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A B S T R A C T   

This paper reports the development, evaluation and validation of DosiTag, a dosimetric platform based on Near 
Field Communication (NFC) technology. The designed system comprises two main parts: a passive NFC sensing 
tag as the dosimeter unit, which includes a commercial P-channel MOSFET transistor as radiation sensor; and an 
NFC-enabled smartphone running a custom-developed application as the reader unit. Additionally, a cloud 
service based on the messaging protocol Message Queue Telemetry Transport (MQTT) has been implemented 
using a broker/client architecture to allow the storage and classification of the patient’s data. The dosimeter tag 
was designed using commercial low-power integrated circuits (ICs) and it can operate without any external 
power supply or battery, being supplied by the smartphone through the radio frequency (RF) energy harvested 
from the NFC link. The radiation dose is measured through the increase of the DMOS transistor source voltage 
using the smartphone as the reader unit. Two tag prototypes have been characterized with a 6 MV photon beam 
and radiation doses up to 57 Gy and 42 Gy, respectively. The achieved average sensitivity is (4.37 ± 0.04) mV/ 
Gy with a resolution of 2 cGy, which goes beyond the state-of-the-art of previous NFC dosimeters and places 
DosiTag as a low-cost promising electronic platform for dose control in radiotherapy treatments.   

1. Introduction 

In an effort to improve the quality of the medical use of ionizing 
radiation, in vivo dosimetry (IVD) emerged as a direct method of 
measuring the radiation doses received by patients during their radio-
therapy sessions. The use of IVD has become more widespread since the 
World Health Organization (WHO) and other entities considered it an 
effective way of checking the quality of the entire radiotherapy process 
[1,2]. Current solutions for such dose measurements are based on de-
tectors like diodes, thermoluminescent dosimeters (TLDs), metal oxide 
semiconductor field-effect transistors (MOSFETs), film badges or opti-
cally stimulated luminescence dosimeters (OSLDs) [3]. In the case of 
MOSFETs, the p-type devices generate during irradiation electron-hole 
pairs proportional to the delivered dose, which can be later read using 
an appropriate metering system [4]. Their advantages include good 
linearity, very compact size, immediate readout and easy calibration, 
thus becoming increasingly popular both commercially [5,6] and in 

research [7–9]. To further improve the sensitivity, transistors with thick 
gate oxides specially designed for radiation detection have been man-
ufactured, known as RADFETs (Radiation-Sensitive Field Effect Tran-
sistors) [10–12]. However, for radiation doses used during typical 
radiotherapy sessions, the possibility of using commercial MOSFETs as 
dosimeters instead of RADFETs can greatly reduce the cost of the 
dosimetry system [13]. Nevertheless, achieving such a dosimetry system 
with commercial MOSFETs [14–17] requires a reader unit implementing 
the necessary signal conditioning stages in terms of amplification, 
filtering and compensation of the temperature effect [7,13,18]. The 
reader units for these dosimetric systems are usually desktop-based 
devices [7], which require the use of cables connected to the sensor 
modules placed on the patient, thus making the process cumbersome 
and uncomfortable for the patient. To make the system more comfort-
able for the patient and user-friendly for the healthcare personnel, 
wireless RFID or NFC-based systems have been proposed [7, 19–21]. 
With this approach, only the NFC dosimetric sensing tag and a 
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smartphone with a custom application are required. 
A smartphone can be currently purchased for a relatively low price 

and developing a custom smartphone application is feasible with the 
completely accessible integrated development environments (IDE’s) 
provided by the main mobile software distributors (Android and iOS). 
Therefore, the implementation of this type of systems is a very cost- 
effective solution with great potential for market access [22]. In addi-
tion, if NFC technology [23] is used and the tag’s power consumption is 
sufficiently low, no batteries are required and consequently the cost, 
maintenance and complexity of the system will greatly decrease. For this 
reason, several examples of NFC sensing tags can be found in the liter-
ature [24–27]. Since the power consumption of the MOSFET-based do-
simeters is usually low [7–29], it is possible to implement a battery-less 
NFC dosimeter. 

