1,307 research outputs found

    Damage-free single-mode transmission of deep-UV light in hollow-core PCF

    Full text link
    Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagom\'e type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment significantly increases the coherence times of the internal state transfer due to an increase in beam pointing stability

    Suppression of 2D superconductivity by the magnetic field: quantum corrections vs superconductor-insulator transition

    Full text link
    Magnetotransport of superconducting Nd_{2-x}Ce_xCuO_{4+y} (NdCeCuO) films is studied in the temperature interval 0.3-30 K. The microscopic theory of the quantum corrections to conductivity, both in the Cooper and in the diffusion channels, qualitatively describes the main features of the experiment including the negative magnetoresistance in the high field limit. Comparison with the model of the field-induced superconductor-insulator transition (SIT) is included and a crossover between these two theoretical approaches is discussed.Comment: 5 pages, 4 figures. Submitted to JETP Letter

    Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Full text link
    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.Comment: 8 pages, 3 figure

    Properties of Neutral Charmed Mesons in Proton--Nucleus Interactions at 70 GeV

    Full text link
    The results of treatment of data obtained in the SERP-E-184experiment "Investigation of mechanisms of the production of charmed particles in proton-nucleus interactions at 70 GeV and their decays" by irradiating the active target of the SVD-2 facility consisting of carbon, silicon, and lead plates, are presented. After separating a signal from the two-particle decay of neutral charmed mesons and estimating the cross section for charm production at a threshold energy {\sigma}(c\v{c})=7.1 \pm 2.4(stat.) \pm 1.4(syst.) \mub/nucleon, some properties of D mesons are investigated. These include the dependence of the cross section on the target mass number (its A dependence); the behavior of the differential cross sections d{\sigma}/dpt2 and d{\sigma}/dxF; and the dependence of the parameter {\alpha} on the kinematical variables xF, pt2, and plab. The experimental results in question are compared with predictions obtained on the basis of the FRITIOF7.02 code.Comment: 9 pages, 9 figures,3 table

    Observation of narrow baryon resonance decaying into pKs0pK^0_s in pA-interactions at 70GeV/c70 GeV/c with SVD-2 setup

    Full text link
    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the Θ+\Theta^+-baryon, in a pKs0pK^0_s decay mode at 70GeV/c70 GeV/c on IHEP accelerator. The reaction pApKs0+XpA \to pK^0_s+X with a limited multiplicity was used in the analysis. The pKs0pK^0_s invariant mass spectrum shows a resonant structure with M=1526±3(stat.)±3(syst.)MeV/c2M=1526\pm3(stat.)\pm 3(syst.) MeV/c^2 and Γ<24MeV/c2\Gamma < 24 MeV/c^2. The statistical significance of this peak was estimated to be of 5.6σ5.6 \sigma. The mass and width of the resonance is compatible with the recently reported Θ+\Theta^+- baryon with positive strangeness which was predicted as an exotic pentaquark (uuddsˉuudd\bar{s}) baryon state. The total cross section for Θ+\Theta^+ production in pN-interactions for XF0X_F\ge 0 was estimated to be (30÷120)μb(30\div120) \mu b and no essential deviation from A-dependence for inelastic events (A0.7)(\sim A^{0.7}) was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some references added, minor typos correcte

    Measurement of the B0_s semileptonic branching ratio to an orbitally excited D_s** state, Br(B0_s -> Ds1(2536) mu nu)

    Get PDF
    In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.Comment: 7 pages, 2 figures, LaTeX, version with minor changes as accepted by Phys. Rev. Let
    corecore