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In free response choice tasks, decision making is often modeled as a first-passage prob-

lem for a stochastic differential equation. In particular, drift-diffusion processes with

constant or time-varying drift rates and noise can reproduce behavioral data (accuracy

and response-time distributions) and neuronal firing rates. However, no exact solutions

are known for the first-passage problem with time-varying data. Recognizing the impor-

tance of simple closed-form expressions for modeling and inference, we show that an in-

terrogation or cued-response protocol, appropriately interpreted, can yield approximate

first-passage (response time) distributions for a specific class of time-varying processes

used to model evidence accumulation. We test these against exact expressions for the

constant drift case and compare them with data from a class of sigmoidal functions. We

find that both the direct interrogation approximation and an error-minimizing interro-

gation approximation can capture a variety of distribution shapes and mode numbers

but that the direct approximation, in particular, is systematically biased away from the

correct free response distribution.
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1 Introduction

Stochastic differential equations (SDEs) are widely used to model phenomena in physics

and biology in which mixed deterministic and random forces drive a dynamical process.

Here, our motivation derives from the neurobiology of decision processes, among the

simplest of which is the two-alternative, forced-choice task (2AFC). In each trial of this

task, subjects are asked to correctly identify a noisy stimulus drawn at random from

two possibilities. In a common instantiation employed on primates and humans, the

stimuli are arrays of dots, a fraction of which move coherently either to the left or to

the right, while the remainder fluctuate randomly [34, 37]. The difficulty of this motion

discrimination task can be manipulated by varying the coherence. Subjects may be either

allowed to respond with their perceptual choice in their own time (the free response

protocol) or required to respond upon presentation of a cue (idealized below as the

interrogation protocol) [18, 20, 24, 36].

The 2AFC problem has an optimal solution, provided by the sequential probabil-

ity ratio test (SPRT) [22, 43, 44]. As described in [2], the drift-diffusion model (DDM) is a

continuum limit of the SPRT. The DDM SDE classically takes the form

dy = ±Adt + σdW, y(0) = y0, (1)

where y(t ) represents the evolving logarithmic likelihood ratio of the two possibilities,

σ is the standard deviation of a Wiener (white noise) process W(t ), and A denotes the

constant drift rate. In the example above, the stimulus motion direction determines the

sign of A, and σ can model noise in the stimulus or within the brain, or both.

In the free response case, Equation (1) is supplemented by two absorbing barriers

or thresholds, y = ±Z with Z > |y0|. First crossing of either by a sample path y(t ) signals

a response corresponding to that choice: e.g., if A > 0 and +Z is crossed first, a correct

choice is made; if −Z is crossed first, it is an error. The first-passage time is the deci-

sion time (DT). (The behavioral observable is the response or reaction time (RT), which

includes the latency of signal transduction and motor preparation, typically modeled as

a constant overhead T0, so that RT = DT + T0.)

Under the interrogation protocol, sample paths of Equation (1) are allowed to

evolve until a cue time T at which the sign of y(T ) determines the response. Again

assuming that A > 0, the choice is correct if y(T ) > 0; if y(T ) < 0 it is an error. This is

a continuum version of the Neyman–Pearson fixed sample size decision procedure [27].

Figure 1 illustrates both protocols.
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Fig. 1. Illustration of the free response and interrogation protocols for positive drift rate

A. Free response: The two horizontal black lines are the absorbing thresholds at ±Z ; first-

passage times of two sample paths (black) are indicated by black circles. Interrogation:

The vertical gray line is the cue time; locations of two sample paths (gray) at cue time are

indicated by gray circles.

In neural models, y(t ) is equivalent to the difference in the instantaneous neural

activities encoding opposing decisions. Furthermore, Equation (1) can also be derived

from more realistic leaky competing accumulator network models of neural function [2–

4]. Overall, the DDM not only matches human behavioral data [28, 29, 33, 39] but also

qualitatively describes neuronal activities in oculomotor brain areas of monkeys per-

forming the 2AFC tasks. Specifically, short-term firing rates of neurons corresponding to

the selected choice rise toward a threshold while those of neurons corresponding to the

alternative choice decrease over time [18, 30, 34, 36], such that their difference behaves

much like sample drift-diffusion paths.