In this work, we present the development, characterization and 
validation in hospital facilities of DosiTag, an enhanced NFC-based 
dosimeter for ionizing radiation with wireless power and communica-
tion. The system is composed of a credit-card size NFC tag that in-
corporates a MOSFET-based sensor module and a smartphone to supply 
the system and read out the dose measurements. The presented system is 
an enhanced and redesigned version of a previous NFC-based dosimeter 
from our research group [7], where a number of novelties and im-
provements have been implemented. Firstly, the inclusion of a micro-
controller unit (MCU) allows the full control of the measurement 
variables (e.g., measurement time, start/end control, etc.), the possi-
bility to endow the pins with new and diverse functionalities (e.g., turn 
on/off the sensor module) as well as the use of several Analog-to-Digital 
Converter (ADC) modules and the full implementation of bidirectional 
communication between the microcontroller and the smartphone. Sec-
ondly, a new amplification stage has been designed to increase the 
system resolution. Additionally, the new version allows the irradiation 
of the complete dosimeter tag, not only the sensor module, and the total 
irradiation dose has been increased. The new compact design allows the 
possibility of tag encapsulation, so that the dosimeter tag can be steril-
ized or submerged in liquids. Regarding the reader unit, a new smart-
phone app has been developed from scratch and Internet-of-Things (IoT) 
capabilities have been included thanks to the implementation of a cloud 
service based on MQTT protocol [30–33] which allows storage, distri-
bution, and classification of the patient’s data. 

2. Materials and methods 

2.1. Experimental 

2.1.1. Simulation, fabrication, and characterization tools 
For thermal characterization of the radiation sensor, the device was 

entered into a climatic test chamber VCL4006 (Vötoshch Industri-
etechnik, Germany) and the electrical characterization was conducted 
using a custom-developed reader based on 12-bit ADC model MCP3208 
(Microchip, Chandler, Arizona, USA). Numerical simulations for the 
optimization of the tag antenna design were conducted using ADS, i.e., 
Advanced Design Simulator software (Keysight Technologies, Santa 
Clara, CA, USA). The final prototype of the PCB (Printed Circuit Board) 
was fabricated on 1.5-mm FR-4 substrate. For NFC antenna character-
ization, the precision impedance analyzer model Agilent 4294 A (Key-
sight Technologies, Santa Clara, California, USA) was employed. 
Android Studio 2021.1.1 was the IDE employed to program the custom 
smartphone application. The app was designed and validated with 
Android 10 QKQ1 (API level 29). However, the app supports diverse 
Android versions since the lowest API level supported is 21 (Android 
5.0). The smartphone model used as the NFC reader was the Xiaomi 
Redmi Note 9 Pro (Xiaomi, Beijing, China). 

2.1.2. Sample preparation and irradiation setup 
A Linear Accelerator (LINAC) Siemens Artiste (SiemensAG, Ger-

many) was employed to irradiate two replicas of the prototype based on 

the commercial p-type MOSFET ZVP3306 (Diode Inc., Plano, TX, USA). 
The total area of each tag was irradiated in sessions of 3 Gy with a 20 ×
20 cm2 field and 6 MV photon beams. The isocenter of the irradiation 
source was placed on the zone of the tag where the pMOSFET sensor is 
located. To measure in electronic equilibrium condition in the sensor, a 
1.5-cm thick solid water layer was located on top of the PCBs, and 5 cm 
thick solid water was placed below it. For this purpose, a 3D-printed 
holder for the boards was designed and fabricated with PLA using a 
3D printer model Creality cr-x (Shenzhen Creality 3D Technology Co., 
Ltd, Shenzhen, China). With this methodology, a total dose of 57 Gy was 
irradiated for the first tag and 42 Gy for the second tag. 

