57 research outputs found

    The Effect of Homogenization Pressure and Stages on the Amounts of Lactic and Acetic Acids of Probiotic Yoghurt

    Get PDF
    Nowadays the use of probiotic products especially yogurt, due to having wonderful and health properties, has become popular in the world. In this study, the effect of homogenization pressure (100, 150 and 200 bars) and stage (single and two) on the amount of lactic and acetic acids was investigated. Yoghurts were manufactured from low-fat milk treated using high pressure homogenization at 100,150 and 200 bar and at 60°C. The amount of lactic and acetic acids was determined after the days 1, 7, 14 and 21 of storage at 4ºC. The experiments were set up using a completely randomized design. With the increase of pressure and stage of homogenization, the amount of both acids was increased (p<0.01). The greatest amount of lactic and acetic acids during the storage period was observed in the sample homogenized at a pressure of 200 bars and two stages

    Coping With Stress in Iranian School-Age Children

    Get PDF
    Background: Methods learnt by children to cope with stress will be used in their adolescence. Failure to learn adaptive coping strategies causes some mental, physical and behavioral problems which continue until adulthood. Objectives: The current study was conducted to investigate the methods of coping with stress among Iranian school-age children. Patients and Methods: A descriptive study was conducted in which a randomly selected sample of 839 students of third to fifth grade of primary school in Tabriz, Iran participated. The data were collected using the Schoolagers` Coping Strategies Inventory questionnaire. SPSS software was employed to analyze the data by percentage, absolute frequency, and linear regression test. Results: All coping methods inserted in the questionnaire were used by students. More than 70% of students mentioned “pray”, “say I’m sorry or tell the truth”, and “try to relax, stay calm” out of 26 cases of coping strategies. According to more than 60% of children, “pray”, “say I’m sorry or tell the truth”, and “draw, write, or read something” were the most useful coping methods and “pick on someone” and “yell or scream” were not mostly used by the children under study. Conclusions: Children use variable methods to cope with their stress. Therefore, parents, health trainers and school authorities should distinguish non-adaptive methods of children and teach them the adaptive coping strategies

    Evaluation of the Effect of Ascorbic Acid and Sucrose Foliar Application on some Quantitative and Qualitative Characteristics of Cucurbita pepo var. Styriaca

    Get PDF
    Introduction Pumpkin (Cucurbita pepo) is a medicinal plant belonging to the Cucurbitaceae family and the order Cucurbitals. The seeds of this plant are a rich source of essential oils and proteins for the body. It is used in the production of various drugs such as Peponen, Pepostrin, Grunfig and treatment of prostate swelling, urinary tract inflammation, atherosclerosis, gastrointestinal regulation, etc. Since the components of medicinal plants are low at natural condition, and could be increased by means of different environmental conditions, nutrition or application of elicitors; thus, it is necessary to work on mentioned parameters effects on quantitative and qualitative attributes of medicinal plants. Recent years, many researches have been done based on natural components for increment of yield and secondary metabolites of medicinal plants. Ascorbic acid is one of these materials which its effect on plant growth has been validated. In the management of agricultural inputs, especially in the cultivation of medicinal plants, the application of substances that have the least harmful side effects on human health and the environment is recommended. Meanwhile, sucrose and ascorbic acid are healthy substances to improve growth and increase crop yield. Therefore, the aim of the present study was to determine the effect of these two substances on yield, yield components and phytochemical characteristics of pumpkins. Materials and Methods  Pumpkin seeds were prepared from Pakan Bazr Esfahan by purity of 99%. Then, planted in a farm of 500 m2 at Behshar. After plant growth, spray treatments were conducted at three times as before flowering, onset of flowering and fruit set stages. This experiment was conducted in factorial with sucrose factor at four levels (0, 5, 10, 15 g.l-1) and ascorbic acid factor at four levels (0, 15, 30, 45 mM), based on a randomized complete block design with three replications. The studied characteristics included number of leaves and fruits, plant yield, 1000-seed weight, total number of seeds, number of healthy seeds, percentage of healthy seeds, number of blank (deaf) seeds, percentage of blank seeds, total chlorophyll, antioxidant activity, phenol, flavonoids, protein and oil percentage. Statistical analysis of data was performed using SAS statistical software and comparison of mean was performed using the least significant difference (LSD) at the level of 5% probability. Figures were graphed with Excel software. Results and Discussion  According to this study results, the effect of foliar application of sucrose and ascorbic acid and their interaction on most of the studied traits was significant. Application of 15 g.l-1 sucrose with 15 mM ascorbic acid increased the number of fruits to 1.68 per plant, which showed an increase compared to the control treatment. The highest total number of seeds with an average of 464 seeds per fruit was obtained by applying 5 g.l-1 sucrose with 45 mM ascorbic acid, which compared to the control (247.33) recorded an increase of 87.60%. The highest total chlorophyll content was measured with an average of 2.081 (mg.g-1 fresh weight) using 5 g.l-1 sucrose with 15 mM ascorbic acid, which showed an increase of 1.81% compared to the control treatment (2.044). Also, application of 15 g.l-1 sucrose along with 15 mM ascorbic acid increased protein by 40.03%, which showed an increase of 79.26% compared to the control (22.33). Other results indicate that increasing the amount of seed oil up to 44.50% is available with the application of 15 g.l-1 sucrose with 30 mM ascorbic acid and also with the application of 10 g.l-1 sucrose with 45 mM ascorbic acid; which had an increase of 16.61% compared to the control (38.16). The results of the present study showed that the application of combined ratios of sucrose and ascorbic acid has been effective in improving the quantitative and qualitative attributes of pumpkin, including protein content and percentage of pumpkin seed oil. Conclusion  Since the treatment of sucrose 10 g.l-1 with 45 mM ascorbic acid significantly affected most of important attributes such as total antioxidant activity, total flavonoids, protein content and high oil content, therefore, this combination of treatment can be applied to increase the quality of pumpkin seeds. However, if only quantity is important, the treatment of sucrose 15 g.l-1 with 15 mM ascorbic acid, which caused the highest number of fruits per plant, the highest yield as well as the highest protein, can be recommended

