53 research outputs found

    Latin American Production on Gender Violence on Scopus, 2010 -2019

    Get PDF
    The study describes the characteristics of publications on gender violence written by authors affiliated with Latin American institutions, in journals indexed to Scopus during the period 2010-2019. A descriptive and retrospective analysis of 2,568 articles is carried out. Latin American scientific production represents 5.3% of world production. Brazil is the country with the highest production, followed by Mexico and Chile. Latin American scientific production has been published in 572 journals. Ciencia e Saude Coletiva (Brazil) is the journal with the largest number of publications, followed by Cadernos de Saude Publica (Brazil) and Journal of Interpersonal Violence (United States). besides, the authors are mainly affiliated with the Universidade de Sao Paulo - USP, followed by the Fundacao Oswaldo Cruz Universidade Federal do Rio Grande do Sul. Finally, the keywords, domestic violence, intimate partner violence and gender violence present an increasing trend of studies since 2016. Therefore, it is necessary to strengthen and stimulate the generation and dissemination of scientific studies by Latin American researchers

    THE PRINCIPLE OF INTEGRITY AND THE FRAGMENTATION OF PUBLIC PROCUREMENT

    Get PDF
    Objective: Through this work, a study on the integrity of the human being and the fractionation of public procurement has been carried out.Methods: As part of the study, the authors reviewed scientific works on the subject.Results: After analyzing the contracting law 30225, its regulations and other aspects that are part of the contractual procedure, certain factors have been determined that intervene in the actions of the agents in charge of public contracting, such as: i) normative disparity; ii) incapacity of those in charge of the selection processes; and iii) acts of corruption, which put at risk the denaturalization of the norms, generating the splitting of a contract.Conclusions: The splitting of a contracting procedure corresponds more to a subjective decision where the official or servant in charge of the contracting process has the power to discern the good from the bad. The bad decision that entails an illicit conduct will generate liability

    Digital Optical Ballistocardiographic System for Activity, Heart Rate, and Breath Rate Determination during Sleep

    Get PDF
    In this work, we present a ballistocardiographic (BCG) system for the determination of heart and breath rates and activity of a user lying in bed. Our primary goal was to simplify the analog and digital processing usually required in these kinds of systems while retaining high performance. A novel sensing approach is proposed consisting of a white LED facing a digital light detector. This detector provides precise measurements of the variations of the light intensity of the incident light due to the vibrations of the bed produced by the subject’s breathing, heartbeat, or activity. Four small springs, acting as a bandpass filter, connect the boards where the LED and the detector are mounted. Owing to the mechanical bandpass filtering caused by the compressed springs, the proposed system generates a BCG signal that reflects the main frequencies of the heartbeat, breathing, and movement of the lying subject. Without requiring any analog signal processing, this device continuously transmits the measurements to a microcontroller through a twowire communication protocol, where they are processed to provide an estimation of the parameters of interest in configurable time intervals. The final information of interest is wirelessly sent to the user’s smartphone by means of a Bluetooth connection. For evaluation purposes, the proposed system has been compared with typical BCG systems showing excellent performance for different subject positions. Moreover, applied postprocessing methods have shown good behavior for information separation from a single-channel signal. Therefore, the determination of the heart rate, breathing rate, and activity of the patient is achieved through a highly simplified signal processing without any need for analog signal conditioning.Junta de Andalucia European Commission PYC20-RE-040 UGR MCIN/AEI/10.13039/501100011033/with PID2019-103938RB-I00European Commissio