To test and evaluate the response of the DosiTag, the obtained results 
have been compared with our previously developed NFC dosimeter [7] 
as well as with our desktop dose reader [34] using the same pMOSFET as 
radiation sensor. As usual in this kind of sensors, to evaluate the incre-
ment of the threshold voltage shift, a constant current drain and a diode 
configuration (drain short-circuited with the gate) were used to measure 
this increment on the source terminal of the transistor [8,10,35–38]. 

2.2. DosiTag design 

2.2.1. System architecture 
The functional block diagram of the dosimetric system is depicted in  

Fig. 1a, including all the functional blocks of the NFC tag; the wireless 
connection to the smartphone through the NFC link for RF power supply 
and communication; and the IoT integration by means of the cloud ar-
chitecture based on the MQTT broker/client protocol. As shown in 
Fig. 1a, the NFC sensing tag consists of an RFID chip and antenna, an 
ultra-low power MCU to acquire the measurements, a voltage regulator 
to provide a regulated voltage reference for the ADC of the microcon-
troller, a charge pump to double this voltage as supply voltage, a current 
source, conditioning circuitry, a temperature sensor, an instrumentation 
amplifier (IA) to increase the resolution of the system, and the radiation 
sensor module, composed of a pMOSFET and a JFET. The different 
components of the tag and the IoT integration will be explained in the 
next subsections. On the other hand, Fig. 1b shows a photograph of the 
final DosiTag prototype (dimensions of 76 ×40 mm2) with the physical 
functional blocks. 

2.2.2. RFID chip and antenna 
The NFC chip M24LR64E (STMicroelectronics, Geneva, Switzerland) 

along with an ad-hoc designed planar antenna was used as energy 
harvester to enable the development of battery-less design, data storage, 
and communication between the MCU and the smartphone [39]. This 
NFC chip operates in the High Frequency band (HF, 13.56 MHz) and it 
includes an I2C serial communication port. Since this RFID chip does not 
directly provide a regulated voltage in the energy harvesting mode, a 
low dropout voltage regulator (LDO) (2.5 V regulator 
MCP1824T-2502E, Microchip, Chandler, Arizona) was included to 
supply the system. When correctly coupled to the reader (i.e., the user’s 
smartphone), the NFC chip is able to provide a maximum current that is 
selectable (300 µA, 1, 3, or 7 mA) according to the harvested electro-
magnetic (EM) field, which is enough to power the additional circuitry. 
In the case that the EM field is not sufficient to provide the required 
power, the chip cuts off the output voltage so that the system does not 
turn on. This is an advantage in terms of repeatability since the delivered 
power to the system will be always the same as long as the coils of the tag 
and the smartphone are correctly overlapped. 

The custom-designed tag antenna is a planar coil based upon the 
internal capacitance of the M24LR64E NFC chip (Fig. 1b). This antenna 
has a dual purpose, since it is used to establish bidirectional communi-
cation with the smartphone and also to harvest the RF energy to supply 
the tag. The internal tuning capacitor of the NFC chip has a value of 
27.5 pF at 13.56 MHz. Therefore, we require a coil of 5.01 μH to get a 
parallel LC resonant circuit at the desired HF frequency. The final di-
mensions and number of turns obtained after numerical simulations 
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were 38 mm × 19 mm and N = 10 turns, being 250 µm both the inter-
spacing between the conductor lines and their width. 

2.2.3. Microcontroller unit 
An ultra-low power microcontroller PIC16LF1703 (Microchip, 

Chandler, Arizona) is used to acquire the measurements from the 
different sensors, storing the data in the EEPROM memory of the NFC 

chip through the I2C port. The microcontroller uses three ADCs for this 
task, whose range is the same than the supply voltage range, i.e., from 
0 up to 2.5 V. Firstly, after setting the cut off frequency of the Low Pass 
Filter (LPF) in the amplification stage, the direct pMOSFET source 
voltage is measured, and subsequently the amplified source voltage is 
measured. For this purpose, conditioning circuitry was designed to 
adapt the source voltage of the sensor to the common-mode rejection 

Fig. 1. (a) Block diagram of the NFC tag including the radiation sensor module; (b) Photograph of the fabricated NFC tag with the functional blocks and dimensions.  

