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SUMMARY

Since the initial discovery that OCT4, SOX2, KLF4,
and c-MYC overexpression sufficed for the induction
of pluripotency in somatic cells, methodologies
replacing the original factors have enhanced our un-
derstanding of the reprogramming process. How-
ever, unlike in mouse, OCT4 has not been replaced
successfully during reprogramming of human cells.
Here we report on a strategy to accomplish this
replacement. Through a combination of transcrip-
tome and bioinformatic analysis we have identified
factors previously characterized as being lineage
specifiers that are able to replace OCT4 and SOX2
in the reprogramming of human fibroblasts. Our re-
sults show that it is possible to replace OCT4 and
SOX2 simultaneously with alternative lineage speci-
fiers in the reprogramming of human cells. At a
broader level, they also support a model in which
counteracting lineage specification networks under-
lies the induction of pluripotency.
INTRODUCTION

Induced pluripotent stem cells (iPSCs) can be generated by

forced expression of transcription factors (TFs) commonly en-

riched in embryonic stem cells (ESCs). Accordingly, it has been

generally assumed that such factors are specific to the pluripo-

tent state and they are referred to as ‘‘pluripotency factors.’’

However, identification of a specific gene signature defining

pluripotent identity remains elusive and pluripotency is routinely

evaluated by functional differentiation assays rather than mere

marker expression. Pluripotency does not seem to represent a

discrete cellular entity but rather a functional state elicited by a

balance between opposite differentiation forces (Loh and Lim,

2011; Zipori, 2004) (Figure 1A). In support of this hypothesis,

OCT4 and SOX2 have been shown to counteract for the expres-

sion of lineage specification genes (Loh and Lim, 2011; Thomson

et al., 2011;Wang et al., 2012). If the pluripotent state does in fact

represent a balance between counteracting differentiation
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forces, it might be possible to achieve reprogramming by replac-

ing the ‘‘core’’ pluripotency factors in the reprogramming cock-

tail with downstream genes related to lineage specification or

additional counteracting factors potentially expressed in ESCs.

Indeed, reprogramming can be accomplished in the absence

of SOX2 in mouse and human cells, as endogenous SOX2 levels

in neural progenitor cells (NPCs) can suffice for OCT4-driven

reprogramming into iPSCs (Kim et al., 2009a, 2009b, 2008).

Similarly, exogenous OCT4 expression can be dispensable for

the reprogramming of mouse cells when substituted by the nu-

clear receptor Nr2a5 (Heng et al., 2010) or by E-cadherin expres-

sion (Redmer et al., 2011). However, identification of molecules

able to substitute forOCT4 in the reprogramming of human cells

has remained elusive.

Interestingly, recent reports have indicated thatOCT4 plays an

essential role in the establishment of primitive endoderm (Frum

et al., 2013). Two additional reports indicated that precise levels

of OCT4 govern transition through different pluripotent states

and differentiation into embryonic lineages (Karwacki-Neisius

et al., 2013; Radzisheuskaya et al., 2013). These observations

demonstrate a role for OCT4 in differentiation apart from its

well-known functions in pluripotent cells. Similarly, other reprog-

ramming factors are expressed in cells other than pluripotent

stem cells and associated with lineage specification (Loh and

Lim, 2011; Sarkar and Hochedlinger, 2013; Suzuki et al., 2006;

Wang et al., 2012). Together, all these data support the idea

that the current definitions of ‘‘pluripotency factors’’ and ‘‘lineage

markers/specifiers’’ are not necessarily mutually exclusive.

Here we report on the identification of several factors that,

although traditionally related to lineage specification, also allow

for the replacement of SOX2 and of OCT4 in the reprogramming

of human fibroblasts to iPSCs. Our results shed new light on the

moleculardeterminantsof reprogrammingandsupport thenotion

that pluripotency represents a functional cellular state achieved

by the fine-tuned balance of opposing differentiation forces.

RESULTS

Human Pluripotent Cells Express Markers Related to
Differentiation and Linage Specification
We have previously demonstrated that mouse ESCs (mESCs)

display a dynamic equilibrium in the expression of the early mes-

endodermal marker T (Suzuki et al., 2006) while maintaining an
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Figure 1. Undifferentiated PSCs Express Genes Related to Lineage Specification

(A) Schematic representation of the different models exemplifying PSC state and differentiation. Upper panels: PSCs are characterized by the expression of

‘‘specific’’ pluripotency markers. Differentiation induces the downregulation of pluripotent markers accompanied by upregulation of early lineage specifiers and

ultimately the expression of lineage-specific markers. Bottom panels: PSCs express markers typical of different lineages alongside pluripotency-related ones.