    Batteryless NFC dosimeter tag for ionizing radiation based on commercial MOSFET

    Get PDF
    This paper reports the development, evaluation and validation of DosiTag, a dosimetric platform based on Near Field Communication (NFC) technology. The designed system comprises two main parts: a passive NFC sensing tag as the dosimeter unit, which includes a commercial P-channel MOSFET transistor as radiation sensor; and an NFC-enabled smartphone running a custom-developed application as the reader unit. Additionally, a cloud service based on the messaging protocol Message Queue Telemetry Transport (MQTT) has been implemented using a broker/client architecture to allow the storage and classification of the patient’s data. The dosimeter tag was designed using commercial low-power integrated circuits (ICs) and it can operate without any external power supply or battery, being supplied by the smartphone through the radio frequency (RF) energy harvested from the NFC link. The radiation dose is measured through the increase of the DMOS transistor source voltage using the smartphone as the reader unit. Two tag prototypes have been characterized with a 6 MV photon beam and radiation doses up to 57 Gy and 42 Gy, respectively. The achieved average sensitivity is (4.37 ± 0.04) mV/ Gy with a resolution of 2 cGy, which goes beyond the state-of-the-art of previous NFC dosimeters and places DosiTag as a low-cost promising electronic platform for dose control in radiotherapy treatments.Junta de Andalucía (Spain), projects numbers PI-0505–2017 FEDER/Junta de Andalucía- Consejería de Economía y Conocimiento Project B-TIC-468-UGR18Proyecto del Plan Nacional I + D: PID2019–104888GB-I00 and Proyectos I + D + i Junta de Andalucía 2018: P18-RT-3237H2020 ELICSIR project (grant No. 857558)Grant IJC2020-043307-I funded by MCIN/AEI/ 10.13039/501100011033European Union NextGenerationEU/ PRT

    Non-Invasive Oxygen Determination in Intelligent Packaging Using a Smartphone

    Get PDF
    Here, we present a technique for the determination of the gaseous oxygen concentration 2 inside packed food. It is based on the use of a luminescent membrane sensitive to O2 that is optically excited and read by a smartphone. The flash of the smartphone along with an optical filter is used as the light source for the optical stimulation of the membrane. The luminescence generated, which is quenched by the surrounding gaseous oxygen, is registered by the rear camera of the same device. The response parameter is defined by combining the registered intensities at two different wavelength ranges corresponding to the emission and the absorption peaks of the sensitive membrane. Thanks to this novel response parameter, the sensitivity is increased and, more importantly, the thermal dependence of the membrane is significantly reduced. This approach allows the use of a luminescent O2-sensitive membrane for intelligent packaging with no need of any associated electronics for its excitation and reading. This means that an oxygen sensor is developed, where a luminescent compound acts as an indicator, therefore combining the advantages of both schemes, that is, the simplicity and reduced cost of indicators with the high sensitivity and accuracy of selective sensors.This work was supported by the Spanish Ministry of Economics and Competivity through the Project CTQ2016-78754-C2-1-R. The work P. Escobedo Araque was supported by the Spanish Ministry of Education, Culture and Sport under Grant FPU13/05032. The work of I. Pérez de Vargas-Sansalvador was supported in part by the European Union’s Horizon 2020 Research and Innovation Program (Multisens) under Grant 706303, in part by the Talentia Postdoc Program launched by the Andalusian Knowledge Agency, in part by the European Union’s Seventh Framework Program, in part by the Marie Skłodowska-Curie actions (COFUND) under Grant 267226, and in part by the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía

    Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip

    Get PDF
    Understanding the phenomenon of liquid wicking in porous media is crucial for various applications, including the transportation of fluids in soils, the absorption of liquids in textiles and paper, and the development of new and efficient microfluidic paper-based analytical devices (μPADs). Hence, accurate and real-time monitoring of the liquid wicking process is essential to enable precise flow transport and control in microfluidic devices, thus enhancing their performance and usefulness. However, most existing flow monitoring strategies require external instrumentation, are generally bulky and unsuitable for portable systems. In this work, we present a portable, compact, and cost-effective electronic platform for real-time and wireless flow monitoring of liquid wicking in paper strips. The developed microcontroller-based system enables flow and flow rate monitoring based on the capacitance measurement of a pair of electrodes patterned beneath the paper strip along the liquid path, with an accuracy of 4 fF and a full-scale range of 8 pF. Additionally to the wired transmission of the monitored data to a computer via USB, the liquid wicking process can be followed in real-time via Bluetooth using a custom-developed smartphone application. The performance of the capacitive monitoring platform was evaluated for different aqueous solutions (purified water and 1 M NaCl solution), various paper strip geometries, and several custom-made chemical valves for flow retention (chitosan-, wax-, and sucrose-based barriers). The experimental validation delivered a full-scale relative error of 0.25%, resulting in an absolute capacitance error of ±10 fF. In terms of reproducibility, the maximum uncertainty was below 10 nl s−1 for flow rate determination in this study. Furthermore, the experimental data was compared and validated with numerical analysis through electrical and flow dynamics simulations in porous media, providing crucial information on the wicking process, its physical parameters, and liquid flow dynamics

    Comparative Study of Inkjet-Printed Silver Conductive Traces With Thermal and Electrical Sintering

