5,844 research outputs found

    On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system

    Full text link
    This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to re-determine the planet masses and to explore techniques able to determine mass and elements of planets discovered around active stars when the relative variation of the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) The approach proposed by Hatzes et al. (2010) using only those nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system; the periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2,454,847 - 873 are used because they include many nights with multiple observations; otherwise it is not possible to separate the effects of the rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). The results of the various approaches are combined to give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6 \pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given.The results obtained with 3 different approaches agree to give masses larger than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 . CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure

    A new analysis of the GJ581 extrasolar planetary system

    Full text link
    We have done a new analysis of the available observations for the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the ocurrence of aliases and the additional bodies - the planets f and g - announced in Vogt et al. 2010. Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the Habitable Zone (HZ) of the star GJ581. This region,for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period 450\approx 450 days, but we are judicious about any affirmation concernig this body because its signal is in the threshold of detection and the high period is in a spectral region where the ocorruence of aliases is very common. Besides, we outline some dynamical features of the habitable zone with the dynamical map and point out the role played by some resonances laying there.Comment: 12 pages, 9 figure

    Breakdown of the Fermi-liquid regime in the 2D Hubbard model from a two-loop field-theoretical renormalization group approach

    Full text link
    We analyze the particle-hole symmetric two-dimensional Hubbard model on a square lattice starting from weak-to-moderate couplings by means of the field-theoretical renormalization group (RG) approach up to two-loop order. This method is essential in order to evaluate the effect of the momentum-resolved anomalous dimension η(p)\eta(\textbf{p}) which arises in the normal phase of this model on the corresponding low-energy single-particle excitations. As a result, we find important indications pointing to the existence of a non-Fermi liquid (NFL) regime at temperature T0T\to 0 displaying a truncated Fermi surface (FS) for a doping range exactly in between the well-known antiferromagnetic insulating and the dx2y2d_{x^2-y^2}-wave singlet superconducting phases. This NFL evolves as a function of doping into a correlated metal with a large FS before the dx2y2d_{x^2-y^2}-wave pairing susceptibility finally produces the dominant instability in the low-energy limit.Comment: 9 pages, 9 figures; published in Phys. Rev.

    Geração de cenários de mudança de uso do solo na Amazônia Legal brasileira em função do agronegócio e da aplicação de políticas públicas.

    Get PDF
    As mudanças climáticas podem afetar a biodiversidade, da mesma forma, a contínua perda da biodiversidade pode, por sua vez, afetar a regulação do clima apresentando graves consequências para o desenvolvimento sustentável e o bem-estar humano. As mudanças no uso da terra, o desmatamento e as mudanças climáticas impactam fortemente o ecossistema da floresta amazônica ameaçando sua resiliência e a sustentabilidade de muitas atividades humanas. Este trabalho descreve a utilização da modelagem dinâmica para gerar cenários de mudança de uso da terra da Amazônia Legal Brasileira, buscando elaborar cenários de mudança de uso/cobertura em função do Agronegócio (agricultura, pastagem e reflorestamento) e considerando o desflorestamento legal, ocasionado pela exploração econômica do território. Os cenários de referência foram baseados nos cenários de desenvolvimento SSP1P, SSP5S e SSP5P do IPCC adapatados a situação de cada estado da Amazônia Legal e considerando-se as políticas brasileiras de desenvolvimento durável, tais como implantação do Plano ABC (Agricultura de Baixo Carbono), código florestal, dentre outras. Este trabalho, ainda em desenvolvimento, é parte do projeto ROBIN ? Role of Biodiversity in Climate Cahnge Mitigation ? financiado pela Comissão Europeia (FP7 ENV. 2011.2.1.4 -1: potencial de biodiversidade e ecossistemas para a mitigação das alterações climáticas), cujo objetivo geral é melhorar a compreensão sobre as relações da biodiversidade com o processo de mitigação de mudança climática