(legend continued on next page)
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undifferentiated pluripotent state. In order to extend our previous

observationswe decided to evaluate the protein expression levels

of a number of different lineage markers. We particularly focused

on mesendodermal gene expression, as OCT4 has been

described to regulate the mesendodermal lineage in pluripotent

cells (Loh and Lim, 2011; Thomson et al., 2011; Wang et al.,

2012) and be necessary for the establishment of primitive endo-

derm and efficient differentiation (Frumet al., 2013; Karwacki-Nei-

sius et al., 2013; Radzisheuskaya et al., 2013). To this end, we

monitored lineage-related protein expression in parallel to the

expressionofpluripotencymarkersgenerally viewedascharacter-

istic of pluripotent cells (Chan et al., 2009). Our results confirmed

that different subpopulations of pluripotent cells coexpress plurip-

otency markers with so-called lineage markers including CD56,

CD71, CD235a, CD326, CD24, CD133, KDR, and KIT (Figures

1B and 1C), in line with the notion that pluripotent stem cells

(PSCs) may not represent a ‘‘blank cellular entity’’ (Zipori, 2004).

To start addressing whether TFs related to lineage specifica-

tion could potentially be used for the reprogramming of human

somatic cells to iPSCs, we devised a strategy to identify expres-

sion of lineage markers based on microarray analysis. We

reasoned that two-pair microarray comparisons of tissues

derived from each of the major three germ layers could highlight

expression of markers typical of other lineages, even if they are

not very highly expressed, in ESCs. Three major comparisons

were analyzed for both human and mouse cells using existing

array data sets: ectodermal derivatives relative to undifferenti-

ated ESCs with the aim of highlighting expression of potential

mesendodermal markers in ESCs; mesodermal derivatives rela-

tive to undifferentiated ESCs with the aim of assessing expres-

sion of ectodermal and endodermal markers; and endodermal

derivatives relative to undifferentiated ESCs for manifesting the

expression of mesoderm and ectoderm markers. This approach

enabled us to generate three different gene data sets in which

lineage markers expressed in ESCs were highlighted (Figures

1D–1G and Tables S1, S2, S3, and S4, available online). Interest-

ingly, the resulting ‘‘mesendoderm enriched’’ data sets high-

lighted genes present in both mouse and human PSCs. The

expression of genes typically associated with lineage specifica-

tion in PSCs, even though at low levels, together with reports of

the expression of traditional pluripotency factors in differentiated

lineages (Kurian et al., 2013; Loh and Lim, 2011; Suzuki et al.,

2006; Wang et al., 2012), further indicated that there is overlap

between pluripotency and lineage marker expression.

GATA3 Replaces OCT4 for Reprogramming Human
Fibroblasts
We decided to focus our attention on the GATA family of TFs as

they can regulate transcription by acting as ‘‘pioneer TFs’’ in a

similar way to that recently described for the Yamanaka factors

(Soufi et al., 2012; Zaret and Carroll, 2011). Among these
Upon differentiation, pluripotent marker expression is downregulated alongside un

the balance defining PSCs and leads to differentiation toward lineages specified

(B) Percentage of cells double-positive for TRA1-60 or TRA1-81 and different lin

(C) Representative flow cytometry plots depicting expression of lineage markers

(D–G) Comparative microarray analysis highlighting the expression level of mese

human ESCs (F and G). Venn diagrams depict the number of common gene pro

Data are represented as mean ± SD. See also Tables S1, S2, S3, and S4.
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GATA3 is involved, with CDX2, in the specification of trophoblast

and in ESC differentiation toward mesendodermal lineages

(Home et al., 2009; Ralston et al., 2010; Thomson et al., 2011).

Additionally, a previous study showed that increased GATA3

expression in ESCs results in broad transcriptome changes lead-

ing to the upregulation ofmesendodermal genes, thus resembling

the role of OCT4 in lineage specification (Nishiyama et al., 2009).

