1,146 research outputs found
Time-Reversal Symmetry in Non-Hermitian Systems
For ordinary hermitian Hamiltonians, the states show the Kramers degeneracy
when the system has a half-odd-integer spin and the time reversal operator
obeys \Theta^2=-1, but no such a degeneracy exists when \Theta^2=+1. Here we
point out that for non-hermitian systems, there exists a degeneracy similar to
Kramers even when \Theta^2=+1. It is found that the new degeneracy follows from
the mathematical structure of split-quaternion, instead of quaternion from
which the Kramers degeneracy follows in the usual hermitian cases. Furthermore,
we also show that particle/hole symmetry gives rise to a pair of states with
opposite energies on the basis of the split quaternion in a class of
non-hermitian Hamiltonians. As concrete examples, we examine in detail NxN
Hamiltonians with N=2 and 4 which are non-hermitian generalizations of spin 1/2
Hamiltonian and quadrupole Hamiltonian of spin 3/2, respectively.Comment: 40 pages, 2 figures; typos fixed, references adde
Delocalization induced by low-frequency driving in disordered superlattices
We study the localization properties of disordered semiconductor
superlattices driven by ac-fields. The localization length of the electrons in
the superlattice increases when the frequency of the driving field is smaller
than the miniband width. We show that there is an optimal value of the
amplitude of the driving field for which the localization length of the system
is maximal. This maximum localization length increases with the inverse of the
driving frequency.Comment: 5 pages, 4 figure
Superlattice Structures of Graphene based Nanoribbons
Based on first-principles calculations we predict that periodically repeated
junctions of armchair graphene nanoribbons of different widths form
superlattice structures. In these superlattice heterostructures the width and
the energy gap are modulated in real space and specific states are confined in
certain segments. Orientation of constituent nanoribbons, their width and
length, the symmetry of the junction are the structural parameters to engineer
electronic properties of these quantum structures. Not only the size
modulation, but also composition modulation, such as periodically repeated,
commensurate heterojunctions of BN and graphene honeycomb nanoribbons result in
a multiple quantum well structure. We showed that these graphene based quantum
structures can introduce novel concepts to design nanodevices.Comment: amended versio
Photoassisted sequential resonant tunneling through superlattices
We have analyzed theoretically the photoassisted tunneling current through a
superlattice in the presence of an AC potential. For that purpose we have
developed a new model to calculate the sequential resonant currrent trhough a
superlattice based in the TRansfer Hamiltonian Method. The tunneling current
presents new features due to new effective tunneling chanels coming from the
photoside bands induced by the AC field. Our theoretical results are in good
agreement with the available experimental evidence.Comment: Revtex 3.0 4 pages, 4 figures uuencoded compressed tar-fil
Bloch oscillations in Fermi gases
The possibility of Bloch oscillations for a degenerate and superfluid Fermi
gas of atoms in an optical lattice is considered. For a one-component
degenerate gas the oscillations are suppressed for high temperatures and band
fillings. For a two-component gas the Landau criterion is used for specifying
the regime where Bloch oscillations of the superfluid may be observed. We show
how the amplitude of Bloch oscillations varies along the BCS-BEC crossover.Comment: 4 pages, 2 figures. explanations adde
High-field magnetoexcitons in unstrained GaAs/AlxGa1-xAs quantum dots
The magnetic field dependence of the excitonic states in unstrained GaAs/AlxGa1-xAs quantum dots is investigated theoretically and experimentally. The diamagnetic shift for the ground and the excited states are studied in magnetic fields of varying orientation. In the theoretical study, calculations are performed within the single band effective mass approximation, including band nonparabolicity, the full experimental three-dimensional dot shape and the electron-hole Coulomb interaction. These calculations are compared with the experimental results for both the ground and the excited states in fields up to 50 Tesla. Good agreement is found between theory and experiment
Phonon-induced optical superlattice
We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments
Effect of nonlinearity on the dynamics of a particle in dc field-induced systems
Dynamics of a particle in a perfect chain with one nonlinear impurity and in
a perfect nonlinear chain under the action of dc field is studied numerically.
The nonlinearity appears due to the coupling of the electronic motion to
optical oscillators which are treated in adiabatic approximation.
We study for both the low and high values of field strength. Three different
range of nonlinearity is obtained where the dynamics is different. In low and
intermediate range of nonlinearity, it reduces the localization. In fact in the
intermediate range subdiffusive behavior in the perfect nonlinear chain is
obtained for a long time. In all the cases a critical value of nonlinear
strength exists where self-trapping transition takes place. This critical value
depends on the system and the field strength. Beyond the self-trapping
transition nonlinearity enhances the localization.Comment: 9 pages, Revtex, 6 ps figures include
Ferroelectric materials for neuromorphic computing
Ferroelectric materials are promising candidates for synaptic weight elements in neural network hardware because of their nonvolatile multilevel memory effect. This feature is crucial for their use in mobile applications such as inference when vector matrix multiplication is performed during portable artificial intelligence service. In addition, the adaptive learning effect in ferroelectric polarization has gained considerable research attention for reducing the CMOS circuit overhead of an integrator and amplifier with an activation function. In spite of their potential for a weight and a neuron, material issues have been pointed out for commercialization in conjunction with CMOS processing and device structures. Herein, we review ferroelectric synaptic weights and neurons from the viewpoint of materials in relation to device operation, along with discussions and suggestions for improvement. Moreover, we discuss the reliability of HfO2 as an emerging material and suggest methods to overcome the scaling issue of ferroelectrics.11Ysciescopu
Suppression of the D'yakonov-Perel' spin relaxation mechanism for all spin components in [111] zincblende quantum wells
We apply the D'yakonov-Perel' (DP) formalism to [111]-grown zincblende
quantum wells (QWs) to compute the spin lifetimes of electrons in the
two-dimensional electron gas. We account for both bulk and structural inversion
asymmetry (Rashba) effects. We see that, under certain conditions, the spin
splitting vanishes to first order in k, which effectively suppresses the DP
spin relaxation mechanism for all spin components. We predict extended spin
lifetimes as a result, giving rise to the possibility of enhanced spin storage.
We also study [110]-grown QWs, where the effect of structural inversion
asymmetry is to augment the spin relaxation rate of the component perpendicular
to the well. We derive analytical expressions for the spin lifetime tensor and
its proper axes, and see that they are dependent on the relative magnitude of
the BIA- and SIA-induced splittings.Comment: v1: 5 pages, 2 figures, submitted to PRL v2: added 1 figure and
supporting content, PRB forma
- …