16 research outputs found

    Self Similar Solutions of the Evolution Equation of a Scalar Field in an Expanding Geometry

    Full text link
    We consider the functional Schrodinger equation for a self interacting scalar field in an expanding geometry. By performing a time dependent scale transformation on the argument of the field we derive a functional Schrodinger equation whose hamiltonian is time independent but involves a time-odd term associated to a constraint on the expansion current. We study the mean field approximation to this equation and generalize in this case, for interacting fields, the solutions worked out by Bunch and Davies for free fields.Comment: 8 pages, Latex, IPNO/TH 94-3

    Response Function of Hot Nuclear Matter

    Full text link
    We investigate the response function of hot nuclear matter to a small isovector external field using a simplified Skyrme interaction reproducing the value of the symmetry energy coefficient. We consider values of the momentum transfer corresponding to the dipole oscillation in heavy nuclei. We find that while at zero temperature the particle hole interaction is almost repulsive enough to have a sharp (zero sound type) collective oscillation, such is no longer the case at temperatures of a few MeV. As a result a broadening of the dipole resonance occurs, leading to its quasi disappearence by the time the temperature reaches 5 MeV. The sensivity of the temperature evolution of the width when modifying the residual interaction strength is also examined.Comment: 9 pages, IPNO/TH 94-15, DPT-IPN Orsay. Two figures available under reques

    Self-consistent quantum effects in the quark meson coupling model

    Full text link
    We derive the equation of state of nuclear matter including vacuum polarization effects arising from the nucleons and the sigma mesons in the quark-meson coupling model which incorporates explicitly quark degrees of freedom with quark coupled to the scalar and vector mesons. This leads to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The {\it in-medium} nucleon and sigma meson masses are also calculated in a self-consistent manner.Comment: 10 pages, latex, 5 figure

    Expanding non homogeneous configurations of the λϕ4\lambda \phi^4 model

    Full text link
    A time dependent variational approach is considered to derive the equations of movement for the λϕ4\lambda \phi^4 model. The temporal evolution of the model is performed numerically in the frame of the Gaussian approximation in a lattice of 1+1 dimensions given non homogeneous initial conditions (like bubbles) for the classical and quantum parts of the field which expands. A schematic model for the initial conditions is presented considering the model at finite fermionic density. The non zero fermionic density may lead either to the restoration of the symmetry or to an even more asymmetric phase. Both kinds of situations are considered as initial conditions and the eventual differences in early time dynamics are discussed. In the early time evolution there is strong energy exchange between the classical and quantum parts of the field as the initial configuration expands. The contribution of the quantum fluctuations is discussed especially in the strong coupling constant limit. The continuum limit is analyzed.Comment: 23 pages (latex) plus thirteen figures in eps file

    Dressing Up the Kink

    Full text link
    Many quantum field theoretical models possess non-trivial solutions which are stable for topological reasons. We construct a self-consistent example for a self-interacting scalar field--the quantum (or dressed) kink--using a two particle irreducible effective action in the Hartree approximation. This new solution includes quantum fluctuations determined self-consistently and nonperturbatively at the 1-loop resummed level and allowed to backreact on the classical mean-field profile. This dressed kink is static under the familiar Hartree equations for the time evolution of quantum fields. Because the quantum fluctuation spectrum is lower lying in the presence of the defect, the quantum kink has a lower rest energy than its classical counterpart. However its energy is higher than well-known strict 1-loop results, where backreaction and fluctuation self-interactions are omitted. We also show that the quantum kink exists at finite temperature and that its profile broadens as temperature is increased until it eventually disappears.Comment: 13 pages, latex, 3 eps figures; revised with yet additional references, minor rewordin

    A Step Beyond the Bounce: Bubble Dynamics in Quantum Phase Transitions

    Full text link
    We study the dynamical evolution of a phase interface or bubble in the context of a \lambda \phi^4 + g \phi^6 scalar quantum field theory. We use a self-consistent mean-field approximation derived from a 2PI effective action to construct an initial value problem for the expectation value of the quantum field and two-point function. We solve the equations of motion numerically in (1+1)-dimensions and compare the results to the purely classical evolution. We find that the quantum fluctuations dress the classical profile, affecting both the early time expansion of the bubble and the behavior upon collision with a neighboring interface.Comment: 12 pages, multiple figure

    Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory

    Full text link
    The quantum time evolution of \phi^4-field theory for a spatially homogeneous system in 2+1 space-time dimensions is investigated numerically for out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym equations including the tadpole and sunset self-energies. Whereas the tadpole self-energy yields a dynamical mass, the sunset self-energy is responsible for dissipation and an equilibration of the system. In particular we address the dynamics of the spectral (`off-shell') distributions of the excited quantum modes and the different phases in the approach to equilibrium described by Kubo-Martin-Schwinger relations for thermal equilibrium states. The investigation explicitly demonstrates that the only translation invariant solutions representing the stationary fixed points of the coupled equation of motions are those of full thermal equilibrium. They agree with those extracted from the time integration of the Kadanoff-Baym equations in the long time limit. Furthermore, a detailed comparison of the full quantum dynamics to more approximate and simple schemes like that of a standard kinetic (on-shell) Boltzmann equation is performed. Our analysis shows that the consistent inclusion of the dynamical spectral function has a significant impact on relaxation phenomena. The different time scales, that are involved in the dynamical quantum evolution towards a complete thermalized state, are discussed in detail. We find that far off-shell 1 3 processes are responsible for chemical equilibration, which is missed in the Boltzmann limit. Finally, we address briefly the case of (bare) massless fields. For sufficiently large couplings λ\lambda we observe the onset of Bose condensation, where our scheme within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure

    Calculs variationnels pour l'evolution d'un champ scalaire en interaction

    No full text

    Temperature dependence of the nuclear isovector response function

    No full text

    Behind BANANA: Design and Implementation of a Tool for Nesting Analysis of Mobile Ambients

    Get PDF
    We present a survey of the work on control-flow analysis carried on by the Venice Team during the Mefisto project. We study security issues, in particular information leakage detection, in the context of the Mobile Ambient calculus. We describe BANANA, a Java-based tool for ambient nesting analysis, by focussing on analysis accuracy and algorithmic optimizations
    corecore