Most interestingly, the balance betweenOCT4 and Cdx2 expres-

sion shifts cell fate during preimplantation development (Niwa

et al., 2005). Together, these observations highlight the role that

fine-tuned balancing of gene expression programs play in lineage

specification and pluripotency maintenance (Niwa et al., 2005;

Wangetal., 2012) andsuggest thatGATA factorsmightpotentially

contribute to the reprogramming of human somatic cells to iPSCs

by replacing OCT4 (Soufi et al., 2012; Zaret and Carroll, 2011).

To investigate the activity of GATA proteins in reprogramming,

we subjected human fibroblasts to reprogramming experiments

with several construct combinations in the presence or absence

of different GATA family members (GATA3,GATA6, andGATA4).

We decided to pursue a strategy involving a range of vector con-

structions, and thus expression approaches, because the rela-

tive levels of the reprogramming factors have been shown to

play an important role during iPSC generation and contribute

to the overall quality of pluripotent cells (Carey et al., 2011; Kar-

wacki-Neisius et al., 2013). As part of that strategy, wemade use

of VP16 transactivation domains constructed in different combi-

nations and positions to enhance the activity of different

expressed factors (Wang et al., 2011). Upon overexpression in

human fibroblasts, we observed iPSC colonies only in combina-

tions including GATA3-VP16 and not other GATA family mem-

bers to replace OCT4 (Figure 2A). Pluripotency marker expres-

sion was upregulated at both the RNA and protein levels

(Figures 2B and 2C). The iPSC colonies generated stained pos-

itive for alkaline phosphatase as well as for the pluripotency

markers TRA-1-60, TRA-1-81, SSEA3/4, OCT4, SOX2, and

NANOG, indicating the pluripotent nature of the cells (Figures

2A and 2B). Genomic DNA PCR analysis for transgene

sequences confirmed that the analyzed colonies contained

exogenous GATA3 integrated into their genome (Figure 2D).

Importantly, promoter methylation analysis confirmed demethy-

lation of theGATA3 promoter not only whenGATA3was used for

reprogramming but also in iPSC lines generated by the tradi-

tional Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC, here-

after referred to as OSKM) (Figure 2E).

As shown in Figure 2, all of the iPSC lines generated demon-

strated in vitro differentiation toward derivatives of the three ma-

jor germ layers, teratoma formation upon in vivo transplantation

(Figure 2F), and an appropriate response to BMP4-induced dif-

ferentiation (Figures S1A and S1B, available online). Additionally,

karyotype analysis demonstrated correct genomic content and

the lack of major deletions or duplications (Figure 2G). Once
related lineage specifiers. Downregulation of certain lineage specifiers disrupts

by the remaining molecules.

eage-related surface markers.

in undifferentiated PSCs.

ndodermal genes (green) and ectodermal genes (blue) in murine (D and E) and

bes upregulated for murine (E) and human cells (G).
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Figure 2. Generation of iPSCs by Replacement of OCT4 with the Mesendodermal Lineage Specifier GATA3

(A) Representative pictures of alkaline phosphatase-positive pre-iPSC colonies generated by replacing OCT4 with GATA3. On the bottom are shown re-

programming efficiencies, based on TRA1-60 expression (Chan et al., 2009), achieved by different methodologies.

(B) Representative immunofluorescence pictures demonstrating pluripotent marker expression in GATA3-reprogrammed iPSCs.

(C) mRNA expression level of different pluripotent-related genes.

(D) Genomic DNA PCR demonstrating integration of the exogenous genes.

(E) Methylation analysis of the GATA3 promoter in the indicated cell types.

(F) GSKM-iPSCs are able to differentiate into derivatives of the three germ layers in vitro and in vivo.

(G) Representative karyotype analysis of GSKM-iPSCs.

Data are represented as mean ± SD.

See also Figure S1.
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the pluripotent nature of the generated iPSCs was confirmed we

sought to further characterize and investigate the potential differ-

ences between iPSCs generated by different reprogramming

factor combinations. Genome-wide transcription analysis

demonstrated two well-defined and separated clusters, a plurip-

otent cluster in which GATA3-generated iPSCs were indistin-
344 Cell Stem Cell 13, 341–350, September 5, 2013 ª2013 Elsevier I
guishable from other iPSCs and ESCs, and an independent clus-

ter containing the initial somatic human fibroblasts (Figure S1C).

