318 research outputs found

    Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading

    Get PDF
    Β© 2017 Elsevier Ltd This paper presents a comparative study of circular concrete-filled steel tubular stub columns with three different stirrup confinement types: bidirectional stirrups, loop stirrups and orthogonal stirrups. Axial compression tests have been carried out aiming at investigating the effects of the stirrup form and volume-stirrup ratio on the mechanical behavior of the stirrup-confined circular CFT stub columns, and ABAQUS was used to carry out the 3D numerical modelling. Radial stress of the core concrete and the composite action among the steel tube, stirrups and the core concrete have been investigated. It is found that the confinement provided by stirrups on core concrete strongly outperforms that provided by steel tube, steel sections or steel reinforcement. Furthermore, a simplified approach was developed to predict the ultimate bearing capacity of stirrup-confined circular CFT stub columns, which agreed well with the experimental and numerical results

    Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns

    Get PDF
    Β© 2017 Elsevier Ltd This paper mainly presents a pseudo-static test program on 12 terminal stirrup-confined square concrete-filled steel tube (SCFT) columns and 14 rectangular SCFT columns under constant axial pressure. The effects of various factors on the hysteretic behavior of specimens are investigated. These factors include with or without stirrups, height of terminal stirrup region, equivalent stirrup ratio, stirrup form, loading direction, height-length ratio (L/B), length-width ratio (B/D), axial compression ratio (n) and sliding support. The failure mode, strain ratio, hysteretic curve, skeleton curve, ultimate bearing capacity, ductility, stiffness degradation, energy dissipation, as well as the residual deformation of the specimens are analyzed. The results indicate that: (1) When n is relatively larger, the bidirectional stirrups can effectively delay the local buckling of steel tube and greatly increase the ultimate bearing capacity, stiffness, equivalent damping viscosity index, residual deformation rate and ductility index, and further significantly improve the seismic behavior of the rectangular SCFT columns; (2) Axial pressure can improve the confinement effect from the steel tube to the core concrete, also bidirectional stirrups can directly confine the core concrete to decrease strain ratio of the steel tube; (3) With the same value of n, increasing the height of terminal stirrup region or increasing the equivalent stirrup ratio can effectively improve the seismic behavior of the rectangular SCFT columns; (4) The influence of loading direction, L/B and B/D on the ductility of rectangular SCFT columns are not obvious

    Expression, purification, and characterization of a novel Ca2+- and phospholipid-binding protein annexin B2

    Get PDF
    Annexin B2 (AnxB2) is a novel member of the annexin family of Ca2+- and phospholipid-binding proteins from Cysticercus cellulosae. To obtain highly pure AnxB2 with an easy and inexpensive purification approach, its cDNA was cloned into the prokaryotic expression vector pJLA503 and the translation initiation codon was immediately under the control of the inducible bacteriophage Ξ» promoters PR and PL. After induction by shifting temperature, large amounts of non-fusion protein were produced in Escherichia coli in a soluble form. Then a novel purification method based on Ca2+-dependent phosphatidylserine (PS)-binding activity was established, whereby the purity of AnxB2 was increased to 98.7%. Western blot analysis showed that recombinant AnxB2 was specifically recognized by serum of pigs infected with cysticercosis. In vitro test showed that, the recombinant AnxB2 had anticoagulant activity and platelet binding activity. The expression, purification, and initial characterization of AnxB2 set an important stage for further characterization of the protein

    Nora Virus Persistent Infections Are Not Affected by the RNAi Machinery

    Get PDF
    Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses

    No Evidence for Strong Recent Positive Selection Favoring the 7 Repeat Allele of VNTR in the DRD4 Gene

