT and clinical or cognitive measures after correction for multiple comparisons. The observed decrease in TSPO binding suggests reduced numbers or altered function of immune cells in brain in early-stage schizophrenia
Sleep deprivation disrupts prepulse inhibition of the startle reflex: reversal by antipsychotic drugs
This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2327016&fileId=S1461145708008900Sleep deprivation (SD) is known to induce perceptual impairments, ranging from perceptual distortion to hallucinatory states. Although this phenomenon has been extensively described in the literature, its neurobiological underpinnings remain elusive. In rodents, SD induces a series of behavioural patterns that might be reflective of psychosis and mania, such as hyperlocomotion and sensitization to psychotogenic drugs. Notably, such changes are accompanied by transitory alterations of dopaminergic signalling. Based on the hypothesis that both psychotic and manic disorders reflect gating impairments, the present study was aimed at the assessment of the impact of SD on the behavioural model of prepulse inhibition (PPI) of the startle reflex, a reliable paradigm for the study of informational filtering. Rats subjected to SD (24 h, 48 h, 72 h) exhibited a time-dependent increase in startle reflex and a dramatic deficit in PPI. Both alterations were reversed 24 h after termination of the SD period. Interestingly, PPI disruption was efficiently prevented by haloperidol (0.1 mg/kg i.p.) clozapine (5 mg/kg i.p.) and risperidone (1 mg/kg i.p.). Conversely, neither the anxiolytic diazepam (5 mg/kg i.p.) nor the antidepressant citalopram (5 mg/kg i.p) affected the PPI disruption mediated by SD, although diazepam reversed the enhancement in startle reflex magnitude induced by this manipulation. Our data suggest that SD induces gating deficits that might be relevant to the hallucinatory phenomena observed in humans, and provide a novel reliable animal model where such relationship can be studied
Dopamine D2 receptor occupancy and cognition in schizophrenia : analysis of the CATIE data
Introduction: Antipsychotic drugs exert antipsychotic effects by blocking dopamine D2 receptors in the treatment of schizophrenia. However, effects of D2 receptor blockade on neurocognitive function still remain to be elucidated. The objective of this analysis was to evaluate impacts of estimated dopamine D2 receptor occupancy with antipsychotic drugs on several domains of neurocognitive function in patients with schizophrenia in the Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) trial. Methods: The dataset from the CATIE trial was used in the present analysis. Data were extracted from 410 subjects who were treated with risperidone, olanzapine, or ziprasidone, received assessments for neurocognitive functions (verbal memory, vigilance, processing speed, reasoning, and working memory) and psychopathology, and provided plasma samples for the measurement of plasma antipsychotic concentrations. D2 receptor occupancy levels on the day of neurocognitive assessment were estimated from plasma antipsychotic concentrations, using population pharmacokinetic analysis and our recently developed model. A multivariate general linear model was used to examine effects of clinical and demographic characteristics, including estimated D2 occupancy levels, on neurocognitive functions. Results: D2 occupancy levels showed significant associations with the vigilance and the summary scores. Neurocognitive functions, including vigilance, were especially impaired in subjects who showed D2 receptor occupancy level of >77%. Discussion: These findings suggest a nonlinear relationship between prescribed antipsychotic doses and overall neurocognitive function and vigilance. This study shows that D2 occupancy above approximately 80% not only increases the risk for extrapyramidal side effects as consistently reported in the literature but also increases the risk for cognitive impairment.peer-reviewe
Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response - a double-blind PET study in schizophrenia
Blockade of dopamine D2 receptors remains a common feature of all antipsychotics. It has been hypothesized that the extrastriatal (cortical, thalamic) dopamine D2 receptors may be more critical to antipsychotic response than the striatal dopamine D2 receptors. This is the first double-blind controlled study to examine the relationship between striatal and extrastriatal D2 occupancy and clinical effects. Fourteen patients with recent onset psychosis were assigned to low or high doses of risperidone (1 mg vs 4 mg/day) or olanzapine (2.5 mg vs 15 mg/day) in order to achieve a broad range of D2 occupancy levels across subjects. Clinical response, side effects, striatal ([11C]-raclopride-positron emission tomography (PET)), and extrastriatal ([11C]-FLB 457-PET) D2 receptors were evaluated after treatment. The measured D2 occupancies ranged from 50 to 92% in striatal and 4 to 95% in the different extrastriatal (frontal, temporal, thalamic) regions. Striatal and extrastriatal occupancies were correlated with dose, drug plasma levels, and with each other. Striatal D2 occupancy predicted response in positive psychotic symptoms (r=0.62, p=0.01), but not for negative symptoms (r=0.2, p=0.5). Extrastriatal D2 occupancy did not predict response in positive or negative symptoms. The two subjects who experienced motor side effects had the highest striatal occupancies in the cohort. Striatal D2 blockade predicted antipsychotic response better than frontal, temporal, and thalamic occupancy. These results, when combined with the preclinical data implicating the mesolimbic striatum in antipsychotic response, suggest that dopamine D2 blockade within specific regions of the striatum may be most critical for ameliorating psychosis in schizophrenia.peer-reviewe
Modeling of prolactin response following dopamine Dreceptor antagonists in rats:can it be translated to clinical dosing?
Prolactin release is a side effect of antipsychotic therapy with dopamine antagonists, observed in rats as well as humans. We examined whether two semimechanistic models could describe prolactin response in rats and subsequently be translated to predict pituitary dopamine D2receptor occupancy and plasma prolactin concentrations in humans following administration of paliperidone or remoxipride. Data on male Wistar rats receiving single or multiple doses of risperidone, paliperidone, or remoxipride was described by two semimechanistic models, the precursor pool model and the agonist-antagonist interaction model. Using interspecies scaling approaches, human D2receptor occupancy and plasma prolactin concentrations were predicted for a range of clinical paliperidone and remoxipride doses. The predictions were compared with corresponding observations described in literature as well as with predictions from published models developed on human data. The pool model could predict D2receptor occupancy and prolactin response in humans following single doses of paliperidone and remoxipride. Tolerance of prolactin release was predicted following multiple doses. The interaction model underpredicted both D2receptor occupancy and prolactin response. Prolactin elevation may be deployed as a suitable biomarker for interspecies translation and can inform the clinical safe and effective dose range of antipsychotic drugs. While the pool model was more predictive than the interaction model, it overpredicted tolerance on multiple dosing. Shortcomings of the translations reflect the need for better mechanistic models
- …