    The Intricate Structural Chemistry of MII2nLn-Type Assemblies

    Get PDF
    The reaction of cis-blocked, square-planar M-II complexes with tetratopic N-donor ligands is known to give metallasupramolecular assemblies of the formula M2nLn. These assemblies typically adopt barrel-like structures, with the ligands paneling the sides of the barrels. However, alternative structures are possible, as demonstrated by the recent discovery of a Pt8L4 cage with unusual gyrobifastigium-like geometry. To date, the factors that govern the assembly of (M2nLn)-L-II complexes are not well understood. Herein, we provide a geometric analysis of M2nLn complexes, and we discuss how size and geometry of the ligand is expected to influence the self-assembly process. The theoretical analysis is complemented by experimental studies using different cis-blocked Pt-II complexes and metalloligands with four divergent pyridyl groups. Mononuclear metalloligands gave mainly assemblies of type Pt8L4, which adopt barrel- or gyrobifastigium-like structures. Larger assemblies can also form, as evidenced by the crystallographic characterization of a Pt10L5 complex and a Pt16L8 complex. The former adopts a pentagonal barrel structure, whereas the latter displays a barrel structure with a distorted square orthobicupola geometry. The Pt16L8 complex has a molecular weight of more than 23 kDa and a diameter of 4.5 nm, making it the largest, structurally characterized M2nLn complex described to date. A dinuclear metalloligand was employed for the targeted synthesis of pentagonal Pt10L5 barrels, which are formed in nearly quantitative yields

    Orientational self-sorting in cuboctahedral Pd cages

    Get PDF
    Cuboctahedral coordination cages of the general formula [Pd12L24]24+ (L = low-symmetry ligand) were analyzed theoretically and experimentally. With 350 696 potential isomers, the structural space of these assemblies is vast. Orientational self-sorting refers to the preferential formation of particular isomers within the pool of potential structures. Geometric and computational analyses predict the preferred formation of cages with a cis arrangement at the metal centers. This prediction was corroborated experimentally by synthesizing a [Pd12L24]24+ cage with a bridging 3-(4-(pyridin-4-yl)phenyl)pyridine ligand. A crystallographic analysis of this assembly showed exclusive cis coordination of the 3- and the 4-pyridyl donor groups at the Pd2+ ions

    Synthesis and characterization of new Ti–Bi2O3 anode and its use for reactive dye degradation

    Get PDF
    This paper reports the synthesis, characterization and application of a Ti–Bi2O3 anode for the electrochemical decolorization of the textile dye Reactive Red 2. The anode was synthesized by electrodeposition on a Ti substrate immersed in an acidic bismuth (III) solution at constant potential, followed by calcination in air at 600 °C. Thermogravimetric Analysis (TGA), Energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis revealed that the electrodeposited material was predominantly metallic bismuth, which was oxidized to pure α-Bi2O3 during the calcination in air. SEM micrographs revealed that the Bi2O3 coat at the anode surface was inhomogeneous and porous. Reactive Red 2 was completely electrochemically decolorized at the synthesized anode in the presence of H2O2. The applied current density, H2O2 and Na2SO4 concentration, medium pH and initial dye concentration affected the dye decolorization rate. The optimal process parameters were found to be as follows: an applied current density of 40 mA cm−2 using a mixture of 10 mmol dm−3 H2O2 and 10 mmol dm−3 Na2SO4 at pH 7. The dye decolorization rate was shown to decrease as its initial concentration increased. The decolorization reactions were found to follow pseudo-first order kinetics

    Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water

    Get PDF
    Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel. The bead-embedded monolithic composite filter retains the bulk of the high adsorptive capacity of the carbon microbeads while improving pore diffusion rates of organic pollutants. Water spiked with organic contaminants, both at environmentally relevant concentrations and at high levels of contamination, was used to determine the purification limits of the filter. Flow through tests using water spiked with the pesticides atrazine (32 mg/L) and malathion (16 mg/L) indicated maximum adsorptive capacities of 641 and 591 mg pollutant/g carbon, respectively. Over 400 bed volumes of water contaminated with 32 mg atrazine/L, and over 27,400 bed volumes of water contaminated with 2 μg atrazine/L, were treated before pesticide guideline values of 0.1 μg/L were exceeded. High adsorptive capacity was maintained when using water with high total organic carbon (TOC) levels and high salinity. The toxicity of water filtrates was tested in vitro with human epithelial cells with no evidence of cytotoxicity after initial washing

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore