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One-pot multi-step reactions based on thiolactone chemistry emerged as a powerful tool to
prepare tailor-made, multi-functionalized polymer architectures in a one-pot and elegant
manner. This feature article highlights the most important features of this approach, dem-
onstrated in various reactive systems including (bio-based) linear polymers, heterotelech-
elic polymers, polymeric networks and heterogeneous supports. This overview clearly
reveals its remarkable versatility involving modular synthesis and double modification of
polymers: thiolactones can be opened by a wide variety of functional amines and the
released thiol can react with thiol ‘scavengers’ of choice.
� 2014 Elsevier Ltd. Open access under CC BY-NC-ND license.
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Fig. 1. A thiolactone entity as a latent thiol functionality: the thiol is released by nucleophilic ring-opening of the cyclic thiolester and subsequently a thiol-
click can occur, incorporating R1 and R2 residues.

Fig. 2. General structure of saturated thiolactones and the chemical
structure of homocysteine-c-thiolactone 1.
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1. Introduction

During the last decade, robust and efficient organic reac-
tions, generally denoted as ‘click’ chemistry [1], became
indispensable tools for scientists active in synthetic macro-
and supramolecular research groups [1b,2]. The decoration
of polymeric materials with reactive functional handles and
their subsequent post-polymerization modification (PPM)
[3], ideally via ‘click’ chemistry, ultimately lead to a pleth-
ora of synthetic materials, covering many applications
areas (electronics [4], bio-conjugation [5], labeling [6],
medicine [7], etc.). The synergy between functionality and
modularity is the key aspect of this popular approach [8].
Extensive method development resulted in a myriad of
possible click-based reactions and, while some orthogonal
reactions [9] are amenable to multi-step one-pot
sequences, new paths to multi-functionalized materials
via accelerated synthetic protocols became available [10].

Conjugation and modification reactions involving thiols
are valuable metal-free alternatives to the heavily
exploited copper assisted azide–alkyne cyclo-addition
(CuAAC), the ‘click’ benchmark [11]. In addition to the
nucleophilic nature of thiols in the presence of alkyl halides,
epoxides, isocyanates and Michael acceptors, thiyl radicals
readily react with double and triple bonds [12]. In order to
solve some of the thiol-related issues (smell, shelf life and
synthetic availability), the reactivity of a thiolactone (a cyc-
lic thioester) as a latent thiol functionality has recently
been explored by us in synthetic polymer science: the thiol
is released by nucleophilic ring-opening (aminolysis) and
subsequently reacts with a thiol ‘scavenger’ (Fig. 1).

This synthetic approach, based on the reactive mixture
of an amine, a thiolactone and a thiol ‘scavenger’, has two
particular attractive features compared to other efficient
activated-ester chemistries, employed in polymer synthesis
and PPM. First of all, no atoms are wasted as thiolactone
chemistry results in 100% atom-efficient conjugation reac-
tions. For example, although the reactivity of pentafluor-
ophenyl esters [13] might be higher in an aminolysis
reaction, it has the intrinsic disadvantage of releasing the
corresponding phenol derivative as a side product. In com-
parison with azlactone-based reactions [14], another atom-
efficient methodology, thiolactone chemistry enables dou-
ble modification of polymer scaffolds. The first residue
(R1) originates from the used amine during the ring-open-
ing, while a second entity (R2) can be introduced via the sub-
sequent thiol-X reaction (Fig. 1). In addition to the
mentioned advantages, it is important to note that in some
cases this double modification can be performed in a one-
pot fashion leading to simplified experimental set-ups and
thus accelerated, synthetic protocols.
After our pioneering research in 2011 [15], implement-
ing thiolactones as functional handles for polymer synthe-
sis, we and other groups further elaborated this approach,
resulting in a large number of original research papers.
Hence, the chemistry of thiolactones and its potential in
polymer science will be reviewed in this contribution.
2. Chemistry of thiolactones: Reactivity and synthetic
use of homocysteine-c-thiolactone

Thiolactones are cyclic esters of mercapto-acids [16].
The most representative members of this class of sulfur-
containing compounds are b-, c- and d-thiolactones, respec-
tively four-, five- and six-membered rings (Fig. 2). a-Thio-
lactones generally are unstable intermediates [17] (except
for a,a0-disubstituted analogs [18]). Additional structural
classification distinguishes unsaturated and saturated thio-
lactones; only the latter will be further discussed.

The most widely used synthetic approach for the prepa-
ration of saturated c- and d-thiolactones is the direct lacton-
isation of the corresponding mercapto-acid [16,19]. The
most important reactivity-related property of thiolactones
is lysis of the ring by the action of a nucleophile. Thiolac-
tones are more sensitive for ring opening than their corre-
sponding lactones, except for b-thiolactones [16a]. In
addition to their different ring stability, a clear distinction
regarding the reactive nature of lactones and thiolactones
can be made: thiolactones only behave as acylating agents
(ring opening via nucleophilic addition–elimination), in
contrast to lactones displaying both acylating and alkylating
activity (ring opening via nucleophilic substitution) [16a].

Due to the inherent ring strain, the susceptibility of thio-
lactones towards ring opening decreases with increasing
ring size. In general, the stability of the ring increases with
the number of substituents by steric congestion of the
nucleophilic attack [16a]. Several nucleophiles for the ring
opening can be considered: water, alcohols and amines
are most prevalent. The hydrolysis and alcoholysis are only
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significant in basic medium, while aminolysis requires no
additives. Aminolysis can thus be performed in aqueous
medium, although hydrolysis is an important side reaction
[16b,20]. No reports on thiolysis of c-thiolactones were
found so far. Interestingly, e-thiolactones (seven-mem-
bered thiol equivalent of caprolactone) and b-thiolactones
can be polymerized in the absence of water and air to linear
polymers by a base-catalyzed ring-opening reaction
[16b,21]. Larger thiolactones are even susceptible to thioly-
sis via enzymatic ring-opening, yielding high-MW aliphatic
polythioesters [22].

The most commonly used c-thiolactone derivative is a-
amino-c-butyrothiolactone or homocysteine-c-thiolac-
tone 1, a cyclic thioester of homocysteine (Fig. 2). Chemical
preparation of 1 requires an acid-catalyzed intramolecular
condensation of methionine [23] or homocysteine [24].
The thiolactone 1 absorbs UV-light (kmax = 240 nm and
e � 5000 M�1cm�1 in water). The low pKa value of 6.67
for the amino group in 1 can be explained by the
electron-withdrawing effects of the sulfur atom [25]. The
hydrochloric acid salt of the racemate 1 is a white solid
(mp 199–203 �C), stable at room temperature and readily
available as a bulk chemical (low cost price). Under physi-
ological conditions (pH 7.4, 37 �C), the thiolactone 1 has a
half-life of 1 day [26].

Because of its dual aminoacyl-thioester character,
homocysteine-c-thiolactone 1 is susceptible for both
nucleophilic (vide supra) and electrophilic attack. Self-con-
densation of two molecules 1 occurs in an attempt to obtain
the free amino-group and mutual aminolysis (first intermo-
lecular and second intramolecular aminolysis) takes place
with the formation of the corresponding diketopiperazine
adduct [16a]. Nevertheless, homocysteine-c-thiolactone 1
is a quite valuable synthetic building block. Due to the
intrinsic instability of the neutral homocysteine-c-thiolac-
tone 1, an efficient reaction between the amino group in a-
position and an electrophile is required. Amidation reac-
tions are most frequently used: conjugation with acid
halides [27], (in situ) activated carboxylic acids [27d,28]
and anhydrides [29] enables the synthesis of homocyste-
ine-c-thiolactone derivatives. A carbamate linkage is
formed by treatment with chloroformates [30]. Another
important transformation reaction is imine formation,
resulting from the condensation with aldehydes [25,31].

An important homocysteine-c-thiolactone derivative is
N-acetylhomocysteine thiolactone or citiolone 2 (Fig. 3), a
commercial compound that was introduced as thiolating
agent for proteins. This thiolation consists of the aminolysis
of the water-soluble N-acetylhomocysteine thiolactone 2
by the e-NH2 groups of lysine residues [20a,32]. Thiolation
of a large variety of macromolecular biochemical systems
has been reported [27a,32b,33]. Citiolone 2 is also a drug
Fig. 3. Synthetic valuable building blocks, derived from homocysteine-
c-thiolactone 1.
that is used as a mucolytic agent for the treatment of cer-
tain hepatic disorders [34]. In contrast to the reactivity of
2, which fully relies on its acylating capacity, other note-
worthy derivatives of homocysteine thiolactone 1 enable
the incorporation of thiolactones in (macro)molecules.
The primordial requirements are the conversion of the a-
amino group of 1 into a functional handle and, most impor-
tantly, the conjugation to the reactive system of interest.
Both steps should proceed while maintaining the integrity
of the thiolactone ring. Several of these dual reactive com-
pounds have been synthesized. For example, a-Isocyanato-
c-thiolactone 3 is obtained by phosgene treatment of
homocysteine thiolactone 1. In the presence of alcohols,
amines or hydrazines, this isocyanate 3 is converted to
the corresponding carbamates, urea and semicarbazides
[35]. Other substrates susceptible for chemoselective
nucleophilic attack are thiolactone-containing halides 4.
For example, N-(2-chloroacetyl)homocysteine thiolactone
(4, X = Cl) reacts with thioglycolic acid, yielding erdosteine,
a mucolytic agent for the treatment of bronchitis [36].
3. One-pot multi-step reactions based on thiolactones:
Amine-thiol-ene conjugation

The combination of robust, efficient, and orthogonal
conjugation chemistries, resulting in the development of
several elegant one-pot, multi-step strategies, enables the
implementation of accelerated synthetic protocols. As
Malkoch et al. expressed the need to increase the range
of available ‘click’ reactions that can be achieved without
metal catalysts and to develop libraries of compatible reac-
tions [10], the development of efficient one-pot processes
based on metal-free conjugation chemistries in order to
modify or prepare polymeric materials is of particular
interest.