However, the classical, pure DDM fails to account for certain data. For example,

recent studies of the moving dots discrimination task suggest that time-dependent drift

rates A(t ) provide better matches to behavioral and neuronal data [5, 7–9, 19]. Moreover,

in the more complex Eriksen flanker task [10], a subject must decide which of two char-

acters, < or >, appears in the center of a stimulus array. In the compatible case, the

target character is flanked by copies of itself (e.g. <<<<<) and in the incompatible case

by copies of the competing stimulus (>><>>). Accuracies in these two cases exhibit

distinctly different shapes as functions of response time: in the latter, accuracy dips

below 50% for low response times before recovering and rising toward 100%, albeit re-

maining below the monotonically rising accuracy for compatible trials. A neural network

model that includes multiple decision units and an attention module that progressively

biases the central units accounts for this behavior [6] and can be reduced to a DDM,
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also with time-dependent drift [23]. Other models of attention also exhibit time-varying

drift rates [40, 41]. This prompts the study of first-passage times for such “extended”

DDMs. Other extensions—including drift rates and initial conditions y(0) that are ran-

domized on a trial-by-trial basis [31, 32] and time-varying thresholds [9, 13]—have been

considered elsewhere.

The article is organized as follows. In Section 2, we review the pure DDM and ex-

plore numerically generated first-passage distributions for a sigmoidal time-dependent

drift rate and noise originally proposed to match data from primate experiments [9].

In Section 3, we derive closed-form approximations for first-passage distributions from

sample path distributions p(y, t ), under the assumption that both drift rate and noise

level monotonically approach limits. We compare these predictions with numerical simu-

lations of the free response model with constant and sigmoidal drift rates, and show that,

if parameter values are appropriately adjusted, the approximations can be improved. A

discussion ensues in Section 4.

2 Effect of Drift Rate and Noise on Response-Time Distributions

We first review classical results for the DDM with constant drift rate. We then introduce

a sigmoidal function, similar to that of [9], to describe drift and noise, and explore

its implications for correct and error response-time distributions by varying two key

parameters.

2.1 Constant drift rate and noise

We begin by assuming both constant drift Aand constant noise σ in Equation (1). Without

loss of generality, we will assume that A > 0 so that the threshold +Z (or y(T ) > 0 at cue

time) corresponds to the correct choice. Also, for simplicity, we will restrict to unbiased

initial conditions y(0) = 0. Before describing the results, we observe that the SDE (1) can

be rescaled by letting y = Ax:

dx = dt +
(σ

A

)
dW, x(0) = 0, (2)

with thresholds ±Z/A. This reduces the three parameters A, σ , and Z to two, the signal-
to-noise ratio (SNR), and the threshold-to-drift ratio:

β = (A/σ )2 and α = Z/A. (3)

First-passage time distributions yielding mean DTs, and error rates (ER) may
be computed for (1) from the backward Kolmogorov or Fokker–Planck equation [15, 38]
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First-Passage Distributions for a Stochastic Decision-Making Model 127

associated with (2):

〈DT〉 = α tanh(αβ), ER = 1

1 + exp(2αβ)
, (4)

and an explicit expression for the distribution of first-passage times at the threshold +α

(or +Z ) is available [11, 29, 38]:

f+(t ) = π

4α2β
exp

[
αβ − 1

2
βt

]
×

∞∑
k=1

k exp
[
−k2π2t

8α2β

]
sin

[
kπ

2

]
. (5)

For Equation (2) (and (1)), the first-passage distributions for both thresholds ±α are

identical expressions, scaled by the ratio of errors over correct responses:

f−(t ) =
(

ER

1 − ER

)
f+(t ). (6)

Notably, correct and error response distributions have identical mean DTs; indeed, both

distributions are identical up to a scaling factor and they are unimodal.

2.2 Time-varying drift rate and noise

Having equal-mean correct and error DTs in the DDM is too restrictive for typical ex-

perimental data. In some instances, error DTs have been found to be longer than correct

DTs [9, 25, 32, 34], particularly when accuracy is emphasized. At other times shorter

error DTs have been observed [23, 24, 32], particularly when speed is emphasized. As

noted above, variation of initial conditions and drift rates from trial to trial can also

produce fast and slow errors, respectively [31].