A. Pousibet-Garrido et al.                                                                                                                                                                                                                     



Sensors and Actuators: A. Physical 354 (2023) 114295

4

ratio of an ultra-low power rail-to-rail instrumentation amplifier INA321 
(Texas Instruments, Dallas, TX, USA). A Pulse Waveform Modulation 
(PWM) signal is generated with the Capture/Compare/PWM (CCP) 
module of the MCU, which is low-pass filtered (see Fig. 1a) to assure a 
constant voltage, restart the measurement and prevent the output 
voltage from trespassing the ADC range limits [28]. Finally, since 
MOSFET threshold voltage is highly temperature-dependent, the tem-
perature sensor MCP9701A (Microchip, Chandler, Arizona) was 
included in the tag design to monitor the temperature with a resolution 
of 0.125 ◦C, which is used for thermal compensation (see Section 3.2). 

2.2.4. Signal conditioning and power management 
The most straightforward way to measure the threshold voltage shift 

of the transistor is to bias it at constant drain current and to set up the 
pMOSFET in diode configuration (short-circuiting drain and gate) [36, 
13,28]. For this purpose, the tag conditioning circuit includes a current 
source and a buffer to avoid the loading from the conditioning circuitry. 
The implementation of the current source was conducted using the 
temperature-compensated circuit LM334 from Texas Instruments (Dal-
las, TX, USA) using the topology suggested by the manufacturer to 
reduce the output current thermal drift [7]. The buffer is a 
general-purpose bipolar transistor BC848C (Infineon AG, Germany), 
whose role is to prevent the subtraction of the drain current by the 
emitter resistor and the ADC, and it is also used for thermal drift 
correction, as shown in the previous work [7]. The selected collector 
current is dependent on the value of the collector resistor, the source 
voltage (Vs) and the selected drain current, all of which will be described 
in the next subsections for the pMOSFET ZVP3306. The output voltage 
of the conditioning circuit must be between 0 and 2.5 V to accommodate 
the ADC input voltage range. However, to take advantage of the Com-
mon Mode Rejection Ratio (CMRR) of the INA321 instrumentation 
amplifier and to achieve constant gain, the output must lie approxi-
mately between 0.8 and 1.5 V. Thus, a reference voltage (Vref ) was 
included to decrease the voltage value before the ADC input and the Vin+
of the IA. In accordance with the conditioning circuitry shown in Fig. 1a, 
the ADC input voltage and the instrumentation amplifier is given by Eq. 
(1): 

VADC I.A
in = VS − VBE − Vref (1)  

where VS (sensor source voltage), VBE(bipolar transistor base-emitter 
voltage), and Vref voltages are shown in Fig. 1a. The chosen reference 
voltage was the model LM385–1.2 from Texas Instruments, which is 
capable of providing a stable voltage of 1.23 V with a thermal drift of 
typically 20 ppm/◦C. The major constraint is that the reverse current 
needs to lie in the range from 10 μA to 20 mA. Considering that the 
collector voltage of the buffer was around 2.1 V at the selected bias 
current of the ZVP3306, that is, approximately 0.9 V after the Vref , a 
7.5 kΩ collector resistor was included to ensure a reverse current of 120 
μA, which lies within the adequate range of this reference voltage. 