In addition to the fact that the commercial availability
of thiols as starting materials is rather limited, thiols usu-
ally have an unpleasant smell and might have a poor shelf
life due to oxidation reactions. Therefore, thiolactones are
considered to be valuable thiol precursors, potentially
resolving some of these thiol-related issues. First of all
and most importantly, the thiolactone ring opening, result-
ing in the release of a free sulfhydryl group, can be
achieved by the means of a wide variety of nucleophiles
in an orthogonal way (vide supra). These latent thiols are
not smelly and are recognized to be stable compounds.
Moreover, thiolactone substrates can be subjected to
one-pot multi-step reaction sequences.

This approach has been evaluated mainly by combining
hydrolysis (or alcoholysis) and S-alkylation for the prepara-
tion of low-molecular-weight adducts. The lysis of thiolac-
tones under basic conditions is often carried out in the
presence of an alkylating agent. As a result of the high
nucleophilicity of sulfur, S-alkylated compounds are the
final products of these reactions [16b]. Methanolysis of
homocysteine-c-thiolactone hydrochloride 1 and subse-
quent alkylation by treatment with an alkyl halide in the
same pot has been reported as a simple method for the syn-
thesis of S-alkylhomocysteines 5 (Fig. 4 top) [37]. The basic
hydrolysis of homocysteine thiolactone 1, accompanied by



Fig. 4. Two examples of thiolactone-based two-step one-pot sequences; (top) methanolysis and S-alkylation of homocysteine-c-thiolactone 1 enables the
synthesis of S-alkylhomocysteines 5 and (bottom) treatment of c-thiobutyrolactone with propiolic acid in basic aqueous medium generates the acrylic acid 6.

Fig. 5. Schematic depiction of the one-pot amine-thiol-ene conjugation: aminolysis of a thiolactone, followed by a thiol�ene conjugation. The in situ
generated thiol can react according two distinct reaction pathways: (a) a radical (UV-initiated) or a nucleophilic (thiol-Michael) addition of a thiol to a double
bond.
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the alkylation of the thiol group, is the key step in the syn-
thesis of several homocysteine derivatives [38]. Other com-
binations of two-step one-pot reactions have been
explored. As a result of sequential hydrolysis and conjugate
addition (thio-Michael addition), the reaction of c-thiobu-
tyrolactone with propiolic acid under basic conditions gen-
erates the corresponding acrylic acid 6 (Fig. 4 bottom) [39].

Aminolysis as a start of a one-pot multi-step reaction
sequence based on thiolactones has the advantage over
alcoholysis and hydrolysis since it does not require any
additive to occur. However, it is not straightforward as in
many cases, orthogonality issues would arise as a result
of the reactive nature of amines. On the other hand, it pro-
vides the opportunity to introduce a functional group in
the reaction product via the amine.

3.1. Amine-thiol-ene conjugation: Method development
through in-depth model studies

Combination of thiolactone aminolysis with the addi-
tion of the generated thiol to a double bond in a one-pot
fashion, the so-called amine-thiol-ene conjugation, intro-
duced by us [15,40], has been recognized as a relevant
extension of the popular thiol-ene chemistry. This simple,
efficient, and modular linking process entails many attrac-
tive features, but prior its implementation in synthetic
polymer science, we performed model studies to reveal
its possibilities and limitations.

In Fig. 5, a schematic depiction of the amine-thiol-ene
conjugation displays two distinct reaction pathways,
originating from the nature of double bond as a reaction
partner of the generated thiol. It is clear that this choice,
either the radical (a) or the nucleophilic (b) thiol-ene reac-
tion, greatly influences the set-up, potential side-reactions
and outcome of the reaction. In any case, we consider the
aminolysis to be rate-determining for the two-step pro-
cess. Hence, the influence of the nature of the (primary)
amine in the ring opening of thiolactones was studied. A
kinetic screening (pseudo-first order conditions in THF)
of the lysis of c-thiobutyrolactone in the presence of ten
different (functional) primary amines was performed
[40]. Generally, the aminolysis of thiolactones can be
described by second order kinetics [41].

Stereo-electronic properties of the primary amines are
the basis for the relative rate differences: aliphatic non-
functional amines react faster than amines containing an
inductive-withdrawing group. The sterical constraints
due to a-branching in Jeffamine� M-600 greatly decreases
the reaction rate (Fig. 6). When applying the same reaction
conditions, i.e. 50-fold excess of the nucleophile and neu-
tral pH (no additives), other nucleophiles, like water, alco-
hols, thiols and anilines are not able to open the
thiolactone ring. Another important observation during
this study is the fact that in the presence of excessive
amounts of amines, thiolactones are opened yielding the
corresponding thiol, which readily dimerizes through
disulfide formation. Although this side-reaction needs to
carefully monitored during thiolactone-based synthetic
endeavors, it can be a useful transformation in selected
cases (vide infra).

The principal aim of our model studies is to assess the
compatibility between the aminolysis and the subsequent
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thiol-click conjugation reaction of the in situ generated
thiol. As mentioned before, we targeted to perform the
amine-thiol-ene conjugation in a one-pot fashion, thus
without intermediate purification of the thiol and without
addition of chemicals during the process (everything
present from the start).

The combination of thiolactone aminolysis and the
radical thiol-ene process, which proceeds via a fundamen-
tally different reaction mechanism has been performed on
a mixture of benzylamine, N-acetylhomocysteine thiolac-
tone 2 and norbornene as low-molecular-weight model
compounds in order to master the reaction conditions
(Fig. 7). The solution was irradiated by an external UV-light
source, and 2,2-dimethoxy-2-phenyl acetophenone
(DMPA) was selected as an efficient photoinitiator for
thiol�ene conjugation [42]. An online 1H NMR experiment
pointed out that 2 was fully consumed after being in the
presence of a twofold excess of benzylamine and 10 mol%
of DMAP for 6 h. Furthermore, thorough LC–MS analysis
of the reaction mixture obtained after the two-step
reaction, revealed the formation of side products originat-
ing from the reaction between benzylamine and radical
fragments of DMPA. However, using optimal conditions
(no photoinitiator) and after a straightforward chromato-
graphic purification, the model reaction yielded the
conjugation compound 7 with an isolated yield of 80%
(Fig. 7) [15].

Despite the successful model studies and polymeriza-
tion reactions (vide infra), conceptual issues directly
related to the radical reaction in the one-pot process par-
tially impede extension of the scope of the methodology.
Important to note is that some functional groups (e.g. furan
[43], double and triple bond), introduced via the amine, are
incompatible with this radical environment. Additionally,
the UV-curing happens upon decomposition of a photoini-
tiator (e.g. DMPA), but model studies revealed that some
amines (e.g. benzylamine) react with the formed radical
fragments, thus limiting the use of a photoinitiator [15].

Therefore, we aimed for the one-pot combination of the
aminolysis of a thiolactone unit on one hand and a nucleo-
philic thiol-ene conjugation (Michael addition) on the other
hand. The Michael addition between a nucleophile (such as
thiol, amine or stabilized carbanion) and an activated
double bond (eg. imidazole, acrylate, vinyl sulfone) is
known to be an atom-efficient linking reaction. This versa-
tile methodology is often the key step in polymer synthesis
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and conjugation, especially when complex macromolecu-
lar architectures are targetted [44]. The combination of
the thiolactone-based strategy for the in situ generation
of thiols and subsequent Michael addition undoubtedly
broadens the scope of metal-free multi-step reactions for
the design and synthesis of polymers. Replacing the elec-
tron-rich double bond, like in an allyl or norbornenyl resi-
due, with an acrylate function, allowing for the complete
absence of radical species during the process, would
indeed be a step forward, although potential orthogonality
issues render the conjugation procedure a fundamentally
challenging two-step reaction sequence. Hence, the
chemoselective discrimination between both nucleophiles
(amine vs the generated thiol) is the major focus when
employing the nucleophilic amine-thiol-ene conjugation.
Potential side reactions such as the aza-Michael addition
[44] of the amine to the acrylate and disulfide formation
are of primary concern.

The feasibility of the proposed nucleophilic amine-thiol-
ene conjugation between an amine, a thiolactone-contain-
ing compound and a Michael acceptor entirely relies on the
selectivity of the conjugate addition. Therefore, the selec-
tion of the reaction partners is critically important. While
maleimides react with both amines and thiols as Michael
donor [44], acrylates are less reactive: at room tempera-
ture and without a catalyst, only secondary amines readily
react with acrylates [45]. As a consequence, a reaction mix-
ture of a primary amine, a thiolactone and an acrylate in
the absence of any catalyst would result in the formation
of the targeted conjugation adduct. The anticipated
chemoselective discrimination between both heteroatomic
nucleophiles (primary amine and the intermediate thiol) is
based upon different reaction rates. The slow aza-Michael
addition allows the aminolysis of the thiolactone to
precede while the subsequent thiol-Michael addition is
known to be relatively fast [12c].

In order to confirm these hypotheses, a series of model
reactions have been conducted, for which the reaction pro-
gress was monitored by online FT-IR analysis and LC–MS
analysis (offline). The kinetic profile and outcome of the
reaction between n-propylamine, c-thiobutyrolactone and
n-butyl acrylate was studied in detail (Fig. 8). It should be
stressed that the reaction was performed at room temper-
ature and under air atmosphere. The major conclusion from
this model study is that, as was anticipated (vide supra), the
aminolysis is the rate-determining step: the acrylate func-
tions are consumed as fast as the thiolactones. With 1.1 eq.
of n-propylamine compared to an equimolar mixture of
thiolactone and acrylate, it takes 9 h to reach 70% conver-
sion. The rate can be increased by adding more amine. For
example with a twofold excess, the reaction is finished
within 8 h. An LC–MS analysis of the reaction with 1.1 eq.
of n-propylamine shows a clean mixture of starting
NH2

S
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O

O
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rt

Fig. 8. Model amine-thiol-ene conjugation (nucleophilic thiol-ene): one-pot rea
materials and targeted product 8. Only a minor fraction of
disulfide was detected. Disulfide formation is more promi-
nent at higher amine concentration, indicating that the
excess of amine should be limited. The occurrence of the
other suspected side-reaction, the aza-Michael addition
between the primary amine and the acrylate, depends on
the nature of the solvent. Trace amounts of the aza-Michael
adduct is detected when performing the two-step reaction
in CHCl3 or THF, whereas in DMF, this reaction is more
prominent.

3.2. Stepwise polymerization of AB0-type monomers via
radical amine-thiol-ene conjugation

Encouraged by the successful model studies, implemen-
tation of the amine-thiol-ene conjugation, both the radical
and nucleophilic version, was envisaged in synthetic poly-
mer science. Consequently, several AB0 type monomers con-
taining both a double bond and a thiolactone unit have been
prepared. Upon aminolysis, this monomer forms a reactive
thiol-ene, which will be consumed in the same medium in a
step-wise poly-addition. It is clear that the nature of the
introduced double bond will determine the reaction condi-
tions and outcome of the two-step process. In any case, the
use of the above studied amine-thiol-ene conjugation in
polymer synthesis demands a straightforward and scalable
methodology for the synthesis of a stable AB’ monomer. An
important aspect of this approach is the significant influ-
ence of the chemical linkage, like a urethane or an amide
(vide infra), connecting the thiolactone and the double bond,
on the final properties of the synthesized polymers.

Two different AB0-monomers, susceptible to radical
amine-thiol-ene conjugation, have been synthesized and
used in a photo-polymerization, yielding linear polymers
with either a polythioether/polyurethane [15] or a poly-
thioether/polyamide backbone [46].

A first AB’ monomer, N-(allyloxy)carbonylhomocysteine
thiolactone 9 has been synthesized in large amounts
(>30 g) by treatment of homocysteine thiolactone 1 with
allyl chloroformate, introducing the corresponding (allyl-
oxy)carbonyl or alloc group, a popular amino-protecting
group. Consequently, a stable urethane bond connects the
reactive entities. In order to obtain high-molecular-weight
polyaddition compounds in a radical photopolymerization
of the corresponding AB (thiol-ene) monomer, the ratio
between the involved functional groups should equal
one. The aminolysis of the thiolactone in the monomer 9
should therefore reach full conversion. The radical amine-
thiol-ene polymerization of 9 has been performed in the
presence of two equivalents of different amines, respec-
tively n-propylamine and ethanolamine (Fig. 9). In all
cases, polyaddition occurs and after isolation of the
obtained polymer, the SEC chromatograms display a
H
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ction between n-propylamine, c-thiobutyrolactone and n-butyl acrylate.
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Entry R-NH2 Initiator
T

(°C)

Reaction 
time

(h)

Mn,NMR

(kDa)

Mn,SEC

(kDa)
Đ

1 n-Propylamine DMPA 40 0.5 3.8 4.2 1.9

2 n-Propylamine AIBN 70 17 3.0 3.6 1.7

3 Ethanolamine DMPA 40 1 7.8 22 1.6

Fig. 9. Stepwise radical polymerization of the monomer 9 in a one-pot process yielding a linear polymer with a polythioether/polyurethane backbone. The
reaction conditions and analysis data of the obtained polymers are presented in the table.
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unimodal distribution, which allows for the determination
of Mn and Ð. The quantification of Mn via end group analy-
sis (double bond protons) in the 1H NMR spectrum con-
firms the trends observed by SEC analysis. Interestingly,
polymers with comparable chain length are obtained via
the thermal initiated polymerization using AIBN (Fig. 9,
entry 2) in comparison with the UV-initiated reaction
(Fig. 9, entry 1) [15].

This mild and efficient one-pot polyaddition process
yielded a polymer with a polythioether/polyurethane
backbone and pendant hydroxyl groups (Fig. 9, entry 3).
Indeed, under neutral conditions, hydroxyl functions are
unable to open the thiolactone ring (vide supra) and alco-
hols do not interfere with radical thiol-ene reactions
[12d]. Standard synthetic methods for the synthesis of
hydroxyl functionalized polyurethanes would certainly
require a protection/deprotection strategy. Generalization
of this reaction concept emphasizes the fact that, as long
as the additional functional group of the multi-functional
amine does not interfere with either reactions in the one-
pot multi-step process (aminolysis and radical thiol-ene),
linear polymers can be obtained with direct introduction
of side chain functional groups, prone to PPM [3].

To further extend the scope of this methodology in
material science, polymer networks based on the AB0 type
monomer 9 have been targeted. Polymer film formation
occurs under UV-irradiation of a homogeneous reaction
mixture of 9 and a diamine (Fig. 10). The choice of the dia-
mine cross-linker regarding structure and molecular
weight proved to be critical. While 1,6-hexanediamine
was insoluble in the reaction mixture, the use of the more
polar 4,9-dioxadodecanediamine as a cross-linker yielded
a clear, non-tacky network film with good mechanical
properties after UV-curing for 3 h. The use of the Jeff-
amine� D series (D-400, D-2000, and D-4000) as macromo-
lecular cross-linkers was also attempted, but poor film
formation was observed, as expected from the sluggish
reaction of Jeffamine� M-600 in the aminolysis of c-thi-
obutyrolactone (Fig. 6) [15].

In a second type of AB0 monomer, an amide linkage is
foreseen to connect the thiolactone entity and the double
bond. Upon aminolysis and subsequent UV-mediated
thiol-ene conjugation, 10-undecenoyl thiolactonamide 10,
synthetically available in two steps on large scale, starting
from the bio-based compounds undecenoic acid and
homocysteine-c-thiolactone 1, is transformed into a linear
polymer with a polythioether/polyamide backbone
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Entry R-NH2
Mn,NMR

(kDa)

Mn,SEC

(kDa)
Đ Tg

DSC

(°C)

1 n-Propylamine 6.9 12.3 1.5 49.0

2 n-Butylamine 8.9 16.7 1.6 38.0

3 n-Hexylamine 8.5 15.3 1.5 25.0

4 n-Octylamine 10.3 19.3 1.5 18.0

5 2-Ethyl-1-hexylamine 2.0 6.7 1.5 -

6 n-Dodecylamine 7.8 11.0 1.4 14.0

7 n-Octadecylamine 6.9 9.1 1.2 5.0

8 Benzylamine 2.8 3.9 1.5 2.0

9 Ethanolamine 8.6 17.2 1.5 33.5

10 3-Morpholinopropylamine 12.2 12.3 1.6 24.0

11 N,N-
Dimethylethylenediamine 6.2 1.4 1.4 -5.0

12 Cyclopropylamine 5.7 7.1 2.2 57.0

13 Pyrrolidine 8.9 8.1 1.5 22.0

Fig. 11. Stepwise UV-mediated radical polymerization of the 10-undecenoylthiolactonamide monomer 10 in a one-pot process, yielding a linear polymer
with a polythioether/polyamide backbone. The analysis data of the obtained polymers are presented in the table.
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(Fig. 11) [46]. The chemical structure of the obtained poly-
mers includes two amides per repeating unit, rendering
them fundamentally different from commercially available
polyamides. Similar to the polyurethane synthesis from the
AB0 monomer 9, several pendent groups can be introduced
via the amine.

Next to the outcome of the photopolymerization reac-
tion (molar mass and Ð), the influence of the side chains
with respect to the thermal and mechanical properties
was studied. In all cases, the radical amine-thiol-ene conju-
gation of 10 yielded linear polymers of moderate DP and Ð,
which can be attributed to the precipitation of the poly-
mers during the reaction. In a first series of experiments
(Fig. 11, entries 1 ? 7), the carbon content of aliphatic
amines was increased, yielding a library of structurally
diverse polyamides. It is clear that the molar mass depends
on the nature of the amine. This effect is most prominent
when using two C-8 homologous amines with either a lin-
ear (entry 4) or a branched structure (entry 5) and can be
attributed to sterical hindrance during the aminolysis.

Furthermore, the chemical compatibility of several
amines towards the presented one-pot approach is
confirmed because a variety of functional residues can be
attached as pendant group to the backbone (Fig. 11, entries
8 ? 13). Indeed, it has been demonstrated that the built-in
functionality does not interfere with the radical amine-
thiol-ene polymerization, enabling the attachment of an
aromatic unit (entry 8), a hydroxyl function (entry 9), a
morpholine moiety (entry 10) and a tertiary amine (entry
11). Access to polyamides with cyclic side-chain residues,
originating from the use of a cyclic primary amine (entry
12) and a secondary amine (entry 13), is provided in similar
manner. In terms of mechanical and thermal properties,
there is clear correlation between the glass transition tem-
peratures (Tg) of the polyamide and the number of carbons
in the amine residue. As expected, the longer the aliphatic
chain, the lower the Tg, due to an increased segmental
mobility of the less packed polymer chains. Other parame-
ters affecting the Tg are the decreased numbers of possible
H-bonds (entry 13 (22 �C) vs entry 2 (38 �C)) and the
decreased flexibility in the side-chain (entry 12 (57 �C) vs
entry 1 (50 �C)).

The influence of the side chain is also demonstrated in
the elasticity moduli of the polymers, determined via
tensile testing. With an increasing number of carbon atoms
in the polymeric side chain (Fig. 11, entries 1 ? 7), the
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E-modulus decreases and the elongation at break
increases. Longer pendant alkyl chains imply that the
amide functions in the molecule are relatively more
diluted, resulting in decreased polymer–polymer interac-
tions and more flexible materials. Nevertheless, it is quite
remarkable that polymers with molecular weights of about
10 kDa (and lower) give rise to materials with an elonga-
tion at break up to 1000%. Generally, high molecular
weights are necessary to ensure enough chain entangle-
ments, which give rise to such values. The additional
hydrogen bridges as a result of the presence of two nearby
amide functions per repeating unit are believed to induce
inter- and intramolecular interactions that compensate
for the limited amount of chain entanglements.

The thermal stability of all the presented polyamides is
determined by the presence of a sulfide in the backbone.
Independent of the side-chain variation, degradation starts
around 250 �C as analyzed with TGA.

A useful PPM of these diversely substituted polyamides
is the (partial) oxidation of the sulfide linkages to their cor-
responding sulfoxides and sulfones. Evidence of this trans-
formation was provided by in-depth MALDI-TOF MS and
FT-IR analysis before and after the oxidation process. Oxi-
dation conditions range from mild (7 days storage in
unstabilized THF) to harsh (H2O2 and peracetic acid)
options. The oxidation process gives rise to materials with
different mechanical properties compared to the untreated
polymer. In general, incorporating more oxygen atoms in
the form of sulfoxides or sulfones renders the material
more brittle [46].

Similar to the network formation by radical amine-
thiol-ene conjugation of AB’ monomer 9 and a diamine
(Fig. 10), 10-undecenoylthiolactonamide 10 was success-
fully applied as starting monomer for the preparation of
polymer networks. Different cross-linkers were tested,
O N
H

O

H2N
R

11

O
H
N

O

S

O NH
R

O

NH

O

S

OHN
R

O

NHO
O

HN
R

O

NHO

S

O

HN
R

S
S

sun
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11 and a primary amine results in a polythioether/polyurethane hyperbranched
each time using equimolar amounts of amine compared
to thiolactone units. Moreover, functional groups were
incorporated in the polymer network by adding to the
reaction mixture a monofunctional amine and reducing
the amount of cross-linker. The incorporation of these
functionalities (eg. benzyl, hydroxyethyl, etc.) was demon-
strated with 1H HR-MAS NMR spectroscopy. Depending on
the used cross-linker and incorporated functionality, dif-
ferent mechanical properties were obtained [46].

The use of thiolactone-based reaction cascades for poly-
mer synthesis is not restricted to the preparation of linear
polymers or networks. Yan et al. demonstrated that a one-
pot radical amine-thiol-yne reaction is the source of highly
functionalized hyperbranched materials [47]. Their
approach only required little adaptation of our presented
method for the preparation of functionalized polyure-
thanes [15]. Indeed, analogous to the preparation of AB0

monomer 9, a triple bond can be combined with a thiolac-
tone through a urethane linkage, yielding an alkyne-con-
taining A2B0 monomer 11. When subjected to aminolysis,
a thiol-yne containing intermediate (A2B) is formed, which
reacts further, forming a hyperbranched structure (Fig. 12).
Noteworthy is the source of the UV-light, being natural
sunlight, and complete absence of photo-initiators in the
reaction. Due to these features, this approach qualifies as
a sustainable manner for the synthesis of hyperbranched
structures. The authors proved that sunlight is a necessary
external stimulus, so a controlled exposure of sunlight to
the reaction vessel provides straightforward manipulation
of the reaction outcome. The consumption of thiols and the
growth of hyperbranched polymers can be stopped and
resumed in an ‘on/off’ approach. The reaction progress
was monitored by 1H NMR. In general, the obtained
hyperbranched structures have moderated molecular
weight (Mw = 12.0 ? 22.0 kDa), relative low dispersity
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(Ð = 1.62 ? 3.3) and a high degree of branching
(DB = 88 ? 98%), mainly determined by the nature of the
primary amine, used to open the thiolactone in 11. In addi-
tion to the high number of unreacted terminal alkynes in
the hyperbranched polymers, other functionalities can be
introduced through the primary amine. For example, in
order to improve their biocompatibility, PEG (Mn = 600 Da)
and glucose were incorporated via their respective amines.

3.3. Stepwise polymerization of AB0-type monomers via
nucleophilic amine-thiol-ene conjugation

In order to explore the above studied nucleophilic
amine-thiol-ene conjugation in polymer synthesis, another
stable AB0 monomer, containing an acrylate (A) and a thio-
lactone unit (B0), has to be devised and synthesized on a
large scale. Upon aminolysis, this monomer forms a reac-
tive thiol-acrylate, which will be consumed in the same
medium by a conjugate addition [40].
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Entry R-NH2

1 n-Octylamine

2 Allylamine

3 Propargylamine

4 Furfurylamine

5 N,N-Dimethylethylene diamine

8 Allylamine / Glycine t-butylester

9 Allylamine / Furfurylamine

Fig. 13. Stepwise additive-free polymerization of the AB0 monomer 12 in a one-p
of the obtained polymers are presented in the table.
In contrast to AB0 monomers 9, 10 and 11, all suscepti-
ble to radical amine-thiol-ene or amine-thiol-yne conjuga-
tion, combining an acrylate as reactive double bond and a
thiolactone moiety as a thiol precursor in the same com-
pound, is synthetically challenging. Our first choice was
to combine the commercially available 2-hydroxyethyl
acrylate with a-isocyanato-c-thiolactone 3 (Fig. 3), but
after its successful preparation and purification, the mono-
mer could not be stored, even not for a short period and in
the presence of a radical inhibitor, probably due to polyac-
rylate formation. However, when another hydroxyl-
functionalized acrylate, 1,4-cyclohexanedimethanol mono-
acrylate, was used in the same reaction, AB0 monomer 12
(Fig. 13) could be prepared with an isolated yield of 92%.
In this case, compound 12 can be stored as a white powder
for months at �20 �C without any radical inhibitor present.
A more scalable route consists of the phosgene treatment
of the hydroxyl-functionalized acrylate to render the corre-
sponding chloroformate and subsequent reaction of the
O N
H

O
S

O

O
H
N

O S
O

O

O

n

Mn,SEC

(kDa)
Đ

Ratio 
(Amine I / 
Amine II)

12.0 1.7 -

5.3 1.6 -

1.9 1.6 -

9.5 1.6 -

3.2 1.5 -

6.8 1.7 72 / 28

8.4 1.5 58 / 42

ot process yielding a linear functionalized polyurethanes. The analysis data
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latter with DL-homocysteine thiolactone 1 in the same pot.
This procedure allows for the preparation of a relatively
large amount (45 g) of the AB0-monomer 12 in a single
batch with an overall isolated yield of 78% [40].

Following the successful large scale preparation of
monomer 12, the polymerization via poly-addition of
thiol-acrylates, originating from the aminolysis of 12, was
studied in detail by both 1H NMR and online FT-IR analysis.
A first screening of the reaction conditions (solvent and
concentration) was performed in the presence of 1.1 eq.
of n-octylamine, capable of a relatively fast aminolysis
reaction (vide supra). The slight excess of amine potentially
catalyzes the Michael addition after conversion of the thio-
lactone [12b,48]. This study revealed that poly-addition
was most prominent in THF at 0.5 M and after stirring for
24 h at ambient conditions, linear polymers with an Mn

of 12.0 kDa and Ð of 1.7 were isolated by precipitation.
The optimized conditions were subsequently applied as a
general protocol for other (functional) amines (Fig. 13).
Interestingly, linear poly(b-thioester)s prepared primary
amine-catalyzed Michael addition reactions between 1,6-
hexanediol diacrylate and 1,4-butanedithiol as A2 and B2

monomers, have similar moderate molecular weights [49].
Of particular relevance is the possibility to introduce

double and triple bonds and reactive dienes (furan) with-
out interference with the polymerization process (entries
2, 3 and 4; Fig. 13). This renders the polymers accessible
for further modification, without a protection and depro-
tection strategy being necessary. Other functionalities that
were tested include a tertiary amine (entry 5) and a mor-
pholine moiety (entry 6).

The presented strategy thus offers an easy-to-perform,
one-pot method for the synthesis of functionalized PUs.
Mixing the two ingredients (monomer 12 and the selected
amine) at room temperature without any additive or exter-
nal trigger gives indeed access to a library of such polymers
(Fig. 13), of which the structural build-up was confirmed
by 2D-NMR and MALDI-TOF MS analysis. The latter clearly
demonstrates that there were no significant side reactions
during the polymerization and again confirms that the
aminolysis is rate-determining as thiolactone end groups
were most prominent.

In addition to the additive-free aspect of the nucleophilic
amine-thiol-ene conjugation, another advantage over its
radical counterpart is the improved tolerance towards
functional amines, due to the mild reaction conditions
and the complete absence of radical species. To extend
the potential of this methodology and to further demon-
strate its versatility, experiments have been performed uti-
lizing more than one amine, enabling the random
incorporation of multiple functionalities. Reaction condi-
tions were similar, except for the use of 2 eq. of amine
(1 eq. of each amine compared to monomer 12). The rela-
tive amount of the (functional) amines along the backbone
after polymerization was calculated via integration of rele-
vant signals in the 1H NMR spectra and the values differ
from the initial feed ratio, due to different consumption
rate of both amines and derived thiol-acrylate intermedi-
ates. The results (entries 7, 8 and 9, Fig. 13) prove that dif-
ferent functionalities can be simultaneously incorporated
along the PU backbone in a one-pot synthesis. Another
appealing feature of this methodology is that, once the
poly-addition though amine-thiol-ene conjugation has
been completed, the reaction mixture essentially is a solu-
tion of the expected PU with a minor amount of residual
amine. PPM of the introduced functional group (via the pri-
mary amine), is thus possible in the same reaction medium.
Two metal-free modification reactions were performed: the
radical thiol-ene reaction between octanethiol and an
alkene-containing polymer (entry 2) and the Diels–Alder
reaction between N-methylmaleimide and a furan-
containing polymer (entry 9).

3.4. Selective aminolysis of a multi-functional coupler

The reactivity of an AA0 type monomer 13 bearing a
thiolactone and an ethylene carbonate was explored by
Mommer et al. [96]. This multi-functional coupler 13 was
synthesized from glycerol and homocysteine thiolactone
1, two bio-based building blocks.

The reactivity of this bis-cyclic coupler towards primary
amines was evaluated. At room temperature, the thiolac-
tone moiety in 13 can be addressed selectively, leading to
the formation of the corresponding thiol. The aminolysis
of the cyclic carbonate results in the formation of a ure-
thane bond and the release of a hydroxymethyl or a hydro-
xyl group, but it requires amine treatment at elevated
temperature (Fig. 14). This selectivity enabled the versatile
preparation of poly(amide urethane)s with pendant thio-
ethyl and hydroxymethyl groups via aminolysis of 13 with
a variety of diamines at different temperatures. The thiol
and alcohol side chain functionalities can be converted in
a post-polymerization treatment [50].

4. Double modular modification of thiolactone-
containing polymers: Versatility and simplification

4.1. Polythiolactones as versatile precursors for polythiols and
derived structures

Thiols are attractive sites for chemical modification and
conjugation. However, their reactive nature renders direct
incorporation into polymer systems very challenging. The
interference of free thiols in most of the polymerization
processes is a major issue, especially controlled/living
polymerization reactions [51] suffer from thiol-induced
side reactions. Thiols can react with (vinylic) monomers
through radical or Michael additions and will also induce
chain transfer reactions with propagating radicals [52].

Despite these issues, thiols have been introduced in lin-
ear polymers, both as pendant side chain functional handle
and as reactive end group, the latter being most docu-
mented. Indeed, the aminolysis of the RAFT end group is
a popular route towards (semi-) telechelics bearing a chain
end thiol [53], which can subsequently be employed as a
nucleophile in a thiol-bromo conjugation [54] and Michael
addition [55] or as a thiyl radical in thiol-ene [55c,56] and
thiol-yne [57] conjugation. In some cases, the aminolysis
and modification preferentially occur in the same reaction
medium (one-pot), avoiding the undesired oxidation to the
corresponding disulfide that leads to bimodal polymer
populations [55c].
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Reports on the synthesis of macromolecules containing
multiple thiols (polythiols) on their side chains are scarce.
The strong interest in the development of such multi-thiol
containing polymers finds its origin in the fact that they
are potential substrates for the incorporation of various
chemical functionalities via a thiol-click reaction of choice.
In general, there are two major issues regarding linear
polymers with unprotected thiols. A first drawback is the
interference of free thiols in the polymerization processes
(vide supra). Consequently, reported synthetic routes
towards polythiols require a protection/deprotection strat-
egy, i.e. a detrimental approach in terms of atom efficiency
and overall yield. A mercapto group can be incorporated
along the backbone of linear polymers masked with differ-
ent protecting groups [58]. Concomitant disulfide forma-
tion during and after deprotection is sometimes
problematic, resulting in a polymer network [58e,58n]. In
selected cases however, polyesters with pendant thiols
have been prepared either via direct enzymatic [59] or
chemoselective [60] polycondensation of unprotected thiol
monomers, based on thiomalic acid.

Secondly, it should be stressed that the hard-to-avoid
oxidative cross-linking of linear polythiols is a major hur-
dle to take, further hampering their more widespread
use. The thiol-disulfide conversion is reversible and various
chemical agents are used for the scission of disulfide link-
ages, either via a thiol exchange or a reduction. Some ele-
gant approaches toward synthetic polythiols are based on
this reversibility [61].

As introduced, thiolactones as functional handles along
the backbone of a variety of linear polymers are sites along
the linear backbone where a double modification/function-
alization, a prime example of PPM, can occur: first, a wide
variety of amines can be employed for the aminolysis,
followed by a thiol-click reaction of choice (Fig. 15).
These polythiolactones can thus serve as precursors for
polythiols, thereby solving issues involving the preparation
and long-term storage of polythiols.
The two main requirements enabling implementation
of thiolactone chemistry for the purpose of PPM of linear
narrow-disperse polymers are the straightforward prepa-
ration of reactive vinylic thiolactone-containing monomers
and the subsequent controlled radical polymerization
(CRP), ensuring clean incorporation of the thiolactone unit
along the backbone. At first, we thus devised and synthe-
sized two different types of vinylic monomers on large
scale, one styrenic (N-(4-vinylbenzenesulfonyl) homocys-
teine-c-thiolactone, 14) [62] and the other acrylic (N-
(acryloyl) homocysteine-c-thiolactone, 15) [63] (Fig. 16).
In both cases, a stable linkage (a sulfonamide in 14 and
an amide in 15) avoids unwanted detachment of the thio-
lactone unit during PPM.

Next, the CRP of these thiolactone-containing mono-
mers 14 and 15 was targeted. As there were no literature
precedents on the compatibility of thiolactone in the pres-
ence of carbon-centered propagating radical systems, we
adapted polymerization conditions guaranteeing the integ-
rity of the thiolactone moiety. We deliberately avoided the
use of metal-mediated CRP, in order to completely exclude
transition metal residues throughout the process of mono-
mer synthesis, CRP and PPM. Hence, reversible-addition
fragmentation transfer (RAFT) [64] and nitroxide-mediated
polymerization (NMP) [65] are the preferred polymeriza-
tion techniques.

A first important observation is the lack of control and/
or low conversions when attempting to homopolymerize
either monomer 14 or 15, as a result of solubility issues
during the polymerization. Consequently, random copoly-
merizations of both monomers were performed.

Successful copolymerization of monomer 14 with
styrene or methyl methacrylate (MMA), via RAFT or NMP,
yields linear polymers with tunable thiolactone content
(4–25%) and controlled molecular weight (Mn = 6.0 ?
18.0 kDa), although dispersities are relatively high
(�1.5) in the case of PMMA synthesized by NMP (Fig. 17)
[62].
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In an analogous manner, copolymers were produced by
RAFT polymerization using monomer 15 as comonomer
with N-isopropylacrylamide (NIPAAM) (Fig. 18). Thiolac-
tone contents of the final polymers were determined via
1H NMR spectroscopy and elemental analysis. The poly-
mers used for the PPM exhibited thiolactone contents
between 23 and 32 mol%, with molar masses in the range
of 10–20 kDa and low dispersities (Ð = 1.2 ? 1.3) [63].

Although only narrow-disperse thiolactone-containing
copolymers could be obtained, it has been demonstrated
that thiolactones are compatible with radical polymeriza-
tion conditions, using two different techniques (RAFT and
NMP).
4.2. Double PPM of polythiolactones: Two-step batch process

The last stage is the double modification of the synthe-
sized random copolymers (Figs. 17 and 18) using thiolac-
tone chemistry. There are two approaches for the
decoration of linear polythiolactones. On one hand, the
PPM consists of two separate batch processes (aminolysis
and thiol-click), with isolation of the polythiol, while on
the other hand, the double PPM can be conducted in a
one-pot manner, thus avoiding any intermediate
purification. Both approaches have been investigated and
the respective advantages and disadvantages were
evaluated.
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The first PPM approach was examined using the
styrene-based polythiolactones (Fig. 17). In a first step,
the aminolysis with a series of amines (benzylamine,
n-propylamine, ethanolamine and Jeffamine� M-1000),
generates thiols as pendant groups on the polymer chain
[62]. Disulfide formation could be suppressed using an
excess amount of low-molecular weight thiol (ethanethiol
or octanethiol) as reducing agent. Acidic work-up before
precipitation guarantees the formation of a series of poly-
thiols. After isolation of these polythiols, conjugate addi-
tion (thiol-Michael reaction) with N-benzylmaleimide
yields the double modified polymers. This result demon-
strates that the thiols introduced on the polymer backbone
can serve as functional handles for subsequent thio-click
reactions, permitting a double modification of the polymer
(Fig. 19). The reaction conditions are adapted during all
stages of the process in order to completely suppress unde-
sired disulfide formation. The low and constant dispersity
of all linear polymers, as indicated by SEC analysis, is a
proof of the success of this two-step batch approach. Sim-
ilar results were obtained when starting the double modi-
fication sequence with thiolactone-containing PMMA [62].
The main disadvantage of this two-step approach is the
laborious work-up procedure enabling the isolation of
the polythiol without the formation of disulfides cross-
links. However, these polythiols, once purified, can be
stored in the dried state for longer periods (several
months). The obtained polythiols are versatile scaffolds
for further modification, using a variety of established
SO O
HN

S

O

n

i. RNH2
ii. CH3COOH

RSH
24h; rt

S OO
HN

SH
O

n

NHR

Fig. 19. Double PPM of thiolactone-containing linear polymers in a two-step app
amine, generating polythiols. After intermediate purification, further modificatio
conjugation reactions. Moreover, this approach is particu-
larly advantageous over one-pot double PPM, when explor-
ing thiol-X reactions that are not compatible with the
aminolysis process, like the demonstrated thiol-maleimide
conjugation.

4.3. Double PPM of polythiolactones: One-pot process through
nucleophilic amine-thiol-ene conjugation

The second approach for double PPM has been per-
formed using the polythiolactones, prepared by random
RAFT copolymerization of NIPAAM and the thiolactone
acrylamide monomer 15 (Fig. 18) [63]. Therefore, the
respective copolymers were subjected to the additive-free
nucleophilic amine-thiol-ene. A chloroform solution of the
polythiolactone at a concentration of 10 wt% was treated
with the desired acrylate, followed by addition of the pri-
mary amine. Both reagents were used in a fivefold excess
with respect to the number of thiolactone units. In order
to demonstrate the versatility of our concept, a variety of
amine/acrylate combinations was used (Fig. 20).

In all cases a clear molecular weight shift was observed
while a low dispersity (Ð) was maintained, which shows
that side reactions such as disulfide formation are negligi-
ble. In other words, the released thiol groups are immedi-
ately trapped by the acrylate present in the solution. In
addition to the performed SEC analysis, in-depth structural
investigations of a selection of the modified polymers,
using 19F NMR (Fig. 20, entry 2) and 2D-NMR (entry 10),
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Entry Amine/Acrylate Combination
Mn,SEC (kDa) [Đ]

Before PPM After PPM

1 Benzylamine/ 
Methyl acrylate 6.4 [1.23] 7.0 [1.23]

2 4-Fluorobenzylamine/ 
2,2,2-Trifluorethyl acrylate 6.4 [1.23] 8.3 [1.18]

3 Ethanolamine/ 
Hydroxyethyl acrylate 6.4 [1.23] 8.9 [1.21]

4 n-Octylamine/
Isobornyl acrylate 6.4 [1.23] 8.3 [1.20]

5 Ethanolamine/
Isobornyl acrylate 6.4 [1.23] 8.4 [1.22]

6 n-Octylamine/
Hydroxyethyl acrylate 6.4 [1.23] 8.0 [1.21]

7 Benzylamine/
2-(2-Ethoxyethoxy) ethyl acrylate 6.4 [1.23] 7.3 [1.22]

8 N,N-Dimethyl-ethylenediamine/
1-Ethoxyethyl acrylate 6.4 [1.23] 4.7 [1.23]

9 n-Propylamine/
Benzyl acrylate 6.4 [1.23] 7.7 [1.22]

10 Furfurylamine/
Benzyl acrylate 6.4 [1.23] 7.8 [1.22]

11 3-Morpholino-propylamine/ 
Methyl acrylate 10.9 [1.27] 12.5 [1.25]

12 N,N-Dimethyl-ethylenediamine/ 
Benzyl acrylate 10.9 [1.27] 6.0 [1.35]

13 N,N-Dimethyl-ethylenediamine/ 
2-(2-Ethoxyethoxy) ethyl acrylate 10.9 [1.27] 9.0 [1.27]

Fig. 20. Double PPM of thiolactone-containing linear polymers in a one-pot approach using nucleophilic amine-thiol-ene conjugation. A solution of the
polythiolactone is treated overnight with a primary amine and an acrylate at ambient conditions, yielding the corresponding double modified linear
copolymer. The SEC data of the obtained polymers are presented in the table. Thiolactone content in the copolymer; entries 1 ? 10: 25%; entries 11 ? 13:
32%.
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confirmed the near-quantitative double PPM. Furthermore,
a successful functionalization was also achieved combining
reagents of different hydrophilicity/hydrophobicity (entries
3 ? 6).

Another important observation was the changed solu-
bility properties of the modified copolymers, especially
when a hydrophilic (entry 3) or a hydrophobic (entry 4)
amine/acrylate pair was used. Furfurylamine (entry 10),
3-morpholinopropylamine (entry 11) or N,N-dimethyleth-
ylenediamine (entries 8, 12, 13) were tested as functional
amines, giving pNIPAAm a multi-responsive character or
providing the opportunity for further functionalization, as
well as 1-ethoxyethyl acrylate (entry 8) as a protected car-
boxylic acid derivative [66] or 2-(2-ethoxyethoxy)ethyl
acrylate (entries 7 and 13) introducing short ethylene gly-
col side chains to the polymer. In all cases, the modification
was performed in chloroform but for example also perox-
ide-free THF could be used as reaction medium [63].

Encouraged by a successful application of the nucleo-
philic amine-thiol-ene conjugation in a one-pot double
PPM approach, we additionally demonstrated that the
degree of functionalization can be controlled through
different substoichiometric amounts of the ring opening
amine. This proved to be particularly interesting for tuning
the LCST of the respective polymer. Indeed, in the selected
case of double PPM with N,N-dimethylethylenediamine/2-
(2-ethoxy ethoxy)ethyl acrylate (entry 13), the modifica-
tion degree can be tuned, using different amounts of
amine per batch. The tertiary amine residues can, upon
protonation at a sufficiently low pH, cause an increased
hydrophilicity of the polymer. Since the attachment of
the acrylate to the polymer backbone depends on the prior
aminolysis, the final polymers also bear varying amounts
of 2-(2-ethoxy ethoxy)ethyl side chains. Consequently, a
series of water soluble polymers showing an LCST depend-
ing on the pH and the degree of functionalization was
obtained. Starting from a precursor polymer with a thio-
lactone content of 32 mol%, an increase of the degree of
functionalization from 40% to 95% leads to a cloud point
shift from 27 to 66 �C at pH equal to 7. Additionally, the
polymer with the highest degree of functionalization
(95%) exhibits a transition temperature of 35 �C at pH
equal to 9 while it is still water soluble at 75 �C in acidic
medium (pH = 5) [63].
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The simplicity of the approach in terms of experimental
set-up, together with the mild reaction conditions and the
almost endless choice of amine/acrylate combinations, ren-
der the nucleophilic amine-thiol-ene conjugation a powerful
and versatile PPM tool. The possibility for simultaneous
introduction of chemical functionalities and solubility
modulators provides paths to multi-functional tailor-made
materials.

