49 research outputs found

    Cre-LoxP-regulated expression of monoclonal antibodies driven by an ovalbumin promoter in primary oviduct cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A promoter capable of driving high-level transgene expression in oviduct cells is important for developing transgenic chickens capable of producing therapeutic proteins, including monoclonal antibodies (mAbs), in the whites of laid eggs. Ovalbumin promoters can be used as oviduct-specific regulatory sequences in transgenic chickens, but their promoter activities are not high, according to previous reports.</p> <p>Results</p> <p>In this study, while using a previously characterized ovalbumin promoter, we attempted to improve the expression level of mAbs using a Cre/<it>lox</it>P-mediated conditional excision system. We constructed a therapeutic mAb expression vector, pBS-DS-hIgG, driven by the CMV and CAG promoters, in which the expression of the heavy and light chains of humanized immunoglobulin G (hIgG) is preceded by two floxed stuffer reporter genes. In the presence of Cre, the stuffer genes were precisely excised and hIgG expression was induced in pBS-DS-hIgG-transfected 293T cells. In chicken oviduct primary culture cells, hIgG was expressed after transfection of pBS-DS-hIgG together with the ovalbumin promoter-driven Cre expression vector. The expression level of hIgG in these cells was increased 40-fold over that induced directly by the ovalbumin promoter. On the other hand, hIgG was not induced by the ovalbumin promoter-driven Cre in chicken embryonic fibroblast cells.</p> <p>Conclusions</p> <p>The Cre/<it>lox</it>P-based system could significantly increase ovalbumin promoter-driven production of proteins of interest, specifically in oviduct cells. This expression system could be useful for producing therapeutic mAbs at high level using transgenic chickens as bioreactors.</p

    Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes.

    Get PDF
    With defined culture protocol, human embryonic stem cells (hESCs) are able to generate cardiomyocytes in vitro, therefore providing a great model for human heart development, and holding great potential for cardiac disease therapies. In this study, we successfully generated a highly pure population of human cardiomyocytes (hCMs) (&gt;95% cTnT(+)) from hESC line, which enabled us to identify and characterize an hCM-specific signature, at both the gene expression and DNA methylation levels. Gene functional association network and gene-disease network analyses of these hCM-enriched genes provide new insights into the mechanisms of hCM transcriptional regulation, and stand as an informative and rich resource for investigating cardiac gene functions and disease mechanisms. Moreover, we show that cardiac-structural genes and cardiac-transcription factors have distinct epigenetic mechanisms to regulate their gene expression, providing a better understanding of how the epigenetic machinery coordinates to regulate gene expression in different cell types

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Supplemental data Overlapping and specialized roles of tomato phytoene synthase isoforms PSY1 and PSY2 in carotenoid and ABA production

    No full text
    [Supplemental Figures] Supplemental Fig. S1. DNA sequence alignment of PSY1 sequences from WT and CRISPR mutants.-- Supplemental Fig. S2. DNA sequence alignment of PSY2 sequences from WT and CRISPR mutants.-- Supplemental Fig. S3. Protein sequence alignment of PSY1 and PSY2 sequences from WT and CRISPR mutants.-- Supplemental Fig. S4. Representative phenotypes of tomato mutants defective in PSY1 or PSY2.-- Supplemental Figure S5. PCR genotyping of mutant alleles.-- Supplemental Figure S6. PSY1, PSY2 and PSY3 transcript levels in different tissues.-- Figure S7. Expression profile of PSY1 and PSY2 in the fruit pericarp during development.-- Figure S8. Expression profile of ABA biosynthetic genes in developing seeds.-- [Supplemental Tables] Table S1. Primers used in this work.-- Table S2. CRISPR-Cas9 constructs and cloning details.Peer reviewe

    Overlapping and specialized roles of tomato phytoene synthases in carotenoid and abscisic acid production