    Get PDF
    The human dopamine receptor D4 (DRD4) gene contains a 48-bp variable number of tandem repeat (VNTR) in exon 3, encoding the third intracellular loop of this dopamine receptor. The DRD4 7R allele, which seems to have a single origin, is commonly observed in various human populations and the nucleotide diversity of the DRD4 7R haplotype at the DRD4 locus is reduced compared to the most common DRD4 4R haplotype. Based on these observations, previous studies have hypothesized that positive selection has acted on the DRD4 7R allele. However, the degrees of linkage disequilibrium (LD) of the DRD4 7R allele with single nucleotide polymorphisms (SNPs) outside the DRD4 locus have not been evaluated. In this study, to re-examine the possibility of recent positive selection favoring the DRD4 7R allele, we genotyped HapMap subjects for DRD4 VNTR, and conducted several neutrality tests including long range haplotype test and iHS test based on the extended haplotype homozygosity. Our results indicated that LD of the DRD4 7R allele was not extended compared to SNP alleles with the similar frequency. Thus, we conclude that the DRD4 7R allele has not been subjected to strong recent positive selection

    No Evidence for Strong Recent Positive Selection Favoring the 7 Repeat Allele of VNTR in the DRD4 Gene

    Get PDF
    The human dopamine receptor D4 (DRD4) gene contains a 48-bp variable number of tandem repeat (VNTR) in exon 3, encoding the third intracellular loop of this dopamine receptor. The DRD4 7R allele, which seems to have a single origin, is commonly observed in various human populations and the nucleotide diversity of the DRD4 7R haplotype at the DRD4 locus is reduced compared to the most common DRD4 4R haplotype. Based on these observations, previous studies have hypothesized that positive selection has acted on the DRD4 7R allele. However, the degrees of linkage disequilibrium (LD) of the DRD4 7R allele with single nucleotide polymorphisms (SNPs) outside the DRD4 locus have not been evaluated. In this study, to re-examine the possibility of recent positive selection favoring the DRD4 7R allele, we genotyped HapMap subjects for DRD4 VNTR, and conducted several neutrality tests including long range haplotype test and iHS test based on the extended haplotype homozygosity. Our results indicated that LD of the DRD4 7R allele was not extended compared to SNP alleles with the similar frequency. Thus, we conclude that the DRD4 7R allele has not been subjected to strong recent positive selection

    Effects of Aluminum Oxide Nanoparticles on the Growth, Development, and microRNA Expression of Tobacco (Nicotiana tabacum)

    Get PDF
    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al2O3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al2O3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al2O3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al2O3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al2O3 nanoparticles in the environment

    Avicin D, a Plant Triterpenoid, Induces Cell Apoptosis by Recruitment of Fas and Downstream Signaling Molecules into Lipid Rafts

    Get PDF
    Avicins, a family of triterpene electrophiles originally identified as potent inhibitors of tumor cell growth, have been shown to be pleiotropic compounds that also possess antioxidant, anti-mutagenic, and anti-inflammatory activities. We previously showed that Jurkat cells, which express a high level of Fas, are very sensitive to treatment with avicins. Thus, we hypothesized that avicins may induce cell apoptosis by activation of the Fas pathway. By using a series of cell lines deficient in cell death receptors, we demonstrated that upon avicin D treatment, Fas translocates to the cholesterol- and sphingolipid-enriched membrane microdomains known as lipid rafts. In the lipid rafts, Fas interacts with Fas-associated death domain (FADD) and Caspase-8 to form death-inducing signaling complex (DISC) and thus mediates cell apoptosis. Interfering with lipid raft organization by using a cholesterol-depleting compound, methyl-Ξ²-cyclodextrin, not only prevents the clustering of Fas and its DISC complex but also reduces the sensitivity of the cells to avicin D. Avicin D activates Fas pathways independent of the association between extracellular Fas ligands and Fas receptors. A deficiency in Fas and its downstream signaling molecules leads to the resistance of the cells to avicin D treatment. Taken together, our results demonstrate that avicin D triggers the redistribution of Fas in the membrane lipid rafts, where Fas activates receptor-mediated cell death

    CLIPR-59 regulates TNF-Ξ±-induced apoptosis by controlling ubiquitination of RIP1

    Get PDF
    Tumor necrosis factor-Ξ± (TNF-Ξ±) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-Ξ± signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-Ξ± stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-Ξ±-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-Ξ±
    • …
    corecore