40 research outputs found

    A New Strategy to Compare Inverted Rupture Models Exploiting the Eigenstructure of the Inverse Problem

    Get PDF
    Finite-fault-slip inversions provide crucial information on earthquake rupture phenomena. Many slip-inversion methods exist and differ in how the rupture model is parameterized and which regularizations or constraints are applied (e.g., Ide, 2007, and references therein). Some methods are utilized even routinely for large earthquakes and published online (e.g., the U.S. Geological Survey website http://earthquake.usgs.gov/, last accessed August 2015). However, the slip-inversion results obtained by various authors for the same event may differ (e.g., Clévédé et al., 2004). There is currently no consensus about which slip-inversion method is preferable, and there are concerns about the reliability of the inferred source models due to the nonuniqueness or ill conditioning of the inverse problem (Hartzell et al., 2007; Zahradník and Gallovič, 2010; Gallovič and Zahradník, 2011; Shao and Ji, 2012). Therefore, slip inversion is still a subject of active research

    Uncertainties in strong ground-motion prediction with finite-fault synthetic seismograms: an application to the 1984 M 5.7 Gubbio, central Italy, earthquake.

    Get PDF
    This study investigates the engineering applicability of two conceptually different finite-fault simulation techniques. We focus our attention on two important aspects: first to quantify the capability of the methods to reproduce the observed ground-motion parameters (peaks and integral quantities); second to quantify the dependence of the strong-motion parameters on the variability in the large-scale kinematic definition of the source (i.e. position of nucleation point, value of the rupture velocity and distribution of the final slip on the fault). We applied an approximated simulation technique, the Deterministic-Stochastic Method DSM, and a broadband technique, the Hybrid-Integral-Composite method HIC, to model the 1984 Mw 5.7 Gubbio, central Italy, earthquake, at 5 accelerometric stations. We first optimize the position of nucleation point and the value of rupture velocity for three different final slip distributions on the fault by minimizing an error function in terms of acceleration response spectra in the frequency band from 1 to 9 Hz. We found that the best model is given by a rupture propagating at about 2.65 km/s from a hypocenter located approximately at the center of the fault. In the second part of the paper we calculate more than 2400 scenarios varying the kinematic source parameters. At the five sites we compute the residuals distributions for the various strong-motion parameters and show that their standard deviations depend on the source-parameterization adopted by the two techniques. Furthermore, we show that, Arias Intensity and significant duration are characterized by the largest and smallest standard deviation, respectively. Housner Intensity results better modeled and less affected by uncertainties in the source kinematic parameters than Arias Intensity. The fact that the uncertainties in the kinematic model affects the variability of different ground-motion parameters in different ways has to be taken into account when performing hazard assessment and earthquake engineering studies for future events

    Building damage scenarios based on exploitation of Housner Intensity derived from finite faults ground motion simulations

    Get PDF
    In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimate adopting a probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices (DPMs). The studied area experienced several destructive earthquakes in historical and recent times. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be used for building damage scenarios. Additionally, site effects, evaluated in the framework of the DPC-INGV S3 project through amplification factors of Housner intensity (IH), have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between IH and macroseismic intensity in terms of EMS98 has been developed. This relationship has been used to convert the Probability Density Functions (PDFs) for IH obtained from synthetic seismograms and convolved by the site effects coefficients into PDFs for EMS98 intensity. Finally, the DPMs approach has been applied to estimate the damage levels of the residential buildings in the urban area of Potenza

    Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami

    Get PDF
    The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment

    Physics-Based Earthquake Ground Shaking Scenarios in Large Urban Areas

    Get PDF
    With the ongoing progress of computing power made available not only by large supercomputer facilities but also by relatively common workstations and desktops, physics-based source-to-site 3D numerical simulations of seismic ground motion will likely become the leading and most reliable tool to construct ground shaking scenarios from future earthquakes. This paper aims at providing an overview of recent progress on this subject, by taking advantage of the experience gained during a recent research contract between Politecnico di Milano, Italy, and Munich RE, Germany, with the objective to construct ground shaking scenarios from hypothetical earthquakes in large urban areas worldwide. Within this contract, the SPEED computer code was developed, based on a spectral element formulation enhanced by the Discontinuous Galerkin approach to treat non-conforming meshes. After illustrating the SPEED code, different case studies are overviewed, while the construction of shaking scenarios in the Po river Plain, Italy, is considered in more detail. Referring, in fact, to this case study, the comparison with strong motion records allows one to derive some interesting considerations on the pros and on the present limitations of such approach

    Uncertainties in strong ground-motion prediction with finite-fault synthetic seismograms: an application to the 1984 M 5.7 Gubbio, central Italy, earthquake.

    No full text
    This study investigates the engineering applicability of two conceptually different finite-fault simulation techniques. We focus our attention on two important aspects: first to quantify the capability of the methods to reproduce the observed ground-motion parameters (peaks and integral quantities); second to quantify the dependence of the strong-motion parameters on the variability in the large-scale kinematic definition of the source (i.e. position of nucleation point, value of the rupture velocity and distribution of the final slip on the fault). We applied an approximated simulation technique, the Deterministic-Stochastic Method DSM, and a broadband technique, the Hybrid-Integral-Composite method HIC, to model the 1984 Mw 5.7 Gubbio, central Italy, earthquake, at 5 accelerometric stations. We first optimize the position of nucleation point and the value of rupture velocity for three different final slip distributions on the fault by minimizing an error function in terms of acceleration response spectra in the frequency band from 1 to 9 Hz. We found that the best model is given by a rupture propagating at about 2.65 km/s from a hypocenter located approximately at the center of the fault. In the second part of the paper we calculate more than 2400 scenarios varying the kinematic source parameters. At the five sites we compute the residuals distributions for the various strong-motion parameters and show that their standard deviations depend on the source-parameterization adopted by the two techniques. Furthermore, we show that, Arias Intensity and significant duration are characterized by the largest and smallest standard deviation, respectively. Housner Intensity results better modeled and less affected by uncertainties in the source kinematic parameters than Arias Intensity. The fact that the uncertainties in the kinematic model affects the variability of different ground-motion parameters in different ways has to be taken into account when performing hazard assessment and earthquake engineering studies for future events.In press4.1. Metodologie sismologiche per l'ingegneria sismicaJCR Journalope
    corecore