96 research outputs found

    Automated synthesis of monodisperse oligomers, featuring sequence control and tailored functionalization

    Get PDF
    Long, multifunctional sequence-defined oligomers were obtairred on solid support from a protecting-group-free two-step iterative protocol, based on the inherent reactivity of a readily available molecule containing an isocyanate and a thiolactone. Aminolysis of the latter entity with an amino alcohol liberates a thiol that reacts with an acrylate or acrylamide, present in the same medium. Subsequently, a new thiolactone can be reinstated by means of an alpha-isocyanato-gamma-thiolactone. Different acrylic compounds were used to incorporate diverse functionalities in the oligomers, which were built up to the level of decanters. The reaction conditions were closely monitored in order to fine-tune the applied strategy as well as facilitate the translation to an automated protocol

    Straightforward synthesis of functionalized cyclic polymers in high yield via RAFT and thiolactone-disulfide chemistry

    Get PDF
    An efficient synthetic pathway toward cyclic polymers based on the combination of thiolactone and disulfide chemistry has been developed. First, heterotelechelic linear polystyrene (PS) containing an alpha-thiolactone (TLa) and an omega-dithiobenzoate group was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, employing a newly designed TLa-bearing chain transfer agent (CTA). The subsequent reaction of this heterotelechelic polymer with an amine, which acts as a nucleophile for both the TLa and dithiobenzoate units, generated the alpha,omega-thiol-telechelic PS under ambient conditions without the need for any catalyst or other additives. The arrangement of thiols under a high dilution afforded single cyclic PS (c-PS) through an oxidative disulfide linkage. The cyclic PS (c-PS) disulfide ring formation was evidenced by SEC, MALDI-TOF MS and H-1-NMR characterization. Moreover, we demonstrated a controlled ring opening via either disulfide reduction or thiol-disulfide exchange to enable easy and clean topology transformation. Furthermore, to illustrate the broad utility of this synthetic methodology, different amines including functional ones were employed, allowing for the one-step preparation of functionalized cyclic polymers with high yields

    Multifunctional sequence-defined macromolecules for chemical data storage

    Get PDF
    Sequence-defined macromolecules consist of a defined chain length (single mass), end-groups, composition and topology and prove promising in application fields such as anti-counterfeiting, biological mimicking and data storage. Here we show the potential use of multifunctional sequence-defined macromolecules as a storage medium. As a proof-of-principle, we describe how short text fragments (human-readable data) and QR codes (machine-readable data) are encoded as a collection of oligomers and how the original data can be reconstructed. The amide-urethane containing oligomers are generated using an automated protecting-group free, two-step iterative protocol based on thiolactone chemistry. Tandem mass spectrometry techniques have been explored to provide detailed analysis of the oligomer sequences. We have developed the generic software tools Chemcoder for encoding/decoding binary data as a collection of multifunctional macromolecules and Chemreader for reconstructing oligomer sequences from mass spectra to automate the process of chemical writing and reading

    One-pot, additive-free preparation of functionalized polyurethanes via amine-thiol-ene conjugation

    Get PDF
    A straightforward, isocyanate-free method for the synthesis of functionalized polyurethanes, based on amine-thiol-ene conjugation, was elaborated. Aminolysis of a readily available AB'-urethane monomer, containing both an acrylate (A) and a thiolactone unit (B'), facilitates the preparation of various reactive thiol-acrylates. In situ polymerization via Michael addition proceeds under ambient conditions, yielding polyurethanes with a large variety of chemical functionalities. Side-chain functionality originates from the modular use of different amines, allowing for the introduction of pendent functional groups (e.g. double bond, triple bond, furfuryl, tertiary amine, morpholine) along the polyurethane backbone. Extensive model studies revealed the kinetic profile of this reaction sequence and excluded the occurrence of competing reactions, such as aza-Michael addition and disulfide formation. This mild one-pot reaction requires no additives or external trigger and the obtained polyurethanes remain soluble throughout the process, enabling post-polymerization modification in the same reaction medium

    Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at √s = 8 TeV

    Get PDF
    A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at s = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 -1 collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 5.9 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed-Dimopoulos-Dvali model of extra spatial dimensions

    One-pot double modification of polymers based on thiolactone chemistry

    No full text
    One-pot multistep reactions based on thiolactone chemistry have emerged as a powerful tool for modifying thiolactone-containing polymers in one-pot and in an elegant manner. In general, thiolactones can be opened by a wide variety of functional amines and the released thiol can react with thiol 'scavengers' of choice. This overview highlights the most important features of this approach, illustrated by the versatile and site-specific double post-polymerization modification of various reactive systems

    One-pot multi-step reactions based on thiolactone chemistry: a powerful synthetic tool in polymer science

    Get PDF
    AbstractOne-pot multi-step reactions based on thiolactone chemistry emerged as a powerful tool to prepare tailor-made, multi-functionalized polymer architectures in a one-pot and elegant manner. This feature article highlights the most important features of this approach, demonstrated in various reactive systems including (bio-based) linear polymers, heterotelechelic polymers, polymeric networks and heterogeneous supports. This overview clearly reveals its remarkable versatility involving modular synthesis and double modification of polymers: thiolactones can be opened by a wide variety of functional amines and the released thiol can react with thiol ‘scavengers’ of choice
    • …
    corecore