On other hand, the instrumentation amplifier INA321 was included 
to increase the accuracy and resolution of the system. The inverter input 
(Vin− ) is controlled by a PWM signal generated by the microcontroller 
and doubly low-pass filtered to ensure a constant voltage in the input 
[36,40]. The voltage after the conditioning circuitry is directly 
measured by the ADC of the microcontroller and is the non-inverter 
input (Vin+) of the IA (see Fig. 1a). The signal is amplified by a gain of 
45 and measured by other ADC input of the MCU. Thus, the resolution 
was considerably increased, obtaining 2.44 mV/count in the direct 
voltage source ADC channel and 0.05 mV/count in the amplified ADC 
channel (see Fig. 1a). It is worth mentioning that a voltage ripple below 
1 mV was obtained at the output of the INA321, which is lower than the 
accuracy of the ADC, so it does not affect the measurement. 

The energy harvested by the tag antenna is firstly rectified by the 
NFC chip and then regulated using the voltage regulator. The resulting 
power is finally used to supply the DC-DC voltage pump, which is based 

on the ADM660 IC (Analog Devices, USA). This IC was selected because 
of its low quiescent current of only 600 μA, and because its imple-
mentation only requires two external capacitors, thus implying a 
reduced number of components in the PCB and easier implementation. 
Thus, the regulated voltage of 2.5 V is augmented up to 5 V in order to 
achieve a higher maximum value of the drain-to-source voltage. 
Assuming the ADM660 has the efficiency of a usual DC-DC converter (80 
%) and taking into account the quiescent current of 600 μA and the 
voltage regulator MCP1824T-2502 quiescent current (120 μA), a total 
power around 3.3 mW must be provided by the M24LR64E IC. 

Finally, to supply the INA321 in the voltage range specified by the 
manufacturer (2.7–5.5 V), four 1N4148 diodes (Onsemi, Phoenix, Ari-
zona) were used to reduce the voltage from the charge pump down to 
3 V. In this way, when the instrumentation amplifier is saturated at high 
voltage, it does not exceed the input span of the microcontroller ADC. 

2.2.5. Sensor module 
The radiation sensor is based on the general-purpose DMOS tran-

sistor model ZVP3306, which we had already tested and evaluated with 
our desk reader unit [40]. The module sensor also includes a P-channel 
JFET that avoids the potential damage during the storage and irradia-
tion process caused by electrostatic discharge (Fig. 1a) by connecting the 
drain and source terminals of the pMOSFET. This configuration was 
validated in the previous NFC-based dosimeter [7] with the J175 JFET 
(Eindhoven, Netherlands), similar to the sensor module for the desk 
reader [36], where an N-channel JFET was used. However, for this work 
the J177 (NXP Semiconductors, Eindhoven, Netherlands) was chosen. In 
the present work, the gate was directly connected to the charge pump 
supply voltage, which was sufficient to disconnect the JFET. Finally, 
during the storage and irradiation period, the voltage in the gate of the 
JFET is 0 V, so the transistor is ON and prevents the electrostatic dis-
charges in the pMOSFET sensor. Moreover, this sensor module can be 
controlled by an output pin of the microcontroller to perform several 
measurements without the need to power the board multiple times. 

2.3. Software design 

2.3.1. Smartphone application 
The NFC chip M24LR64E-R is compliant with the Android NFC-V 

standard and compatible with the ISO15693 RFID specification. On 
this basis, the smartphone application was built on the ISO15693 
specification and uses specific NFC commands to communicate and 
control the device. The commands can be executed via RF by the 
smartphone or via I2C by a microcontroller. Fig. 2a, b show some 
screenshots of the application user interface. Before approaching the 
smartphone to the DosiTag, the user has to fill several fields of personal 
data related to the patient, as shown in Fig. 2a. Then, the next screen is 
shown (Fig. 2b), which is composed of text fields that show information 
such as the tag UID, ambient temperature, date of the measurement, 
duty cycle of the PWM for the IA, and direct and amplified voltage shift 
of the pMOSFET source. 