    The modulated spin liquid: a new paradigm for URu2_2Si2_2

    Full text link
    We argue that near a Kondo breakdown critical point, a spin liquid with spatial modulations can form. Unlike its uniform counterpart, we find that this occurs via a second order phase transition. The amount of entropy quenched when ordering is of the same magnitude as for an antiferromagnet. Moreover, the two states are competitive, and at low temperatures are separated by a first order phase transition. The modulated spin liquid we find breaks Z4Z_4 symmetry, as recently seen in the hidden order phase of URu2_2Si2_2. Based on this, we suggest that the modulated spin liquid is a viable candidate for this unique phase of matter.Comment: 4 pages, 2 figure

    Interplay of tidal evolution and stellar wind braking in the rotation of stars hosting massive close-in planets

    Full text link
    This paper deals with the application of the creep tide theory (Ferraz-Mello, Cel. Mech. Dyn. Astron. vol. 116, 109, 2013) to the study of the rotation of stars hosting massive close-in planets. The stars have nearly the same tidal relaxation factors as gaseous planets and the evolution of their rotation is similar to that of close-in hot Jupiters: they tidally evolve towards a stationary solution. However, stellar rotation may also be affected by stellar wind braking. Thus, while the rotation of a quiet host star evolves towards a stationary attractor with a frequency (1+6e21+6e^2) times the orbital mean-motion of the companion, the continuous loss of angular momentum in an active star displaces the stationary solution towards slower values: Active host stars with big close-in companions tend to have rotational periods larger than the orbital periods of their companions. The study of some hypothetical examples shows that because of tidal evolution, the rules of gyrochronology cannot be used to estimate the age of one system with a large close-in companion, no matter if the star is quiet or active, if the current semi-major axis of the companion is smaller than 0.03--0.04 AU. Details on the evolution of the systems: CoRoT LRc06E21637, CoRoT-27, Kepler-75, CoRoT-2, CoRoT-18, CoRoT-14 and on hypothetical systems with planets of mass 1--4 M_Jup in orbit around a star similar to the Sun are given.Comment: 22 pages, 8 figures; Publication in Ap

    Building performance analysis of a dairy factory in South Iraq: appraisal of a local bio-based envelope

    Get PDF
    Received: February 4th, 2021 ; Accepted: April 24th, 2021 ; Published: April 29th, 2021 ; Correspondence: [email protected] have a relevant impact on the environment, and building materials cause environmental impacts during all life cycle stages: production, utilization, management and demolition. The global request for more efficient buildings with less environmental impacts has grown during the last years. Among various technologies, thermal insulation has proven to be helpful in reducing emissions by increasing energy conservation. This paper intends to show how the Building Performance Analysis (BPA) supports the decision-making process in many areas where common insulation materials are not available and there is a general reluctance to use local natural materials. A building located in the city of Al Chubaish in Dhi Qar Province in Iraq is examined as a case study. The construction is designed for processing buffalo milk. It was built in the first decade of the century, during the Iraqi conflict, using only the materials available at that time, most of which, concrete bricks, mortar and plaster. Currently, this dairy factory is a very inefficient structure in terms of energy saving. But because its elementary form, it is a perfect example to investigate how a simple exterior wall insulation can improve building performance in extreme environmental conditions. Accordingly, two different models have been created. One is the replica of the real building without any upgrading. The second instead presents a thermal insulation realized with reed bio-based material locally available. Through advanced simulation engines and building performance analysis data integrated into Autodesk Revit, each model has been tested to identify significant improvements in terms of energy savings in this particular stressed background

    Experimental Observation of Quantum Correlations in Modular Variables

    Full text link
    We experimentally detect entanglement in modular position and momentum variables of photon pairs which have passed through DD-slit apertures. We first employ an entanglement criteria recently proposed in [Phys. Rev. Lett. {\bf 106}, 210501 (2011)], using variances of the modular variables. We then propose an entanglement witness for modular variables based on the Shannon entropy, and test it experimentally. Finally, we derive criteria for Einstein-Podolsky-Rosen-Steering correlations using variances and entropy functions. In both cases, the entropic criteria are more successful at identifying quantum correlations in our data.Comment: 7 pages, 4 figures, comments welcom
    corecore