Seeking a more flexible model, we generalize Equation (1) to an SDE in which

drift and noise are time-dependent [38]:

dy = A(t ) dt + σ (t ) dW, y(0) = y0. (7)

We are particularly interested in the sigmoidal function for A(t ) and σ (t ), proposed as

Model 4 in [9], that has been shown to fit both behavioral and neuronal data well and

can also produce bimodal response-time distributions. Both the drift rate A(t ) = Ag(t )

and noise σ (t ) = σ |g(t )| are scaled by a sigmoidal gain function g(t ):

g(t ) = 1

G

[
1

1 + exp(−γ (t − δ))
− η

]
, (8)

where G is a normalization constant (see below). Gain is applied to both drift rate and

noise since direct neural recordings in primates reveal that these quantities typically

wax and wane in concert [16, 17]. Equation (8), which is qualitatively similar to, but
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simpler than, the expression of [9], is characterized by the parameters γ ≥ 0, η, and δ,

rises monotonically to the limit (1 − η)/G as t → ∞, and reduces to the constant drift

case when γ = 0.

We wish to study how the parameters that define g(t ) affect choice probabilities

and DTs; the timescale parameter γ and gain offset η are of particular interest. To make

fair comparisons among different cases, we adjust G as follows. We choose a sufficiently

late time T such that at least 99% of the probability mass of the normalized first-passage

distribution for constant drift and noise falls to the left of t = T :

0.99 <

∫ T

0
[ f+(t ) + f−(t )] dt < 1, (9)

and set G such that the average modulus of the gain over [0, T ] is unity:

1

T

∫ T

0
|g(t )| dt = 1. (10)

G can be obtained as an explicit function of γ , η, and δ (= 0) by using the time at which

gain changes sign from negative to positive:

t0 = δ + 1

γ
log

(
η

1 − η

)
, (11)

and the form of the integrated sigmoid:

Ig(t ) =
∫ t

0

ds

1 + exp(−γ (s − δ))
= t + 1

γ
log

[
1 + exp(−γ (t − δ))

1 + exp(γ δ)

]
. (12)

Specifically, Equation (10) implies that

G = 1

T
[Ig(T ) − ηT − 2(Ig(t0) − ηt0)]. (13)

Analytical expressions analogous to those of Equations (4–5) for the constant

drift case are unknown for time-varying drifts, so we use the numerical method of [9,

Appendix B.4] to investigate the effect of varying the timescale and offset parameters γ

and η. Since the DDM is typically assumed to reset at y(0) = 0 at each stimulus onset, we

take the time offset δ = 0 throughout, and, for simplicity, in the remainder of this section

we set the drift and noise scaling factors A = σ = 1 and thresholds Z = ±1. Consistent

with the assumption A > 0 of Section 2.1, we restrict η < 1 so that the asymptotic value

of Ag(t ) is strictly positive and crossing of the upper threshold +Z represents a correct

decision. Note that g(t ) takes negative values for t > δ(= 0) if and only if η > 0.5. Repre-

sentative distributions appear in dark gray in Figure 5 below; the other curves in this

figure are described in Section 3.
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Fig. 2. Upper left: Gain functions for log γ = −1, 0.5, and 2, with δ = η = 0 fixed and

A = σ = Z = 1. Darker colors represent higher values of γ . Upper right: First-passage

probabilities for upper and lower barriers as a function of γ . In this and the remaining

panels, black represents the correct response distribution statistics, dark gray represents

the error statistics, and light gray shows the constant gain statistic(s) for comparison.

Lower left: DT means as a function of γ . Lower right: DT standard deviations as a function

of γ .

2.3 Timescale parameter γ

In Figure 2 we explore how the timescale γ affects gain and, thereby, the first-passage

distributions. We keep the gain offset η fixed at zero. The upper left panel shows three

representative gain functions, with darker colors representing higher values of γ . For

γ ≈ 0 the normalized gain is almost linear for small t . As γ increases, the sigmoid

becomes more pronounced and the maximum gain value decreases due to normalization.

Ultimately, as γ becomes very large, gain approaches a constant after an increasingly

short transient.

The remaining three panels of Figure 2 illustrate how representative statistics

of the resulting first-passage time distributions change with γ , respectively showing
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the total probabilities of correct responses and errors (upper right), means (lower left),

and standard deviations (lower right). We employ a logarithmic scale to accommodate

a wide γ range. The constant drift statistics, which are identical for both correct and

error responses, are illustrated for comparison. Differences between correct and error

distributions for time-varying gains are particularly striking. The model can clearly

account for longer mean error DTs than correct DTs.