The user can now approach the smartphone to the DosiTag to trigger 
the NFC link. At this point, the system is powered by the EM field har-
vested from the smartphone and one second later the measurements of 
the temperature and the direct and amplified source voltage are taken by 
the microcontroller. 1024 measurements are taken at the maximum 
sample frequency of the ADC, averaged by the microcontroller and 
recorded in the NFC EEPROM to be subsequently sent to the smart-
phone. The delay of one second is necessary for the system to correctly 
stabilize so that the measurements are always taken at the same time. 
This is an important issue because an initial decay of the source voltage 
takes place when a pMOSFET is biased due to the activation of the 
interface state. We can minimize the effect of this decay by always using 
the same time during which the pMOSFET is biased prior to conducting 
the source voltage measurements. The acquired ADC measurements are 
read and displayed by the smartphone when the user presses the “READ” 
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button. This process must be repeated two times, before and after the 
irradiation, to calculate the increment of the voltage source. Finally, the 
source voltage shift is displayed on the screen. Once this process has 
been completed, the user can publish the final value of the voltage 
source shift in the MQTT broker to be read by another MQTT client to 
store and graph each patient’s data. 

3. Results and discussion 

3.1. NFC antenna performance 

The fabricated planar coil was characterized over the frequency 
before and after attaching the NFC chip. In the first case, the obtained 
inductance value and quality factor (Q) of the coil is shown in Fig. 3a. 
The inductance value at 13.56 MHz is 4.86 μH, which is very close to the 
desired inductance of 5.01 μH. The achieved quality factor is higher than 
50, adequate for an efficient energy harvesting. The LC resonant circuit 

Fig. 2. (a-b) Screenshots of the custom-designed Android application; (c) Experimental setup for NFC measurements.  

Fig. 3. (a) Measured inductance (L) and quality factor (Q) of the fabricated planar coil without the M24LR64E NFC chip; (b) Measured impedance and phase of the 
antenna with de M24LR64E chip attached. 
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is completed once the M24LR64E NFC chip is attached to the PCB. 
Consequently, a new frequency sweep was conducted to measure both 
the phase and impedance of the resonant circuit. As can be observed in 
Fig. 3b, the antenna resonates at a frequency of 13.62 MHz, close 
enough to the designed frequency of 13.56 MHz so that a parallel tuning 
capacitor was not necessary to adjust the frequency of resonance. 

3.2. Thermal dependence 

The designed circuitry for thermal compensation and conditioning is 
similar to the one shown in our previous NFC dosimeter unit [7] (see 
Fig. 1a). As in the previous work, to bias the device for reading out and 
reducing the thermal coefficient of the drain voltage, the BJT collector 
and pMOSFET drain currents were properly selected. A linear model is 
assumed for the thermal behavior as already assumed in previous works 
with good results [7]. Therefore, the thermal voltage drift can be 
expressed as follows: 

ΔVADC
in = αΔT,ΔVADC AMP

in = G • αΔT,ΔVS = αSΔT,ΔVBE = αBEΔT (2)  

where α is the thermal coefficient of the direct input voltage of the ADC, 
G • α is the thermal coefficient of the amplified ADC input voltage, αS is 
the thermal coefficient of the pMOSFET source voltage, and αBE is the 
linear temperature coefficient of the BJT base-emitter voltage. Since the 
thermal drift of the voltage reference is small, it can be neglected, so the 
thermal drift in the ADC voltage is given by the following Eq. (3): 

α = αS − αBE (3) 

Therefore, if αS and αBE are very close, the thermal coefficient of the 
input voltage of the ADC is greatly minimized. In a previous work [40], 
we characterized the thermal drift of the ZVP3306 for multiple currents. 
With these results, in the previous NFC reader [7] we used a current 
value of 220 μA for the ZVP3306 in the saturation region with the gate 
and source short-circuited, and collector current of the buffer of 30 μA to 
improve the thermal dependence. However, for this DosiTag, it has been 
necessary to readjust these currents due to the addition of the IA and the 
MCU. Finally, to improve the thermal dependence, we used a drain 
current of 190 μA for the ZVP3306 in the saturation region with the gate 
and source short-circuited, obtaining a thermal coefficient of αS 