The unique character of this site-specific one-pot dou-
ble modification approach should be highlighted. Very
few PPM chemistries provide the opportunity of incorpo-
rating two residues at same site in a polymer. A notewor-
thy alternative is the three-step batch transformation of
polymer-bound epoxides with sodium azide and subse-
quent CuAAC, introducing a first residue [67]. The gener-
ated hydroxyl functionality can be further modified.

4.4. One-pot double modification of thiolactone-containing
nanostructures

One-pot double modification of thiolactones is not
restricted to the described nucleophilic amine-thiol-ene
conjugation. Monteiro and co-workers synthesized multi-
functional nanostructures (worms and rods) with multiple
chemical functionalities directly in water using a one-step
RAFT-dispersion polymerization. The introduced func-
tional handles originate from their presence in the R group
onto the chain transfer agent (CTA). In the case of the thio-
lactone worms and rods, aminolysis with allylamine and
subsequent one-pot scavenging of the released thiol using
2,20-dipyridyl disulfide (thiol-disulfide exchange) in buf-
fered aqueous solution results in the formation of the cor-
responding pyridyl disulfide and alkene functional
nanostructures, allowing for further orthogonal reactions
(Fig. 21) [68].

5. Aminolysis of thiolactones, followed by disulfide
formation: Synthetic applications

A disulfide is a relatively stable, yet reversible covalent
bond, able to (inter)connect a whole range of different
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Fig. 21. One-pot double modification of thiolactone functional nanostructures
through aminolysis and disulfide exchange.
substrates [69]. This inherent reversibility entails that it
can be (re)formed or broken on the users’ demand, gener-
ally under relatively mild conditions. Hence, it has been
included in the dynamic covalent chemistry (DCC) toolbox
[70] and it is essential in some covalent adaptable net-
works (CANs)[71] with self-healing capabilities [72].

However, undesired disulfide formation during thiol-
click reactions and/or long-term storage of thiol-contain-
ing substrates is particularly concerning and was one of
the initial arguments at the start of our thiolactone
research. Although this unwanted secondary reaction can
be completely avoided when employing one-pot thiolac-
tone-based reactions, such as the nucleophilic amine-
thiol-ene conjugation, it still requires careful monitoring.
Sometimes the corresponding disulfide is the major adduct
of a ring opening of the thiolactone precursor, especially in
the absence of a thiol scavenger and in the presence of a
larger excess of primary amine during the aminolysis
(Fig. 6). At present, we still do not fully understand the
parameters, influencing the disulfide formation degree
during the aminolysis of a thiolactone, compromising the
prevention, the prediction and the control of this event.
However, we observed (a) that the amine concentration
during the ring opening correlates with the extent of disul-
fide formation, (b) that disulfide formation was indepen-
dent from the nature of the primary amine and (c) that it
does not require additional oxidants to occur.

Based on these experimental observations, we explored
the scope of the concomitant disulfide formation during
the aminolysis of thiolactones as a useful synthetic method
for the preparation of cyclic polymers [73]. In a first stage,
we envisaged the synthesis of linear a,x-heterotelechelic
precursor via RAFT. The initial demand to design a thiolac-
tone-containing CTA was therefore mandatory, providing
the direct access to a thiol group at both a and x polymer
termini upon the treatment with an amine [53]. Then, the
in situ produced thiol-telechelics can engage through a
disulfide bonding in an intramolecular fashion to yield cyc-
lic polymers, under high dilution and ambient conditions
(open air, room temperature, without a need for a catalyst
or any additive). Although there were reports on the
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synthesis of cyclic polymers through RAFT polymerization
and disulfide formation [74], the presented thiolactone/
disulfide cyclization approach widens the range of possible
unusual topologies that have practical implications to be
manufactured by available synthetic methods. The reason
for that primarily lays in the potential use of functionalized
amines allowing the cycles to be equipped with desired
functional groups for further topological upgrade. Another
attractive feature, shared with a recent cyclization strategy
using bromo-maleimide – thiol conjugation [75], is the fact
that the required precursor end groups, i.e. the thiolactone
and the dithiobenzoate (vide supra), are the direct result of
the RAFT polymerization, omitting further end group
modifications, like in most of the other ring-closure
approaches [73d].

A thiolactone-containing dithiobenzoate 16 was syn-
thesized in three steps on gram scale with an overall yield
of 21%. Next, heterotelechelic linear polystyrene (PS) con-
taining an a-thiolactone and an x-dithiobenzoate group
was synthesized via reversible addition-fragmentation
chain transfer (RAFT) polymerization, mediated by CTA
16 (Fig. 22). Although the compatibility of thiolactone
units with CRP was already demonstrated, [62,63] moni-
toring of the polymerization conditions was required as
only at low conversions (ca. 25%), linear precursors with
high end group fidelity (>95%) can be obtained [56,76].
Typically, narrow-disperse (Ð = 1.1) heterotelechelic linear
polystyrene with an Mn of ca. 4 kDa and a near-
quantitative presence of both end groups was isolated [77].

The subsequent aminolysis reaction of this heterote-
lechelic precursor by slow addition of a primary amine
(n-propylamine or ethanolamine) in a dilute solution
(0.05 mM in CH2Cl2), which acts as a nucleophile for both
the thiolactone and dithiobenzoate units, generated the
a,x-telechelic-dithiol under ambient conditions without
the need for any catalyst or other additive (Fig. 22). The
arrangement of thiols under a high dilution afforded cyclic
PS through a disulfide linkage, evidenced by SEC, MALDI-
TOF MS and 1H NMR characterization. A series of cyclic
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Fig. 22. Ring-closure approach for the preparation of cyclic pol
polystyrene was obtained in high purity after concentra-
tion of the dilute reaction mixture and precipitation in
methanol. Furthermore, employing ethanolamine, hydro-
xyl-functionalized cyclic PS was obtained, demonstrating
the opportunity for the preparation of cyclic polymers with
the pendant functionality of choice. Moreover, a controlled
ring opening via either disulfide reduction or thiol/disul-
fide exchange enables easy and clean topology transforma-
tion, re-establishing the corresponding linear polymer and
confirming the ring closure mechanism through disulfide
formation [77].
6. Solid-supported thiolactones: Source of sequence-
defined oligomers

All the thiolactone-based synthetic approaches pre-
sented so far occur either in solution or in a homogeneous
reaction mixture. Implementation of these established pro-
tocols, exploiting the gathered knowledge on the chemical
reactivity and selectivity of thiolactones during aminolysis
and (one-pot) follow-up thiol-click reactions, in heteroge-
neous systems undoubtedly offers particularly interesting
possibilities for the design of custom materials. Therefore,
immobilization of a thiolactone moiety on a heterogeneous
carrier, like a (metal) surface or a cross-linked bead, and
subsequent modification through one of the above
described methods was targeted.

The research field we specifically wanted to enter using
solid-supported thiolactones was the area of control over
the primary structure of functionalized oligomeric
sequences. Today, an increased interest in and strong dri-
ver for fundamental research towards reliable sequence-
controlled polymerization, enabling pre-programmed
distribution of multiple functional groups along the back-
bone, encourages a growing number of research groups
worldwide to contribute [78].

Pioneering efforts to control the primary structure (i.e.
monomer sequence) of functionalized sequences have
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been based on several approaches, such as different reac-
tivity ratios of vinyl monomers in CRP [79] and norborn-
enes in ring-opening metathesis polymerization (ROMP)
[80], spatial prearrangement of monomers on a (macromo-
lecular) template [81], the action of a small-molecule
machine [82], controlled synthesis of multi-block copoly-
mers in one-pot batch [83] or flow reactors [84]. Other
attempts use (automated) sequential addition of building
blocks on a solid [85] or liquid [86] support, leading to
sequence control as a result of iterative coupling steps,
omitting the need for pre-organization.

Application of the latter approach on a solid support
currently remains the most versatile tool for controlling
monomer sequence. Nevertheless, related protocols, estab-
lished for peptide [87] and oligonucleotide [88] synthesis,
also have less favorable characteristics. Indeed, they gener-
ally require the use of protecting groups and the restricted
number of readily available building blocks, the so called
‘monomer alphabet’, equipped with the appropriate func-
tional handle can further hamper the preparation of tai-
lor-made functionalized sequences.

These drawbacks justify the development of an alterna-
tive coupling strategy for the controlled generation of
sequence-defined multi-functionalized oligomers on solid
support in a protecting group-free approach, inspired by
the ‘submonomer’ synthetic protocol for the preparation
of functionalized peptoids [89], via thiolactone-based
chemistry.

Immobilization of a thiolactone unit on a solid support
should enable chain extension after on-resin aminolysis,
using a judiciously selected thiolactone building block, to
reinstate the thiolactone functionality, i.e. the start of a
next iterative reaction sequence (Fig. 23). This two-step
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Fig. 23. Two-step iterative protocol for the synthesis of functionalized oligomer
chain extension using a thiolactone-containing building block 15 or 17.
aminolysis/chain extension protocol does not make use
of any protecting groups. Furthermore, it relies on a single
thiolactone-containing building block for chain extension,
either N-(acryloyl) homocysteine-c-thiolactone 15 or
N-(2-bromoacetyl) homocysteine-c-thiolactone 17,
respectively susceptible to thiol-bromo substitution and
thiol-Michael addition. Most importantly, a myriad of
functionalities can be introduced via the corresponding
readily available amines [90].