    Get PDF
    Thermal sintering has traditionally been the most popular sintering method to enhance conductivity after the printing process in the manufacturing of printed electronics. Nevertheless, in recent years, there has been a growing interest in electrical sintering as an alternative method to overcome some of the limitations of thermal curing. This paper makes a comparative study of both sintering methods in terms of surface morphology, electrical dc conductance, and radiofrequency performance for different applied voltage waveforms. To this end, microstrip transmission lines have been inkjet-printed using nanoparticle-based silver ink on flexible polyimide substrate. The traces have been tested under different sintering conditions, achieving electrical sintering resistivity values only 2.3 times higher than that of bulk silver. This implies a 62% reduction in comparison with the best resistivity value achieved using thermal sintering in our samples. The main novelty of this contribution lies in the analysis of RF behavior as a function of electrical sintering conditions. Lower resistivities have been achieved with slower voltage ramps or allowing higher density current during sintering. It has also been proved that electrically sintered lines have similar RF performance than high-temperature thermally sintered lines in terms of insertion losses, regardless of their very different surface topology. Therefore, we can take advantage of the benefits that electrical sintering offers over thermal sintering regarding significant shorter sintering times maintaining suitable RF performance.This work was supported in part by the Spanish Ministry of Economics and Competitiveness under Grant CTQ2016-78754-C2-1-R

    Thermoelectric Energy Harvesting for Oxygen Determination in Refrigerated Intelligent Packaging

    Get PDF
    In this paper, we present a passive tag for the determination of gaseous oxygen in intelligent packaging (IP). The power supply for this tag is obtained from thermoelectric energy harvesting taking advantage of the temperature difference between a cooled package and the human body. For this purpose, a compact Peltier module is attached to the surface of the pack7 age. This device is able to generate 1.2 mW when a temperature difference of 25 °C is applied between its surfaces. A dc-to-dc boost converter is included to generate an output voltage of 3.3 V and an output current of 225 µA from the harvested energy by the Peltier cell, which are used to supply the measurement circuitry. A luminescent membrane sensitive to oxygen is used as a gas detector in the package. The generated signal is compared to a reference value to evaluate if the oxygen concentration inside the package falls below or above a predetermined value. This is shown by turning on a green or a red LED, respectively. The proposed system presents a resolution of 0.02% of the predicted oxygen concentration in the range of interest (0%–5%) and a limit of detection (LOD) of 0.007%, which makes the instrument appropriate to be used in IP and active packaging (AP) technology.This work was supported in part by the Spanish Ministry of Economics and Competivity under Project CTQ2016-78754-C2-1-R and in part by the Unidad de Excelencia de Química aplicada a biomedicina y medioambiente, University of Granada. The work of P. E. Araque was supported by the Spanish Ministry of Education, Culture and Sport (MECD) under Grant FPU13/05032. The work of I. M. P. de Vargas-Sansalvador was supported by the European Unions Horizon 2020 research and innovation program under Grant 706303 (MultiSens

    Flexible Passive NFC Tag for Multi-Gas Sensing

    Get PDF
    In this work we present a full-passive flexible multigas sensing tag for the determination of oxygen, carbon dioxide, ammonia, and relative humidity readable by a smartphone. This tag is based on near field communication (NFC) technology for energy harvesting and data transmission to a smartphone. The gas sensors show an optic response that is read through high-resolution digital color detectors. A white LED is used as the common optical excitation source for all the sensors. Only a reduced electronics with very low power consumption is required for the reading of the optical responses and data transmission to a remote user. An application for the Android operating system has been developed for the power supplying and data reception from the tag. The responses of the sensors have been calibrated and fitted to simple functions, allowing a fast prediction of the gases concentration. Cross-sensitivity has also been evaluated, finding that in most of the cases it is negligible or easily correctable using the rest of the readings. The election of the target gases has been due to their importance in the monitoring of modified atmosphere packaging. The resolutions and limits of detection measured are suitable for such kinds of applications.This work was supported by project CTQ2013-44545-R from the Ministry of Economy and Competitiveness (Spain) and Junta de Andalucía (Proyecto de Excelencia P10- FQM-5974). These projects were partially supported by European Regional Development Funds (ERDF). P. Escobedo wants to thank the Spanish Ministry of Education, Culture and Sport (MECD) for a pre-doctoral grant (FPU13/05032)
    corecore