415 research outputs found

    Volume-checking tool

    Get PDF
    Tool, consisting of a graduated storage vessel and a control panel, can determine the amount of gas entrained by fluid in a closed system, the amount of fluid remaining in a dried system of known volume, or the volume of a container of unknown size

    Influence of chopped laser light onto the electronic transport through atomic-sized contacts

    Full text link
    This article reports on the influence of laser irradiation onto the electrical conductance of gold nanocontacts established with the mechanically controllable breakjunction technique (MCB). We concentrate here on the study of reversible conductance changes which can be as high as 200%. We investigate the dependence on the initial conductance of the contacts, the wavelength, the intensity and position of the laser spot with respect to the sample. Under most conditions an enhancement of the conductance is observed. We discuss several physical mechanisms which might contribute to the observed effect including thermal expansion, rectification and photon-assisted transport. We conclude that thermal expansion is not the dominating one.Comment: 20 pages with 7 figures; conference contribution on the 9th near field optics conference 2006 in Lausanne, Switzerland; accepted by the Journal of Microscop

    A nanomechanical resonator shuttling single electrons at radio frequencies

    Full text link
    We observe transport of electrons through a metallic island on the tip of a nanomechanical pendulum. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. We explain the I-V curve, which differs from previous theoretical predictions, with model calculations based on a Master equation approach.Comment: 5 pages, 4 jpeg-figure

    Swapping and entangling hyperfine coupled nuclear spin baths

    Get PDF
    We numerically study the hyperfine induced nuclear spin dynamics in a system of two coupled quantum dots in zero magnetic field. Each of the electron spins is considered to interact with an individual bath of nuclear spins via homogeneous coupling constants (all coupling coefficients being equal). In order to lower the dimension of the problem, the two baths are approximated by two single long spins. We demonstrate that the hyperfine interaction enables to utilize the nuclear baths for quantum information purposes. In particular, we show that it is possible to swap the nuclear ensembles on time scales of seconds and indicate that it might even be possible to fully entangle them. As a key result, it turns out that the larger the baths are, the more useful they become as a resource of quantum information. Interestingly, the nuclear spin dynamics strongly benefits from combining two quantum dots of different geometry to a double dot set up.Comment: 6 pages, 7 figure

    Microwave-assisted in situ laser dye incorporation into high sensitivity whispering gallery mode microresonators

    Get PDF
    Optical whispering gallery mode microresonators (WGM-μRs) are powerful sensitive components with many analytical applications. Here, spherical WGM-μRs have been synthesised in a single-step microwave (MW)-assisted heterophase polymerisation. The microresonators are based on poly(styrene) beads into which the organic lasing dye nile red was incorporated as gain medium in situ during the polymerisation. The particle diameter and diameter distribution of the synthesised particles were tuned in the range of around 200 nm up to 50 μm by adjusting the concentration between stabiliser poly-(N-vinyl pyrrolidone) (PVP) and monomer styrene, and the solvent composition in the dispersion process. Lower water content enabled the synthesis of spherical particles with large size polydispersity, from which WGM-μRs with a variety of diameters were selected. Microspheres with diameters ≳3.5 μm supported WGMs. The WGMs were excited through free space via the fluorescence of the laser dye. Pumping power levels <1 μW were sufficient to excite WGMs. WGM shifts of beads with diameter between ≈5 and 30 μm measured in air and water show a sensitivity up to 54 nm/RIU for the smallest particles. Dye doped WGM-μR in the low μm size range obtained by the MW-assisted polymerisation process with its versatility, low processing times and high yields opens new horizons for the applications of these systems as sensors

    Higher-order Abel equations: Lagrangian formalism, first integrals and Darboux polynomials

    Full text link
    A geometric approach is used to study a family of higher-order nonlinear Abel equations. The inverse problem of the Lagrangian dynamics is studied in the particular case of the second-order Abel equation and the existence of two alternative Lagrangian formulations is proved, both Lagrangians being of a non-natural class (neither potential nor kinetic term). These higher-order Abel equations are studied by means of their Darboux polynomials and Jacobi multipliers. In all the cases a family of constants of the motion is explicitly obtained. The general n-dimensional case is also studied

    The FLASHForward Facility at DESY

    Get PDF
    The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron laser. The plasma wave will be driven by high-current density electron beams from the FLASH linear accelerator and will explore both external and internal witness-beam injection techniques. The plasma is created by ionising a gas in a gas cell with a multi-TW laser system, which can also be used to provide optical diagnostics of the plasma and electron beams due to the <30 fs synchronisation between the laser and the driving electron beam. The operation parameters of the experiment are discussed, as well as the scientific program.Comment: 19 pages, 9 figure

    Form factors and photoproduction amplitudes

    Full text link
    We examine the use of phenomenological form factors in tree level amplitudes for meson photoproduction. Two common recipes are shown to be fundamentally incorrect. An alternate form consistent with gauge invariance and crossing symmetry is proposed.Comment: To be published in PR

    Low frequency current noise of the single-electron shuttle

    Get PDF
    Coupling between electronic and mechanical degrees of freedom in a single electron shuttle system can cause a mechanical instability leading to shuttle transport of electrons between external leads. We predict that the resulting low frequency current noise can be enhanced due to amplitude fluctuations of the shuttle oscillations. Moreover, at the onset of mechanical instability a pronounced peak in the low frequency noise is expected.Comment: 14 pages, 3 figures, 1 tabl
    corecore