1,245 research outputs found

    Isolation of 10 cyclosporine metabolites from human bile

    Get PDF
    Ten metabolites of cyclosporine were isolated from the ethyl ether extract of bile from four liver transplant patients receiving cyclosporine. Two of the metabolites were unique and previously unidentified. Liquid-liquid partitioning into diethyl ether with subsequent defatting with n-hexane was used for the initial extraction form bile. Separation of the individual metabolites (A-J) was performed using a Sephadex LH-20 column and a gradient high performance liquid chromatographic method. The molecular weights of the isolated metabolites were determined by fast atom bombardment/mass spectrometry. Gas chromatography with mass spectrometic amino acid analysis was also used to identify the amino acid composition and the hydroxylation position of metabolites A, B, C, D, and G. Proton nuclear magnetic resonance spectra were utilized to disinguish the chemical shifts of N-CH3 singlets and NH doublets of metabolites A, B, C, and D. Metabolites A, E, F, H, I, and J were reported previously in human urine and animal bile. Metabolites C and D are dihydroxylated compounds which cannot be clearly described as previously isolated compounds. Metabolites B and G are novel metabolites with a mass fragment which corresponded to a loss of 131 Da from the protonated molecular ion (MH+) in the fast atom bombardment/mass spectrometry, suggesting that the double bond in amino acid 1 has been modified. Metabolites B and G were primarily isolated from the bile of one of the liver transplant patients which contained abnormally high concentrations of these two metabolites. The method described is an efficient procedure for isolating milligram quantities of the major metabolites with greater than 95% purity

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    Trans-mitochondrial coordination of cristae at regulated membrane junctions

    Get PDF
    Reminiscent of bacterial quorum sensing, mammalian mitochondria participate in inter-organelle communication. However, physical structures that enhance or enable interactions between mitochondria have not been defined. Here we report that adjacent mitochondria exhibit coordination of inner mitochondrial membrane cristae at inter-mitochondrial junctions (IMJs). These electron-dense structures are conserved across species, resistant to genetic disruption of cristae organization, dynamically modulated by mitochondrial bioenergetics, independent of known inter-mitochondrial tethering proteins mitofusins and rapidly induced by the stable rapprochement of organelles via inducible synthetic linker technology. At the associated junctions, the cristae of adjacent mitochondria form parallel arrays perpendicular to the IMJ, consistent with a role in electrochemical coupling. These IMJs and associated cristae arrays may provide the structural basis to enhance the propagation of intracellular bioenergetic and apoptotic waves through mitochondrial networks within cells

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    On the Resolution of Critical Flow Regions in Inviscid Linear And Nonlinear Instability Calculations

    Get PDF
    Numerical methods for tackling the inviscid instability problem are discussed. Convergence is demon- strated to be a necessary, but not a sufficient condition for accuracy. Inviscid flow physics set requirements regarding grid-point distribution in order for physically accurate results to be obtained. These requirements are relevant to the viscous problem also and are shown to be related to the resolution of the critical layers. In this respect, high-resolution nonlinear calculations based on the inviscid initial-boundary-value problem are presented for a model shear-layer flow, aiming at identification of the regions that require attention in the course of high-Reynolds-number viscous calculations. The results bear a remarkable resemblance with those pertinent to viscous flow, with a cascade of high-shear regions being shed towards the vortex-core centre as time progresses. In parallel, numerical instability related to the finite-time singularity of the nonlinear equations solved globally contaminates and eventually destroys the simulations, irrespective of resolution

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    corecore