2.4 Offset parameter η

Next, we next take a nontrivial timescale, namely, γ = 1, and vary η to explore how the

offset affects the first-passage distributions in the presence of a sigmoidal gain shape.

The upper left panel of Figure 3 shows three representative gain functions, with darker

shades representing increasing values of η. For η small, gain is entirely positive, but as

η increases g(t ) changes sign. Such a change may reflect evidence switching directions,

perhaps as in the Eriksen flanker task [10, 23]. Note that vertical scales change across η

values due to the normalization process described above.

As η increases, gain is increasingly negative at early times and remains so for

a longer period, so we expect to see errors become more probable until they are the

most likely response. This expectation is borne out in the upper right panel of Figure 3,

which shows the total probabilities for correct choices and errors. For comparison, the

corresponding probabilities for the constant drift case are also shown.

Perhaps the most interesting feature of the distributions resulting from changes

in the sign of sigmoidal drift is the multimodality evident in some of the distributions

in Figure 5 (below). Unlike the constant drift case, parameter combinations exist that

yield at least two modes in the correct and error distributions. These modes are not

necessarily the same for correct and error responses, as evidenced by the differing

means and standard deviations in the two lower panels of Figure 3.

3 Free Response Approximation Schemes

We now develop closed-form approximations for first-passage distributions resulting

from time-dependent drift A(t ) and noise functions σ (t ) appropriate for modeling sensory

integration, such as those introduced in Section 2. To motivate our approach, we note

that experiments suggest a common mechanism in both interrogation and free response

protocols. Some motion discrimination studies [19, 34] feature a fixed-duration stimulus

presentation, followed by a delay period before the interrogation cue. Monkeys do not
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Fig. 3. Upper left: Gain functions for η = 0.5, 0.7, and 0.9, with δ = 0 and γ = 1 fixed

and A = σ = Z = 1. Darker colors represent higher values of η. Upper right: First-passage

probabilities for upper and lower barriers as a function of η. In this and the remaining

panels, black represents the correct response distribution statistics, dark gray represents

the error statistics, and light gray shows the constant gain statistic(s) for comparison.

Lower left: DT means as a function of η. Lower right: DT standard deviations as a function

of η.

seem to fully exploit the entire viewing time in these studies; their behavioral choices

and neuronal activities being similar under both this and the free response protocol,

suggesting that a decision criterion may be reached, and choices “locked in,” before

response cue (interrogation time).

3.1 Approximation from the interrogation protocol

As noted in Section 1, in the interrogation protocol the first-passage calculation is re-

placed by simply querying the sign of the sample path y(T ) at the interrogation time T .

The probability density p(y, t ) of finding a solution at y at time t is readily calculated for
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the case y(0) = 0 by observing that the integral of (7),

y(t ) =
∫ t

0
A(s) ds +

∫ t

0
σ (s) dWs, (14)

is a Gaussian process with mean and variance at t :

μ(t ) =
∫ t

0
A(s) ds and ν(t ) =

∫ t

0
σ 2(s) ds, (15)

respectively; it therefore follows that

p(y, t ) = 1√
2πν(t )

exp
[
− (y − μ(t ))2

2ν(t )

]
. (16)

(Equations (15–16) can also be obtained by solving the Fokker–Planck or forward

Kolmogorov equation [11, 12, 15], which applies to more general SDEs with x-dependent

vector fields.)

Given Equations (15–16), it is straightforward to calculate the rate of change of

probability mass through response thresholds at ±Z with respect to time. For the correct

barrier +Z , we have

∂

∂t
P(y> Z , t )= ∂

∂t

∫ ∞

y=Z
p(y, t ) dy= 1√

2π
exp

[
− (Z − μ(t ))2

2ν(t )

] [
μ′(t )

ν(t )1/2
+ (Z − μ(t ))ν ′(t )

2ν(t )3/2

]
, (17)

and for the error barrier −Z ,

∂

∂t
P(y < −Z , t ) = ∂

∂t

∫ −Z

y=−∞
p(y, t ) dy

= 1√
2π

exp
[
− (Z + μ(t ))2

2ν(t )

] [
− μ′(t )

