934 research outputs found
Event Reconstruction with MarlinReco at the ILC
After an overview of the modular analysis and reconstruction framework Marlin
an introduction on the functionality of the Marlin-based reconstruction package
MarlinReco is given. This package includes a full set of modules for event
reconstruction based on the Particle Flow approach. The status of the software
is reviewed and recent results using this software package for event
reconstruction are presented.Comment: 6 pages, 2 .eps figures, to appear in Proc. LCWS06, Bangalore, March
200
Monolithic Pixel Sensors in Deep-Submicron SOI Technology
Monolithic pixel sensors for charged particle detection and imaging
applications have been designed and fabricated using commercially available,
deep-submicron Silicon-On-Insulator (SOI) processes, which insulate a thin
layer of integrated full CMOS electronics from a high-resistivity substrate by
means of a buried oxide. The substrate is contacted from the electronics layer
through vias etched in the buried oxide, allowing pixel implanting and reverse
biasing. This paper summarizes the performances achieved with a first prototype
manufactured in the OKI 0.15 micrometer FD-SOI process, featuring analog and
digital pixels on a 10 micrometer pitch. The design and preliminary results on
the analog section of a second prototype manufactured in the OKI 0.20
micrometer FD-SOI process are briefly discussed.Comment: Proceedings of the PIXEL 2008 International Workshop, FNAL, Batavia,
IL, 23-26 September 2008. Submitted to JINST - Journal of Instrumentatio
Theoretical study of dark resonances in micro-metric thin cells
We investigate theoretically dark resonance spectroscopy for a dilute atomic
vapor confined in a thin (micro-metric) cell. We identify the physical
parameters characterizing the spectra and study their influence. We focus on a
Hanle-type situation, with an optical irradiation under normal incidence and
resonant with the atomic transition. The dark resonance spectrum is predicted
to combine broad wings with a sharp maximum at line-center, that can be singled
out when detecting a derivative of the dark resonance spectrum. This narrow
signal derivative, shown to broaden only sub-linearly with the cell length, is
a signature of the contribution of atoms slow enough to fly between the cell
windows in a time as long as the characteristic ground state optical pumping
time. We suggest that this dark resonance spectroscopy in micro-metric thin
cells could be a suitable tool for probing the effective velocity distribution
in the thin cell arising from the atomic desorption processes, and notably to
identify the limiting factors affecting desorption under a grazing incidence.Comment: 12 pages, 11 figures theoretical articl
Les temps de la consultation du comité d’entreprise
The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measurement directions, local-to-global coordinate transformations, and material properties. The material properties, essential for the correct treatment of multiple scattering and energy loss effects in charged particle reconstruction, are automatically averaged from the detailed geometry model along the normal of the surface. Additionally, a generic interface allows the user to query material properties at any given point or between any two points in the detector's world volume. In this paper we will present DDREC and how it is used together with the linear collider tracking software and the particle-flow package PANDORAPFA for full event reconstruction of the ILC detector concepts ILD and SiD, and of CLICdp. This flexible tool chain is also well suited for other future accelerator projects such as FCC and CEPC
Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions
Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons
to enable measurements of its suppressed decays. Results of a detailed study of
the determination of the muon Yukawa coupling at 3 TeV, based on full detector
simulation and event reconstruction, are presented. The muon Yukawa coupling
can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons
masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab.
The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
- …