As the repetitive aminolysis and chain extension steps
occur in basic medium, an acid-labile linkage was foreseen
for final cleavage from the solid support. Consequently, the
carboxyl-functional thiolactone linker was coupled to a
2-chlorotrityl resin using standard conditions [91].

Aminolysis of the resin-bound thiolactone was per-
formed by overnight treatment of the swollen resin with
an excess of benzylamine, guaranteeing full thiolactone
conversion. LC–MS analysis of the sample after acidic
cleavage, revealed quantitative consumption of the
thiolactone, but only the corresponding disulfide of the
expected thiol could be identified (Fig. 24) [90].

After several failed attempts to avoid disulfide forma-
tion and to fully reduce the disulfide to the targeted thiol
adduct, the synthetic strategy was adapted to consider
the resin-bound disulfides, as stable intermediates. With
respect to the two-step iterative protocol (Fig. 23), reduc-
tion of the disulfide by phosphine treatment followed by
immediate in situ reaction of the generated thiol [92] with
the next monomer building block is indeed an alternative
for the proposed chain extension. However, these condi-
tions were found not to be applicable when using building
block 17 due to the incompatibility of a bromide leaving
group with a tri-alkylphosphine. On the other hand,
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considering chain extension via building block 15, the
phosphine reagent can fulfill a dual role: both as a reducing
agent for the disulfide generated upon the aminolysis and
as an efficient catalyst for the thiol-Michael addition
[12b,48]. Cleavage of the resin-bound disulfide and Michael
addition of the thiol to acrylamide 15 could indeed be suc-
cessfully performed in the presence of an excess of Me2PhP
and building block 15, as demonstrated by LC–MS analysis
of the obtained conjugated product (Fig. 24) [90].

In order to further demonstrate the general potential of
this methodology in terms of versatility and functional
group tolerance, a small library of functionalized dimer
sequences was prepared by 2 iterations of the elaborated
two-step protocol (Fig. 23, n = 2). Different functional han-
dles could consequently be incorporated in a single, longer
oligomeric motif through application of extra aminolysis/
chain extension cycles. As the consecutive overnight reac-
tions in the current protocol render the overall process
time-consuming, heating through microwave irradiation
was successfully performed in order to significantly reduce
the reaction times of both steps. This microwave-assisted
protocol was applied for the preparation of trimer and tet-
ramer sequences in good purity. Attempts to extend the
tetramer to a multi-functionalized pentamer were partially
successful, because side reactions become predominant.
The structural build-up of the purified sequences was con-
firmed by HR-MS and high-resolution 2D-NMR (500 and
700 MHz) analysis, enabling full characterization of the
obtained oligomeric species [90].

While the generated oligomers are small in size, recon-
stitution approaches could further allow the synthesis of
larger chains, featuring designed and repetitive display of
carefully selected and well-positioned functional entities
[78c].

As an alternative to this solid-supported synthesis of
sequence-defined oligomers, two recent methods based
on chain elongation in solution have been reported. On
one hand, the Passerini reaction, a multi-component reac-
tion recently implemented in synthetic polymer science
[93], in combination with radical thiol-ene addition was
utilized, enabling the introduction of different side chains
along the backbone [94], while on the other hand, thiolac-
tones have been used in a sequential monomer addition
protocol for the preparation of ABC-, CBABCD- and
DCBABCDE-sequence copolymers [95]. In this approach,
N-acetylhomocysteine thiolactone 2 was used to introduce
thiol end groups in short unfunctionalized sequences
(ABC-, CBABCD- and DCBABCDE) that were periodically
polymerized by either radical thiol-ene or thiol-dibromo-
maleimide conjugation.

7. Conclusion and outlook

In summary, several thiolactone-based synthetic
approaches for the preparation and modification of a vari-
ety of functionalized polymers have been established
(Fig. 25).

Thiolactones are sensitive towards ring opening in the
presence of amines and generally serve as thiol precursors
in these conditions. The 100% atom efficient aminolysis can
be followed by a thiol-click conjugation, offering the possi-
ble introduction of two residues: the first (R1) originating
from the ring opening amine and the second (R2) from
the thiol-X reaction. Extensive method development
through dedicated model studies, focusing on the one-pot
aminolysis of thiolactone units and subsequent thiol-click
conjugation resulted in the elaboration of the amine-
thiol-ene conjugation.

Both variants of this one-pot two-step reaction
sequence, following either the radical or nucleophilic
pathway, are applicable, although the radical version has
some limitations due to orthogonality issues when using



Fig. 25. Overview of thiolactone-based synthetic approaches for the preparation and modification of various functionalized polymers.

266 P. Espeel, F.E. Du Prez / European Polymer Journal 62 (2015) 247–272
functionalized amines. A general approach to obtain thio-
lactone-containing compounds, enabling implementation
of thiolactone chemistry in synthetic polymer science,
consist of conversion of homocysteine-c-thiolactone 1, a
bio-based commercially available building block. Two
types of AB0 monomers, bearing both a thiolactone moiety
and a reactive double bond (electron-rich or electron-poor),
have been prepared, which were susceptible to polyaddi-
tion via thiol-ene (radical or nucleophilic) conjugation after
aminolysis, finally yielding diversely substituted polyure-
thanes and polyamides (linear polymers and networks). In
this context, the nucleophilic amine-thiol-ene conjugation
is particularly attractive as this 100% atom-efficient poly-
merization is a very mild process, occurring at ambient con-
ditions without any additive or external trigger.

In a second section, the double PPM of narrow-disperse
thiolactone-containing linear polymers was discussed.
First, two vinylic monomers (styrenic and acrylic), derived
from 1, were copolymerized using RAFT and NMP. At this
stage, the compatibility of thiolactone units with radical
polymerization conditions was demonstrated. Following
successful CRP, the resulting polythiolactones, with vary-
ing thiolactone content and molecular weight, were sub-
jected to double modification using two distinct
approaches. On one hand, the PPM consists of two separate
batch processes (aminolysis and thiol-click), with isolation
of the polythiol, while on the other hand, the double PPM
can be conducted in a one-pot manner, using a reactive
mixture of a primary amine, an acrylate and a polythiolac-
tone, thus avoiding any intermediate purification. Both
approaches offer the possibility for double PPM of nar-
row-disperse polythiolactones, although the first approach
requires more laborious work-up to isolate the polythiol
without disulfide formation, but it offers the user more
options for selecting the thiol-click in the second modifica-
tion step. At this point we want to highlight again the
scope of the nucleophilic amine-thiol-ene conjugation for
double PPM as it proves to be a very straightforward and
versatile method.

While developing these thiolactone-based synthetic
methods, we recognized the general importance of disulfide
formation as a side reaction during the aminolysis of a thio-
lactone ring, especially in the absence of a thiol scavenger.
Although not fully mastered, we can influence the degree
of disulfide formation to some extent, making it a useful
and clean transformation. This knowledge was used to pre-
pare cyclic polymers. CRP of styrene mediated by a designed
thiolactone-containing CTA resulted in the synthesis of nar-
row-disperse heterotelechelic PS, having both reactive thio-
lactone and dithiobenzoate end groups. Upon aminolysis in
a dilute medium, the linear precursor is transformed into an
a,x-dithiol, which cyclizes through disulfide formation.
Topology transformation, from cyclic to linear, via scission
of the disulfide bond offered further support for the pro-
posed thiolactone/disulfide cyclization chemistry.

Finally, we established a two-step iterative protocol for
the synthesis of multi-functionalized sequence-defined
oligomers using solid-supported thiolactones. After immo-
bilization of a thiolactone unit on a bead, a procedure
through consecutive aminolysis and chain extension was
investigated. Again, on-resin aminolysis results in the
exclusive formation of the disulfide, an event which forced
us to adapt the protocol. Indeed, in the second step of the
cycle, the disulfide was cleaved using a phosphine and
the released thiol was reacted with N-(acryloyl) homocys-
teine-c-thiolactone 15 in a one-pot manner. This results in
the reinstatement of the resin-bound thiolactone and thus
the start of a next cycle. We demonstrated four successful
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repetitions of the two-step iterative protocol, leading to
sequence-defined oligomers having a unique backbone
and various pendant residues by the use of a whole range
of different functionalized amines during each aminolysis
step in the cycle.

As a general conclusion and outlook, it can be stated that
the versatility of the thiolactone approach in polymer sci-
ence could be regarded as a breakthrough in the modern
functionalization toolbox. Therefore, it will undoubtedly
lead to many more applications, also in material science,
in which the unique properties of the thiolactone functional
handle, such as double modification, one-pot strategies and
mild conjugation protocols, involving biomolecules, will
attract the efforts of many more research groups world-
wide.
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