3,771 research outputs found

    The radiation-induced rotation of cosmic dust particles: A feasibility study

    Get PDF
    A crossed beam, horizontal optical trap, used to achieve laser levitation of particles in an effort to determine how solar radiation produces high spin rate in interplanetary dust particles, is described. It is suggested that random variations in albedo and geometry give rise to a nonzero effective torque when the influence of a unidrectional source of radiaton (due to the Sun) over the surface of a interplanetary dust particle is averaged. This resultant nonzero torque is characterized by an asymmetry factor which is the ratio of the effective moment arm to the maximum linear dimension of the body and is estimated to be 5 X 10 to the minus four power. It is hoped that this symmetry factor, which stabilizes the nonstatistical response of the particle, can be measured in a future Spacelab experiment

    Fragment Approach to Constrained Density Functional Theory Calculations using Daubechies Wavelets

    Full text link
    In a recent paper we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions is optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e. without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

    Mineral acids in vinegar

    Get PDF
    n/

    Book Reviews

    Get PDF

    Spin and Lattice Structure of Single Crystal SrFe2As2

    Get PDF
    We use neutron scattering to study the spin and lattice structure on single crystals of SrFe2As2, the parent compound of the FeAs based superconductor (Sr,K)Fe2As2. We find that SrFe2As2 exhibits an abrupt structural phase transitions at 220K, where the structure changes from tetragonal with lattice parameters c > a = b to orthorhombic with c > a > b. At almost the same temperature, Fe spins in SrFe2As2 develop a collinear antiferromagnetic structure along the orthorhombic a-axis with spin direction parallel to this a-axis. These results are consistent with earlier work on the RFeAsO (R = rare earth elements) families of materials and on BaFe2As2, and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compound of these FeAs-based high-transition temperature superconductors.Comment: 14 pages with 4 figure

    Magnetic form factor of SrFe2_2As2_2

    Full text link
    Neutron diffraction measurements have been carried out to investigate the magnetic form factor of the parent SrFe2As2 system of the iron-based superconductors. The general feature is that the form factor is approximately isotropic in wave vector, indicating that multiple d-orbitals of the iron atoms are occupied as expected based on band theory. Inversion of the diffraction data suggests that there is some elongation of the spin density toward the As atoms. We have also extended the diffraction measurements to investigate a possible jump in the c-axis lattice parameter at the structural phase transition, but find no detectable change within the experimental uncertainties

    Closed-form approximations of first-passage distributions for a stochastic decision making model

    Get PDF
    In free response choice tasks, decision making is often modeled as a first-passage problem for a stochastic differential equation. In particular, drift-diffusion processes with constant or time-varying drift rates and noise can reproduce behavioral data (accuracy and response-time distributions) and neuronal firing rates. However, no exact solutions are known for the first-passage problem with time-varying data. Recognizing the importance of simple closed-form expressions for modeling and inference, we show that an interrogation or cued-response protocol, appropriately interpreted, can yield approximate first-passage (response time) distributions for a specific class of time-varying processes used to model evidence accumulation. We test these against exact expressions for the constant drift case and compare them with data from a class of sigmoidal functions. We find that both the direct interrogation approximation and an error-minimizing interrogation approximation can capture a variety of distribution shapes and mode numbers but that the direct approximation, in particular, is systematically biased away from the correct free response distribution

    Structural Anomalies at the Magnetic and Ferroelectric Transitions in RMn2O5RMn_2O_5 (R=Tb, Dy, Ho)

    Full text link
    Strong anomalies of the thermal expansion coefficients at the magnetic and ferroelectric transitions have been detected in multiferroic RMn2O5RMn_2O_5. Their correlation with anomalies of the specific heat and the dielectric constant is discussed. The results provide evidence for the magnetic origin of the ferroelectricity mediated by strong spin-lattice coupling in the compounds. Neutron scattering data for HoMn2O5HoMn_2O_5 indicate a spin reorientation at the two low-temperature phase transitions

    Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Full text link
    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.Comment: 9 pages, 2 figure
    corecore