Together, our results demonstrate thatGATA3-VP16 is sufficient

for the functional replacement of OCT4 during the reprogram-

ming of human somatic cells to iPSCs and that GATA3-iPSCs

appear to be indistinguishable from other hPSCs.
nc.



Cell Stem Cell

Reprogramming by Lineage Specifiers
GATA3 Overexpression Induces Endogenous OCT4

Expression during Reprogramming and Its
Downregulation Compromises PSC Viability
Next we investigated the potential mechanisms by whichGATA3

could replaceOCT4 in these reprogramming experiments. Infec-

tion of human fibroblasts with different TF combinations demon-

strated significant upregulation of endogenousOCT4 expression

whenGATA3-VP16 was combined with other Yamanaka factors

(Figure 3A). Interestingly, upregulation of endogenousOCT4 and

NANOG was less pronounced than that observed upon OSKM

overexpression, potentially explaining the reduced reprogram-

ming efficiencies observed (Figure 3A) (Carey et al., 2011). In

support of the role of GATA3 during reprogramming, endoge-

nous GATA3 upregulation was observed when OCT4 was em-

ployed in combination with KLF4, c-MYC, and SOX2 (Figure 3B).

As GATA3 overexpression in ESCs results in upregulation of

mesendodermal gene expression (Nishiyama et al., 2009), we

also investigated the consequences of using an inverse

approach, i.e., reducing GATA3 expression in PSCs. After

GATA3 knockdown, PSCs displayed aberrant colony

morphology and then cell death after 3 days (Figures 3C and

3D). During the early events after knockdown, before substantial

cell death was observed, GATA3 downregulation resulted in

reduced expression of SOX2 and NANOG while OCT4 levels re-

mained unchanged (Figures 3E and 3F). These results suggest

an intricate connection between OCT4 and GATA3 expression

during reprogramming of human cells and identify a critical role

for appropriate levels ofGATA3 in themaintenance of the human

pluripotent state. Our findings are in accordance with previous

reports indicating that disturbance of the appropriate levels of

the core pluripotent machinery orGATA3 overexpression results

in the loss of pluripotency (Nishiyama et al., 2009).

A Seesaw Model Allows for the Reprogramming of
Human Fibroblasts
Using a similar logic, we investigated whether early ectodermal

lineage specifiers might similarly permit reprogramming to

iPSCs by replacing SOX2. We evaluated the role of different

TFs related to early ectodermal commitment including PAX6,

OTX2, RBPJ, ASCL1, ZIC2, ZNF521, FOXD5, and HESX1. Over-

expression of ZIC2, ZNF521, ASCL1, HESX1, and FOXD5 in hu-

man fibroblasts alongside OCT4, KLF4, and c-MYC resulted in

the appearance of iPSC-like colonies albeit with low efficiency

(0.0008%). Further validation demonstrated pluripotent marker

expression and pluripotent differentiation potential toward deriv-

atives of the three germ layers (Figures 4A, 4B, and S2A),

together confirming the pluripotent nature of these lines. Next

we evaluated each factor individually and, although with a very

low efficiency (0.0004%), in our experimental conditions we

observed that ZNF521 alone could replace SOX2 and generate

iPSCs expressing the hallmarks of pluripotency (Figures 4A, 4B,

and S2A).

Based on these results, it seemed possible that other mem-

bers of the SOX gene family might also serve as a replacement

for SOX2. As expected, combination of SOX1, SOX3, RBPJ,

OTX2, and PAX6 with OCT4, KLF4, and c-MYC resulted in

the appearance of reprogrammed colonies (data not shown).

Similar to a previously report in mice (Nakagawa et al., 2008),

individual overexpression of SOX1 or SOX3, alongside OCT4,
Cell S
KLF4, and c-MYC, sufficed in the generation of human iPSCs

with an efficiency of 0.01% and 0.004%, respectively (Figures

S2B and S2C). Interestingly, SOX1 and SOX3 overexpression

in human fibroblasts resulted in the upregulation of endoge-

nous SOX2 expression (Figure S2D). Likewise, murine Zfp521,

an ortholog of human ZNF521, has been reported to promote

neural differentiation in ESCs by acting upstream of SOX family

members, such as Sox3 and Sox1, as well as other TFs

involved in the formation of ectodermal lineages (Kamiya

et al., 2011). This finding suggests that ZNF521 overexpression

might also upregulate endogenous SOX-family members and

thus facilitate reprogramming in an analogous way to that

described for NPCs (Kim et al., 2009a, 2009b, 2008). RNA anal-

ysis of ZNF521-infected fibroblasts confirmed the significant

and rapid upregulation of endogenous SOX2 expression (Fig-

ure S2D). All of the iPSCs generated in the absence of SOX2

demonstrated a gene expression profile closely resembling

that of other PSC lines including ESCs and OSKM-derived

iPSCs (Figure S2E).

