14,434 research outputs found

    Impacts of in vivo and in vitro exposures to tamoxifen: comparative effects on human cells and marine organisms

    Get PDF
    Tamoxifen (TAM) is a first generation-SERM administered for hormone receptor-positive (HER+) breast cancer in both pre- and post-menopausal patients and may undergo metabolic activation in organisms that share similar receptors and thus face comparable mechanisms of response. The present study aimed to assess whether environmental trace concentrations of TAM are bioavailable to the filter feeder M. galloprovincialis (100 ng L-1) and to the deposit feeder N. diversicolor (0.5, 10, 25 and 100 ng L-1) after 14 days of exposure. Behavioural impairment (burrowing kinetic), neurotoxicity (AChE activity), endocrine disruption by alkali-labile phosphate (ALP) content, oxidative stress (SOD, CAT, GPXs activities), biotransformation (GST activity), oxidative damage (LPO) and genotoxicity (DNA damage) were assessed. Moreover, this study also pertained to compare TAM cytotoxicity effects to mussels and targeted human (i.e. immortalized retinal pigment epithelium - RPE; and human transformed endothelial cells - HeLa) cell lines, in a range of concentrations from 0.5 ng L-1 to 50 μg L-1. In polychaetes N. diversicolor, TAM exerted remarkable oxidative stress and damage at the lowest concentration (0.5 ng L-1), whereas significant genotoxicity was reported at the highest exposure level (100 ng L-1). In mussels M. galloprovincialis, 100 ng L-1 TAM caused endocrine disruption in males, neurotoxicity, and an induction in GST activity and LPO byproducts in gills, corroborating in genotoxicity over the exposure days. Although cytotoxicity assays conducted with mussel haemocytes following in vivo exposure was not effective, in vitro exposure showed to be a feasible alternative, with comparable sensitivity to human cell line (HeLa).info:eu-repo/semantics/publishedVersio

    Slow down of a globally neutral relativistic e−e+e^-e^+ beam shearing the vacuum

    Get PDF
    The microphysics of relativistic collisionless sheared flows is investigated in a configuration consisting of a globally neutral, relativistic e−e+e^-e^+ beam streaming through a hollow plasma/dielectric channel. We show through multidimensional PIC simulations that this scenario excites the Mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the e−e+e^-e^+ beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam's kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable

    Efficient and realistic device modeling from atomic detail to the nanoscale

    Full text link
    As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.Comment: 10 pages, 12 figure

    Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    Get PDF
    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and light sources.Comment: 18 pages, 4 figures, 1 tabl

    Disentangling taxonomy within the <i>Rhabditis (Pellioditis) marina</i> (Nematoda, Rhadbitidae) species complex using molecular and morphological tools

    Get PDF
    Correct taxonomy is a prerequisite for biological research, but currently it is undergoing a serious crisis, resulting in the neglect of many highly diverse groups of organisms. In nematodes, species delimitation remains problematic due to their high morphological variability. Evolutionary approaches using DNA sequences can potentially overcome the problems caused by morphology, but they are also affected by flaws. A holistic approach with a combination of morphological and molecular methods can therefore produce a straightforward delimitation of species. The present study investigates the taxonomic status of some highly divergent mitochondrial haplotypes in the Rhabditis (Pellioditis) marina species complex by using a combination of molecular and morphological tools. We used concordance among phylogenetic trees of three molecular markers (COI, ITS, D2D3) to infer molecular lineages. Subsequently, morphometric data from nearly all lineages were analysed with multivariate techniques. The results showed that highly divergent genotypic clusters were accompanied by morphological differences, and we created a graphical polytomous key for future identifications. This study indisputably demonstrates that R. (P.) marina and R. (P.) mediterranea belong to a huge species complex and that biodiversity in free-living marine nematodes may seriously be underestimated

    Faster algorithms for 1-mappability of a sequence

    Full text link
    In the k-mappability problem, we are given a string x of length n and integers m and k, and we are asked to count, for each length-m factor y of x, the number of other factors of length m of x that are at Hamming distance at most k from y. We focus here on the version of the problem where k = 1. The fastest known algorithm for k = 1 requires time O(mn log n/ log log n) and space O(n). We present two algorithms that require worst-case time O(mn) and O(n log^2 n), respectively, and space O(n), thus greatly improving the state of the art. Moreover, we present an algorithm that requires average-case time and space O(n) for integer alphabets if m = {\Omega}(log n/ log {\sigma}), where {\sigma} is the alphabet size

    How will Mahanarva spectabilis (Hemiptera: Cercopidae) respond to global warming?

    Get PDF
    The aim of this study was to determine the favorable constant temperature range for Mahanarva spectabilis (Distant) (Hemiptera: Cercopidae) development as well as to generate geographic distribution maps of this insect pest for future climate scenarios. M. spectabilis eggs were reared on two host plants (Brachiaria ruziziensis (Germain and Edvard) and Pennisetum purpureum (Schumach)), with individual plants kept at temperatures of 16, 20, 24, 28, and 32C. Nymphal stage duration, nymphal survival, adult longevity, and egg production were recorded for each temperature*host plant combination. Using the favorable temperature ranges for M. spectabilis development, it was possible to generate geographic distribution. Nymphal survival was highest at 24.4C, with estimates of 44 and 8% on Pennisetum and Brachiaria, respectively. Nymphal stage duration was greater on Brachiaria than on Pennisetum at 20 and 24C but equal at 28C. Egg production was higher on Pennisetum at 24 and 28C than at 20C, and adult longevity on Pennisetum was higher at 28C than at 20C, whereas adult longevity at 24C did not differ from that at 20 and 28C. With these results, it was possible to predict a reduction in M. spectabilis densities in most regions of Brazil in future climate scenarios
    • …
    corecore