    No full text
    Carotenoids are plastidial isoprenoids required for photoprotection and phytohormone production in all plants. In tomato (Solanum lycopersicum), carotenoids also provide color to flowers and ripe fruit. Phytoene synthase (PSY) catalyzes the first and main flux-controlling step of the carotenoid pathway. Three genes encoding PSY isoforms are present in tomato, PSY1 to PSY3. Mutants have shown that PSY1 is the isoform providing carotenoids for fruit pigmentation, but it is dispensable in photosynthetic tissues. No mutants are available for PSY2 or PSY3, but their expression profiles suggest a main role for PSY2 in leaves and PSY3 in roots. To further investigate isoform specialization with genetic tools, we created gene-edited lines defective in PSY1 and PSY2 in the MicroTom background. The albino phenotype of lines lacking both PSY1 and PSY2 confirmed that PSY3 does not contribute to carotenoid biosynthesis in shoot tissues. Our work further showed that carotenoid production in tomato shoots relies on both PSY1 and PSY2 but with different contributions in different tissues. PSY2 is the main isoform for carotenoid biosynthesis in leaf chloroplasts, but PSY1 is also important in response to high light. PSY2 also contributes to carotenoid production in flower petals and, to a lesser extent, fruit chromoplasts. Most interestingly, our results demonstrate that fruit growth is controlled by abscisic acid (ABA) specifically produced in the pericarp from PSY1-derived carotenoid precursors, whereas PSY2 is the main isoform associated with ABA synthesis in seeds and salt-stressed roots.This work was funded by grants from Spanish Agencia Estatal de Investigación MCIN/AEI /10.13039/501100011033 and European Commission NextGeneration EU/PRTR and PRIMA programs to M.R.-C. (PID2020-115810GB-I00 and UToPIQ-PCI2021-121941). M.R.-C. is also supported by Consejo Superior de Investigaciones Cientificas (202040E299) and Generalitat Valenciana (PROMETEU/2021/056 and AGROALNEXT/2022/067). M.E. and E.B.-E. received predoctoral fellowships from MCIN/AEI (BES-2017-080652) and Colombia’s Colciencias Doctorado Exterior program (MINCIENCIAS885/2020), respectively.Peer reviewe

    Influence of three-dimensional lung epithelial cells and interspecies interactions on antibiotic efficacy against Mycobacterium abscessus and Pseudomonas aeruginosa

    No full text
    Mycobacterium abscessus lung infection is a major health problem for cystic fibrosis (CF) patients. Understanding the in vivo factors that influence the outcome of therapy may help addressing the poor correlation between in vitro and in vivo antibiotic efficacy. We evaluated the influence of interspecies interactions and lung epithelial cells on antibiotic efficacy. Therefore, single and dual-species biofilms of M. abscessus and a major CF pathogen (Pseudomonas aeruginosa) were cultured on a plastic surface or on in vivo-like three-dimensional (3-D) lung epithelial cells, and the activity of antibiotics (colistin, amikacin, clarithromycin, ceftazidime) in inhibiting biofilm formation was evaluated. Using the most physiologically relevant model (dual-species biofilms on 3-D cells), we observed that treatment with antibiotics during biofilm development inhibited P. aeruginosa but not M. abscessus biofilms, resulting in a competitive advantage for the latter. Clarithromycin efficacy against P. aeruginosa was inhibited by 3-D lung cells. In addition, biofilm induction of M. abscessus was observed by certain antibiotics on plastic but not on 3-D cells. Pseudomonas aeruginosa influenced the efficacy of certain antibiotics against M. abscessus, but not vice versa. In conclusion, these results suggest a role of host cells and interspecies interactions in bacterial responses to antimicrobials

    In vivo activation of a conserved microRNA program induces mammalian heart regeneration

    Get PDF
    SummaryHeart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals. We identified miR-99/100 and Let-7a/c and their protein targets smarca5 and fntb as critical regulators of cardiomyocyte dedifferentiation and heart regeneration in zebrafish. Although human and murine adult cardiomyocytes fail to elicit an endogenous regenerative response after myocardial infarction, we show that in vivo manipulation of this molecular machinery in mice results in cardiomyocyte dedifferentiation and improved heart functionality after injury. These data provide a proof of concept for identifying and activating conserved molecular programs to regenerate the damaged heart

    Reprogramming of human fibroblasts to pluripotency with lineage specifiers

    Get PDF
    International audienceSince the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency

    Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities

    Get PDF
    The genetic mechanisms that regulate the complex morphogenesis of generating cartilage elements in correct positions with precise shapes during organogenesis, fundamental issues in developmental biology, are still not well understood. By focusing on the developing mouse limb, we confirm the importance of transcription factors encoded by the Sall gene family in proper limb morphogenesis, and further show that they have overlapping activities in regulating regional morphogenesis in the autopod. Sall1/Sall3 double null mutants exhibit a loss of digit1 as well as a loss or fusion of digit2 and digit3, metacarpals and carpals in the autopod. We show that Sall activity affects different pathways, including the Shh signaling pathway, as well as the Hox network. Shh signaling in the mesenchyme is partially impaired in the Sall mutant limbs. Additionally, our data suggest an antagonism between Sall1-Sall3 and Hoxa13-Hoxd13. We demonstrate that expression of Epha3 and Epha4 is downregulated in the Sall1/Sall3 double null mutants, and, conversely, is upregulated in Hoxa13 and Hoxd13 mutants. Moreover, the expression of Sall1 and Sall3 is upregulated in Hoxa13 and Hoxd13 mutants. Furthermore, by using DNA-binding assays, we show that Sall and Hox compete for a target sequence in the Epha4 upstream region. In conjunction with the Shh pathway, the antagonistic interaction between Hoxa13-Hoxd13 and Sall1-Sall3 in the developing limb may contribute to the fine-tuning of local Hox activity that leads to proper morphogenesis of each cartilage element of the vertebrate autopod
    corecore