Considering both of these sets of results regarding individual

replacement of OCT4 and SOX2, we wondered whether, in

accordance with a model in which counteracting lineage speci-

fication pathways promote pluripotency (Loh and Lim, 2011; Zi-

pori, 2004), simultaneous replacement of OCT4 and SOX2 with

genes characteristic of opposing lineages could suffice for the

reprogramming of human fibroblasts into iPSCs. To avoid poten-

tial compensatory effects resulting from similarities between the

different proteins in the SOX family, we decided to focus our

attention on replacement of SOX2 by ectodermal-related genes

other than SOX1 and SOX3. Additionally, because replacement

of SOX2 by ZNF521 resulted in iPSC generation at very low effi-

ciencies, we speculated that ZNF521 alone might not posses

sufficient counteracting force to balance the effect of GATA3-

VP16 on mesendodermal specification. We therefore evaluated

reprogramming with GATA3-VP16 in the presence of three

different genes related to ectodermal specification (ZNF521,

OTX2, and PAX6) alongside KLF4 and c-Myc expression. As

shown in Figure 4, dual replacement of OCT4 and SOX2 with

mesendoderm-related and ectoderm-related genes, respec-

tively (Figure 4C), resulted in the appearance of colonies

(0.0002%) displaying typical ESC characteristics (Figures 4D

and 4E), including the expression of TRA1-81, NANOG, and

TRA1-60, a recognized surrogate of pluripotency in human re-

programming experiments (Chan et al., 2009) (Figures 4E and

4F). Upon spontaneous differentiation, the generated iPSCs

were able to formwell-defined embryoid bodies (EBs) and immu-

nofluorescence analysis demonstrated the expression of

markers typical of the three germ layers (Figures 4D and 4F).

Next, we subjected these iPSCs to directed differentiation ex-

periments. As shown in Figure 4G, iPSCs generated in the

absence of OCT4 and SOX2 were able to give rise to hepato-

cyte-like cells and neurons. Methylation analysis further

demonstrated efficient demethylation of the GATA3 promoter,

suggesting reprogramming to an iPSC state (Figures 2E and

4H). Lastly, in vivo teratoma formation assays further demon-

strated differentiation toward derivatives of the three germ layers

(Figure 4I). Together, our results indicate that cells reprog-

rammed by simultaneous replacement of OCT4 and SOX2

were indeed pluripotent.
tem Cell 13, 341–350, September 5, 2013 ª2013 Elsevier Inc. 345
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DISCUSSION

We have identified a set of factors that are able to replace the

core pluripotency factors OCT4 and SOX2 for the derivation of

human iPSCs. These results provide a proof-of-concept for the

dispensability of OCT4 for the acquisition of pluripotency in hu-

man cells and establish lineage-related genes as important

players on the road to pluripotency. Indeed, the fact that factors

involved in the specification of twomajor counteracting lineages,

mesendoderm and ectoderm, allowed for the reprogramming

into iPSCs sheds new light on the role that ‘‘lineage specifiers’’

play in pluripotent cells and the delicate transcriptional balance

governing the pluripotent state. These observations are in good

agreement with the reported role of OCT4 and SOX2 in mesen-

doderm and ectodermal specification as well as the expression

of so-called pluripotent genes in cell types other than PSCs. At a

general level, they also underscore the idea that there is signifi-

cant overlap between the concepts ‘‘pluripotency factors’’ and

‘‘lineage specifiers’’ and that individual factors can play multiple

roles depending on the specific circumstances involved.