ν(t )1/2
+ (Z + μ(t ))ν ′(t )

2ν(t )3/2

]
. (18)

This calculation of average probability currents includes sample paths that exit [−Z , Z ]

prior to time t but subsequently reenter and lie within it at time t . It therefore pro-

vides lower bounds for cumulative first-passage distributions, underestimating them in

general and offering good approximations only when, after first crossing Z or −Z , the

subsequent fraction of time spent in [−Z , Z ] is small. Finally, we set the approximate

first-passage densities equal to Equations (17–18), with (small) adjustments to ensure

that they are nowhere negative:

f̂+(t ) = max
{

0,
∂

∂t
P(y > Z , t )

}
, f̂−(t ) = max

{
0,

∂

∂t
P(y < −Z , t )

}
. (19)

Not all processes are amenable to this treatment. For example, a periodic drift

rate A(t ) = sin t and decaying noise coefficient σ (t ) = e−t results in a density p(y, t ) with

finite variance ν(t ) → 0.5, whose mean drifts back and forth between 0 and 2, repeatedly

recrossing Z = 1. This leads to a quasiperiodic P(y > Z , t ) and a nonintegrable function
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f̂+. (We are indebted to one of the referees for this counterexample.) To ensure that the

expressions of Equation (19) are integrable, we assume that both the drift and diffusion

coefficients A(t ) and σ (t ) monotonically approach finite limits and that the former is

nonzero, so that almost all sample paths leave [−Z , Z ] as t → ∞ and P(y > Z , t ) and

P(y < −Z , t ) are well-defined distributions. This condition is satisfied for the sigmoidal

gain of Section 2.2, which modulates both drift rate and noise and changes sign at most

once, and we believe that other biologically relevant sensory integration models would

also satisfy it: in particular, persistent reversals in drift are unlikely in 2AFC. (In other

tasks, including binocular rivalry, reversals can persist [1].)

For constant gain A and noise variance σ 2, we have μ(t ) = At and ν(t ) = σ 2t , and

our treatment is similar to the “Wiener diffusion approximation” of [21, Equation (4)].

For the sigmoidal gain g(t ) of Equation (8), the functions μ′(t ) = Ag(t ) and ν ′(t ) = σ 2g2(t )

can be integrated to obtain

μ(t ) = A

G
[Ig(t ) − ηt ] and ν(t ) = σ 2

G2

[
I (2)
g (t ) − 2ηIg(t ) + η2t

]
, (20)

where Ig(t ) is given in Equation (12), and the integral of the squared sigmoid is

I (2)
g (t ) =

∫ t

0

[
1

1 + exp(−γ (s − δ))

]2

ds = −1

γ [1 + exp(−γ (s − δ))]

∣∣∣∣
t

s=0

+ Ig(t ). (21)

Thus, in the case of interest, the approximate first-passage distributions are represented

entirely in closed form and may be quickly computed using Equations (17–21).

3.2 Evaluation of the interrogation approximation

Having shown that the closed-form distributions provided by the interrogation approxi-

mation are convenient, it remains to check that they are acceptably close to the true first-

passage distributions. We consider two cases: the “direct” approximation of Section 3.1

with the same parameters as the original diffusion process, and an approximation with

parameters chosen to minimize the sum-of-squares error (SSE) distance between the

interrogation approximation and the (simulated) free response model. As expected, the

SSE-minimizing distributions can better match the simulated free response distribu-

tions, at the cost of defining different effective drift and threshold values.

To minimize SSE, we use both the default unconstrained nonlinear optimiza-

tion algorithm fminsearch in Matlab, and simulated annealing (code available from

http://www.mathworks.com/matlabcentral/fileexchange/10548.), taking parameter val-

ues from the method that produces the smallest SSE. In the constant-gain case, we
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Fig. 4. SSE-minimizing parameters of the interrogation approximation to free response

first-passage distributions are displayed for different signal-to-noise ratios (SNRs) β and

fixed threshold-to-drift ratio α. Left: Dashed line shows SSE-minimizing SNR β̂; true β is

shown as solid line (of unit slope). Center: Dashed line shows SSE-minimizing threshold-

to-drift ratio α̂; true α(= 1) is shown as solid line. Right: Dashed line shows root mean

squared error (RMSE) of the approximation using the SSE-minimizing parameters; solid

line shows RMSE for the actual parameters.

allow Z , A, and σ 2 to vary in our minimization, expressing the results in terms of the

SNR β = (A/σ )2 and threshold-to-drift ratio α = Z/A defined in Section 2.1. In the time-

varying case, we further allow the gain parameters γ , δ, and η to vary, and, working with

A/G and σ 2/G2, we use Equation (20) to bypass explicit calculation of the normalization

constant G. For both constant and time-varying gains, parameters were kept constant

across the upper and lower threshold distributions. SSE was calculated as a sum of the

SSEs at each threshold, with SSEs weighted equally at both thresholds.