= ( − 2.20 ± 0.12)mV/
◦C and a collector current for the buffer of 120 μA, 

so the thermal coefficient was αBE = ( − 2.21 ± 0.01)mV/
◦C. It should 

be noted that the temperature dependence of the LM334 current source 
was measured in the previous work [7] with a 12 kΩ resistor, a resis-
tance that is equivalent to the ZVP3306 at 220 μA. The experiment 
concluded with a very low thermal drift of 70 nA/◦C. 

To conduct the DosiTag thermal dependence characterization, the 
tag was powered up using a DC power source at 5 V and it was located 
inside the climate chamber, where the temperature was swept from 10 
up to 50 ◦C in increments of 5 ◦C. The source voltage of the pMOSFET 
transistor (VS), the amplified source voltage of the pMOSFET transistor 
(VS_AMP), and the emitter voltage of the bipolar transistor (VE) were 
measured and the corresponding linear temperature coefficients were 
calculated. The direct thermal coefficient was reduced from αS 

= ( − 1.76 ± 0.33)mV/
◦C down to (0.45 ± 0.08)mV/

◦C, which is in good 
agreement with our previous work [7]. If we normalize dividing by the 
gain the output signal of the IA, the thermal coefficient results in α =
(0.32 ± 0.05)mV/

◦C, which is considerably lower than the direct ther-
mal coefficient of the previous NFC dosimeter. The reduction of the 
thermal coefficient in the amplified channel is mainly due to the IA 
having a negative thermal dependence. Finally, a reduction of 75 % in 
the direct thermal coefficient and 82% in the amplified normalized 
thermal coefficient was obtained. 

3.3. Irradiation measurements 

Two replicas of the developed DosiTag system were irradiated using 

the experimental setup described in Section 2.1.2. The first one was used 
to check the durability and the resistance of the electronics against the 
ionizing radiation, and only measured the direct source voltage of the 
pMOSFET. It was experimentally checked that the system was still 
working properly after an irradiated dose of 57 Gy. In the second pro-
totype, the instrumentation amplifier was employed to improve the 
accuracy and the resolution of the dosimeter. In both cases, the source 
voltage was measured three minutes after each irradiation to minimize 
short-term fading effect. Therefore, this DosiTag has been designed in 
order to have one channel with lower resolution for the measurement of 
high doses (e.g., 10 Gy) and a channel with much higher resolution for 
the measurement of low doses (e.g., 3 Gy) so that the increase of the 
amplified source voltage does not exceed 0.7 V (see Section 2.2.4) as this 
is the range where the ADC and IA operate with higher linearity. As 
shown in Fig. 4, very good linearity was obtained in the increase of both 
the direct and amplified normalized source voltage as a function of the 
received dose. 

The obtained average sensitivity of the low-resolution channel (LRC) 
of the DosiTag unit was (4.35 ± 0.17) mV/Gy, while the sensitivity of 
the high-resolution channel (HRC) was (4.37 ± 0.04) mV/Gy with a 
resolution of 79 cGy and 2 cGy, respectively. The achieved results are in 
good agreement with the average sensitivity measured in previous 
studies of the DMOS transistor ZVP3306 [13,41] including the previous 
NFC dosimeter [7], which was (4.75 ± 0.15) mV/Gy with a resolution of 
17 cGy. This means that we have achieved an improvement of the res-
olution by a factor of 8. Finally, it should be noted that each sample 
plotted on the Fig. 4 is the mean of three measurements taken after each 
irradiation. 