Together, our observations indicate that reprogramming to

pluripotency, whether accomplished by the traditional Yama-

naka factors or alternative combinations, might be due to the

equilibrium of counteracting differentiation forces as opposed

to the specification of a discrete PSC cellular entity by PSC-spe-

cific factors (Loh and Lim, 2011; Zipori, 2004). In support of

these observations, during the preparation of this manuscript

an elegant study by Deng and colleagues reported similar re-

sults for reprogramming of mouse cells (Shu et al., 2013). Our

findings support the idea that a ‘‘seesaw model’’ also applies

to the reprogramming of human cells, although with certain dif-

ferences. The fact that not onlyGata3 but also other GATA family

members could reprogram mouse cells in the absence of OCT4

indicates that human and mouse cells might have different re-

quirements in terms of lineage specification forces and in the

balance required for achieving pluripotency. It also again high-

lights the importance of adequate gene expression stoichiom-

etry in defining an iPSC state (Carey et al., 2011; Karwacki-Nei-

sius et al., 2013). Indeed, mouse cells have been previously

shown to generate iPSCs while the same factors, and even

chemical compound screenings, have failed to reprogram

human cells to iPSCs (Xu et al., 2008). In addition, GATA3

knockdown in ESCs resulted in massive cell death, rather than

ectodermal differentiation, whereas its overexpression led to

mesendoderm specification as expected (Nishiyama et al.,

2009). A potential explanation might imply a differential role for

gene networks in the maintenance, as opposed to the acquisi-

tion, of pluripotent properties. Alternatively, and similarly to

what has been recently described for OCT4, small differences

in PSC gene expression may result in different phenotypic re-
Figure 3. GATA3 Downregulation Leads to Cell Death in Human ESCs

(A) GSKM overexpression results in the upregulation of pluripotent genes during

(B) OSKM overexpression results in the upregulation of GATA3 during the reprog

(C) Two days after infection with two different shRNAs againstGATA3 (KD1 and K

were microscopically analyzed. In (C), representative bright field pictures show t

(D) GATA3 mRNA levels after Puromycin selection for the indicated time points.

(E) GATA3 knockdown results in the downregulation of SOX2 and NANOG prior

(F) Immunofluorescence analysis demonstrating aberrant colony morphology an

Data are represented as mean ± SD. *p < 0.05.

Cell S
sponses (Karwacki-Neisius et al., 2013; Radzisheuskaya et al.,

2013).

Together, our results show that OCT4 is not indispensable for

human iPSC generation and shed new light on the molecular

mechanisms underlying reprogramming and pluripotency. The

identification of reprogramming activity for factors typically

thought to be involved in differentiation further highlights the pos-

sibility that OCT4 and SOX2might act as ‘‘lineage specifiers’’ for

the acquisition and maintenance of pluripotency and reopens a

long-standing debate on the nature of the pluripotent state (Loh

and Lim, 2011; Zipori, 2004). Further supporting a ‘‘seesaw

model,’’ chemical inhibition of TGFb signaling, which is activated

during mesendodermal specification during development (Sa-

kaki-Yumoto et al., 2013), can also functionally replace Sox2 dur-

ing reprogramming (Ichida et al., 2009). Further investigation

related to the ‘‘seesaw model’’ could include computational

modelingof the relative ‘‘weight’’ of eachopposing ‘‘lineage spec-

ification’’ side, plus comprehensive high-throughput screening, to

identify additional factors other than GATA3 that can replace

OCT4, and thuspotentially contribute to further refinement of stoi-

chiometry toward generating higher-quality iPSCs (Carey et al.,

2011). Our results also open up the opportunity for the identifica-

tion and design of small molecules targeting reprogramming fac-

torsother thanOCT4,whichmight result in alternativeapproaches

for the generation of human iPSCs with clinical potential.

EXPERIMENTAL PROCEDURES

Induced Pluripotent Stem Cell Generation and Subculture

Human fibroblasts were obtained by foreskin biopsies after signed informed

consent of the donors and with the approval of the Institutional Review Board

of the CMRB. For the generation of human iPS cells, primary human foreskin

fibroblasts (HFF) were infected with an equal ratio of retroviruses for each

tested combination by spinfection of the cells at 1,850 rpm for 1 hr at 32�C
in the presence of polybrene (4 mg/ml). After two serial infections, cells were

passaged onto fresh irradiated mouse embryonic fibroblasts (iMEFs) and

switched to hES medium. For the derivation of hiPS cells lines, iPS-like col-

onies were manually picked and maintained on fresh iMEF feeder layers for

five passages before being transferred onto Matrigel/mTesR1 conditions. To

assess reprogramming, we first evaluated alkaline phosphatase positivity.