3.2.1 Constant gains

It was noted in [21] that, for certain distributions in the constant gain case, the SSE-

minimizing parameters differ from the original free response parameters. In Figure 4, we

explore this discrepancy systematically as a function of SNR β. The left panel compares

the true β with the SSE-minimizing value β̂ as β varies with constant threshold-to-drift

ratio α. The middle panel compares the true (constant) α with the SSE-minimizing α̂-

value across the same set of models. Systematic differences between the generating and

best-fit parameters are evident. For β > 2 a simple translation β̂ ≈ β + 0.7 suffices to

predict β̂. The α case is more complex, but α̂ < α and α̂ approaches α from below as β

increases.

This finding is consistent with the fact that the interrogation approximation

underestimates the fractions of sample paths that have first exited the barriers ±Z
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Fig. 5. A diverse set of free response distributions generated by time-varying sigmoidal

gains with δ = 0 (dark gray). Also shown are the direct interrogation approximations

(light gray) and the SSE-minimizing interrogation approximations (dashed black). Upper

and lower curves in each square are correct and error DT distributions, respectively. To

better compare approximations, distributions are not normalized and different vertical

scales are used in each panel.

at time t . Thus, the true first-passage distribution is underestimated at shorter times

and overestimated at longer times (see Figure 5). This discrepancy is partially repaired

by increasing the effective SNR β̂, thereby reducing the probability of paths reentering

[−Z , Z ]. A similar effect is achieved by reducing the threshold-to-drift ratio α̂. Not only is
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β̂ > β and α̂ < α for all β, but errors for both the original and SSE-minimizing parameters

decrease monotonically as β increases (right panel of Figure 4).

This discrepancy has immediate implications for analysis with this model; pa-

rameters inferred from, e.g., a Bayesian analysis using the interrogation approximation

may be quite far from the true generating parameters at low SNR. Nonetheless, as ex-

pected, both the direct and SSE-minimizing approximations approach the true free re-

sponse distribution at high SNR (right panel of Figure 4), although the latter approaches

zero error substantially faster.

3.2.2 Sigmoidal time-varying gains

Using the gains of Equation (8), we find a much wider variety of first-passage distribu-

tions, as shown in the numerically generated results of Figure 5 (dark gray). Distributions

can be unimodal (e.g., γ = 1, η = 0.3) or bimodal (e.g., γ = 1, η = 0.7); bimodality occurs

when η > 0.5 and gain g(t ) changes sign in [0, T ], but may not be apparent if this occurs

when a few paths have crossed threshold (e.g., γ = 1, η = 0.6). While some distributions

have greater probability mass at the upper barrier (e.g., γ = 5, η = 0.6, where the sign

change is very early), others have greater mass at the lower barrier (e.g., γ = 0.2, η = 0.8,

where the sign change is very late). Some upper and lower distribution pairs are approx-

imately proportional (cf. Equation (6)), but others are noticeably not (e.g., γ = 1, η = 0.7).

Despite the variety of functional forms and the fact that g(t ) changes sign after stimulus

onset for η > 0.5, promoting barrier recrossing (lower three rows), the direct interroga-

tion approximation (19) (light gray) successfully captures the numbers and relative sizes

of modes. Also, consistent with its lower bound of cumulative distributions (Section 3.1),

it underestimates early peaks and overestimates tails of the true distributions f±, as the

top row of Figure 5 clearly illustrates.