Source voltage recovery after irradiation was studied using a new 
sample of the system. This prototype was irradiated in three batches of 
3 Gy, and after the last irradiation, the source voltage was measured 
every 10 min for two hours. According to Fig. 5, the source voltage 
decays with an average slope of (− 6.3 ± 0.4) µV/min, which is in 
agreement with a previous study [42]. This recovery implies a dose 
underestimation of (− 1.62 ± 0.06) mGy/min. Therefore, the error due 
to source voltage recovery can be considered negligible if the mea-
surement is performed in the first 10 min after irradiation. 

To evaluate the response of the DosiTag at low doses and to deter-
mine the system resolution, a set of 4 irradiation sessions of 50 mGy was 
performed. A thermal correction was applied using the thermal coeffi-
cient obtained in Section 3.2 and the temperature measured with the 
temperature sensor included in the prototype. In the last session (0.2 Gy 
in Fig. 6), the DosiTag was cooled by 1.7 ◦C before irradiation to study 
the thermal correction during irradiation. The obtained results are 
shown in Fig. 6, where thermal correction reduced the error due to the 
thermal shift in the last irradiation session, thus allowing the system to 
detect irradiation doses of 5 cGy. 

3.4. Advantages and limitations of the system 

As previously stated, DosiTag is an enhanced design of an earlier 
version of NFC dosimeter developed in our research group [7]. As a 
summary, Table 1 shows the main improvements and/or novelties of 
DosiTag system compared to the previous version. Apart from these 
advantages, the system also presents some limitations that deserves a 
mention. In particular, the inclusion of the amplification stage entails 
the inconvenience of the establishment time of the low pass filter for 
fixing the inverting input to the desired voltage. Therefore, the system 
must wait a minimum of one second before making the measurement. 
On the other hand, a correct alignment between the tag and the 
smartphone coils is required so that enough energy is harvested to power 
the system up. This means that the smartphone must be held in the 
correct position (i.e., correctly aligned with the tag and at a short dis-
tance) for at least one second while it is placed on the patient. 
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4. Conclusions 

A battery-less and wireless dosimetric system composed of an NFC 

tag with a pMOSFET-based dosimeter, a smartphone as the reader unit, 
and a cloud service based on MQTT protocol has been developed and 
evaluated in hospital facilities with potential application in dosimetry 

Fig. 4. Accumulated source voltage shift as a function of the measured dose. Data bar errors are smaller than symbols.  

Fig. 5. Recovery of the source voltage after irradiation after an irradiation of 9 Gy.  

Fig. 6. Accumulated source voltage shift as a function of the absorbed dose obtained in low-dose experiments: data without thermal correction (empty symbols), and 
data with thermal correction (solid symbols). Dashed line shows the linear fit of the data with thermal correction. 
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control of radiotherapy treatments. This DosiTag system is based on a 
previous NFC dosimeter that has been redesigned and improved in 
several aspects. In particular, the system resolution has been improved 
by a factor of 8 thanks to the use of an instrumentation amplifier. 
Moreover, the thermal drift has been further reduced using a commer-
cial bipolar buffer, obtaining a reduction of the thermal coefficient by 82 
%. The measurement process, data storage and cloud publication are 
conducted through a custom-developed smartphone application. The 
inclusion of the MQTT broker to upload the measured data enables the 
classification of the dosimetry data and the identification of the NFC 
reader unit used for each patient, thus allowing a personalized follow-up 
and individual control of the patients. The integration of the sensor 
module on the PCB allows the board to be encapsulated and sterilized. 
The dosimetric characterization was conducted using a LINAC in hos-
pital facilities, obtaining a sensitivity of (4.35 ± 0.17) mV/Gy for the 
low resolution channel and (4.37 ± 0.04) mV/Gy for the high resolution 
channel. The resolution of the LRC and HRC was 79 cGy and 2 cGy. The 
results are in good agreement with previous works and the system is still 
accurate after high radiation doses despite the entire area of the tag is 
irradiated. In conclusion, the achieved improved features of the devel-
oped DosiTag system support its potential use for clinical dose mea-
surement in radiotherapy treatments. 
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