To further calculate the efficiency of reprogramming, we plated the same num-

ber of cells on iMEFs after the infection and calculated the ratio of TRA1-60+

(TRA1-60+) colonies, the best described surrogate of pluripotent reprogram-

ming, respective to the initial number of plated cells (Chan et al., 2009).

GATA3 Knockdown Experiment

Human ES cells (H1) were infected with lentiviral particles coding for GATA3-

shRNA in the presence of 8 mg/ml polybrene. Two days after infection, cells

were treated with puromycin (2 mg/ml).

Immunofluorescence and AP Analyses

Briefly, cells were washed thrice with PBS and fixed using 4% PFA in 13 PBS

for 12 min and then washed three times in PBS. For tissue analysis, injected
the reprogramming of human fibroblasts to iPSCs.

ramming of human fibroblasts to iPSCs.

D2) and subsequent Puromycin selection for 6 and 24 hr treated iPSC colonies

he disassembling of iPSC colonies demonstrating compromised PSC viability.

to cell death.

d initiation of cell death (Caspase-3) upon GATA3 knockdown in ESCs.

tem Cell 13, 341–350, September 5, 2013 ª2013 Elsevier Inc. 347



Figure 4. Counteracting Differentiation Forces Allow for Human iPSC Reprogramming

(A) Immunofluorescence analysis demonstrating pluripotent marker expression in different iPSCs generated by replacing SOX2 with ectodermal lineage

specifiers (ect-iPSCs).

(B) ect-iPSCs demonstrate pluripotent differentiation potential.
(legend continued on next page)
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testes were harvested and fixed overnight in a 4% PFA solution before being

processed for paraffin sectioning. Cells and tissue sections were blocked and

permeabilized for 1 hr at RT with 5% BSA/5% appropriate serum/13 PBS in

the presence of 0.1% Triton X-100. Subsequently, cells and tissue sections

were incubated with the indicated primary antibody either for 1 hr at RT or

overnight at 4�C. Cells and tissue sections were then washed thrice with 13

PBS and incubated for 1 hr at RT with the respective secondary antibodies

and 20 min with DAPI. Cells and tissue sections were washed thrice with 13

PBS before analysis. For alkaline phosphatase staining, direct enzymatic ac-

tivity was analyzed using an Alkaline Phosphatase Blue/Red Membrane sub-

strate solution kit (Sigma) according to the manufacturer’s guidelines. Cells

and tissue sections were analyzed by using an Olympus 1X51 upright micro-

scope equipped with epifluorescence and TRITC, FITC, and DAPI filters.

Confocal image acquisition was performed using a Zeiss LSM 780 laser-scan-

ning microscope (Carl Zeiss Jena) or a Leica SP5 confocal microscope.

High Resolution, G-Banded Karyotype

Karyotype analysis was performed on 85% confluent iPS cells growing on

Matrigel. Cells were treated with colcemid at 20 ng/ml, followed by a 45 min

incubation at 37�C. Upon trypsinization, the cells were treated with Carnoy’s

fixative solution at �20�C prior to analysis with the software Cytovision

(Applied Imaging).

Teratoma Assay

Severe combined immune-deficient-Beige male mice (n = 2 animal/iPS clone),

�8 weeks old, were injected with iPSCs (1 million for each injection site,

approximately) subcutaneously in the testicular parenchyma. All procedures

involving animals were approved by the Institutional Animal Ethical Board,

and the protocols were approved by the Conselleria De Salut of Cataluña.

Mice were sacrificed 8 weeks after the injections or when a tumor was de-

tected by palpation, whichever came first. Teratoma formation was assessed

by immunofluorescence techniques.

Statistical Evaluation

Statistical analyses were performed by using standard unpaired Student’s

t test (two-tailed, 95% confidence intervals) with Welch’s correction using

the SPSS/PC + statistics 11.0 software (SPSS, Inc.). All data are presented

as mean ± standard deviation and represent a minimum of two independent

experiments with at least two technical duplicates.

ACCESSION NUMBERS

Data sets for gene expression microarray analysis performed on the new iPS

lines presented in the manuscript are available on the Gene Expression

Omnibus (Gse48275).
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and Schöler, H.R. (2009a). Direct reprogramming of human neural stem cells

by OCT4. Nature 461, 649–653.

Kim, J.B., Sebastiano, V., Wu, G., Araúzo-Bravo, M.J., Sasse, P., Gentile, L.,
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