As expected, the SSE-minimizing interrogation approximation (dashed black) also

captures mode number and relative sizes, often being very close to the true distributions

(e.g., γ = 5, η = 0.6), although sometimes it improves only slightly upon the direct approx-

imation (e.g., γ = 1, η = 0.8). However, both approximations sometimes fail to reproduce

distributions with low probability mass. We believe that this is due in part to the high

probability of boundary recrossing in such cases. The poor SSE-minimizing fits, in par-

ticular, are dominated by a larger probability mass crossing the other boundary (e.g.,

lower barrier for γ = 1, η = 0.3, 0.6; upper barrier for γ = 0.2, η = 0.7, 0.8).

To provide a more systematic understanding of the approximation’s accuracy,

in Figure 6 we plot errors for the direct and SSE-minimizing approximations over the
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Fig. 6. Root mean squared errors (RMSEs) for interrogation approximations to first-

passage distributions calculated across generating γ and η values for the time-dependent

DDM with δ = 0, A = 1, σ = 1, and Z = 1. Dashed curves show RMSEs for approxima-

tions using SSE-minimizing parameters; solid curves show RMSEs for the true param-

eters. Left: RMSEs as a function of γ with η = 0. Right: RMSEs as a function of η with

γ = 1.

parameter ranges used in Section 2 (Figures 2 and 3). At each γ value in the left panel, we

define g(t ) with the given γ and all other parameters constant, calculate the first-passage

distribution numerically [9], and find the direct and SSE-minimizing approximations.

Similarly, η is varied in the right panel, with all other gain parameters held constant.

This reveals that certain distributions in Figure 5 are among the most problematic to

approximate. In particular, the two lower panels of the middle column (η = 0.7, 0.8) fall

in the high-error region of Figure 6 (right panel).

Both approximations compare favorably with the constant gain cases in the

right panel of Figure 4 over the remaining parameter values. The direct approximation

performs similarly for both constant and time-varying gains. The SSE-minimizing ap-

proximation does not do as well for time-varying gain, but it still exhibits lower errors

in all cases shown here.

4 Conclusion

In the first part of this article, we investigate first-passage distributions for a drift-

diffusion process with time-varying drift rate and noise, as used in modeling human and

primate decision making. Confirming earlier work of [9], we show that such a process

can generate slower errors, unlike the pure DDM with constant drift and noise, and
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we systematically explore the parameter space of a class of sigmoidal gain functions,

characteristic of those fitted to behavioral data [9, 34] (Figures 2 and 3).

Time-dependent drift is problematic in that no explicit functions describing

first-passage distributions are known, so in the second part we derive such a closed-

form expression from a simpler interrogation protocol. For constant drift and noise, this

approximation is especially good for high SNRs, in agreement with intuition (Figure 4).

As SNR increases, a smaller fraction of sample paths recrosses each decision threshold

substantially after the first passage, so that interrogation as to whether the state lies

outside the thresholds at time t is a good indicator of first-passage status.

Our approximation is similar in form to that of [21] in the constant drift and

noise case, but here we explicitly describe its derivation and systematically evaluate

its accuracy. We show that it can capture a variety of distributional shapes exhibited

by diffusion processes with time-varying drift and noise modulated by a sigmoidal

function that changes sign at most once. Improved approximations may be obtained by

optimizing the model parameters to minimize the SSE with numerically simulated first-

passage distribution (Figures 4 and 6): a procedure that further illuminates the source

of errors in the direct interrogation approximation and highlights possible biases in

using closed-form approximations for applications in Bayesian modeling and behavioral

analyses.

Under appropriate experimental conditions, subjects can produce errors that are

either slower or faster than mean times for correct responses. Models with an intrinsic

acceleration toward a decision threshold, e.g., unstable Ornstein–Uhlenbeck process

with linear [2, 26, 38, 42] or nonlinear [35, 45] dependence on y, can reproduce slow

errors without incorporating time variation. However, their decision thresholds must be

significantly changed, or initial conditions chosen asymmetrically, to produce fast errors.

In contrast, we show that simply increasing the offset η in the time-varying gain can

change slow errors to fast errors. This may be useful in modeling tasks in which cognitive

control arrives relatively late in the decision process. Prior biases can be a major cause

of errors in such cases (e.g., in the Eriksen task [6, 23]). More generally, modulation

of weights among current and recent evidence and prior expectations underlies many

decisions [12, 14], and models and methods that can accommodate time-varying evidence

streams are therefore likely to be in demand.

In summary, the present closed-form approximation should be valuable not only

in approximating various model behaviors in free response choice tasks, but for other

first-passage processes with similar time-varying data.
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