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We numerically study the hyperfine induced nuclear spin dynamics in a system of two coupled
quantum dots in zero magnetic field. Each of the electron spins is considered to interact with an
individual bath of nuclear spins via homogeneous coupling constants (all coupling coefficients being
equal). In order to lower the dimension of the problem, the two baths are approximated by two
single long spins. We demonstrate that the hyperfine interaction enables to utilize the nuclear baths
for quantum information purposes. In particular, we show that it is possible to swap the nuclear
ensembles on time scales of seconds and indicate that it might even be possible to fully entangle
them. As a key result, it turns out that the larger the baths are, the more useful they become as
a resource of quantum information. Interestingly, the nuclear spin dynamics strongly benefits from
combining two quantum dots of different geometry to a double dot set up.

PACS numbers: 76.20.+q, 03.65.Bg, 76.60.Es, 85.35.Be

Introduction.–Electron spins confined in semiconduc-
tor quantum dots with an s-type conduction band, like
for example GaAs quantum dots, experience decoherence
through the spin-orbit interaction, and by the hyperfine
interaction with surrounding nuclear spins. With respect
to possible future solid state quantum computation sys-
tems utilizing the electron spin as the qubit1,2, these in-
teractions act as a source of decoherence. Due to the spa-
tial confinement of the electron spin in a quantum dot,
the relaxation time T1 induced by the spin-orbit interac-
tion is enhanced for low temperatures3,4. As the dephas-
ing time T2 due to the spin orbit interaction turns out
to be as long as the T1 time under realistic conditions5,
the major source of decoherence in semiconductor quan-
tum dots results from the hyperfine interaction6–10. For
related reviews the reader is referred to Refs.11–15. Simi-
lar situations arise in carbon nanotube quantum dots16,
phosphorus donors in silicon17 and nitrogen vacancies in
diamond18–20.

Apart from this detrimental effect of the hyper-
fine interaction, it provides a way to efficiently access
the nuclear spins by e.g. external degrees of free-
dom. This for example enables to built up an in-
terface between light and nuclear spins21,22, to po-
larize nuclear spin baths23–25, to set up long-lived
quantum26,27 and classical28 memory devices or to gen-
erate entanglement29.

In both of the aforementioned contexts it is of key im-
portance to understand the hyperfine induced spin dy-
namics. Here one has to distinguish between the case of
a strong and the case of a weak magnetic field applied to
the electron spins. In the first limit, the “flip-flop” terms
between the electron and the nuclear spins occurring in
the Hamiltonian are strongly suppressed. This allows to
treat them perturbatively or to even completely neglect
them, which strongly simplifies the calculations6,7,30–33.
In the absence of such an external magnetic field, how-
ever, many approximative techniques break down, and
one has to resort to exact methods. As explained in
Ref.34, in order to gain exact results, strong restrictions

on the initial state6,7, the size of the system11,35 or the
hyperfine coupling constants34,36–38 have to be made.

In the present paper we combine the second and the
third approach and focus on the advantages of the hy-
perfine interaction. To this end we consider a model of
two exchange coupled electron spins each of which is in-
teracting with an individual bath of nuclear spins. This
corresponds to the situation of spatially well-separated
quantum dots. Assuming the baths to be strongly po-
larized in opposite directions initially, we investigate, by
means of exact numerical diagonalization, in how far it
is possible to swap and entangle them. Usually exact
numerical diagonalizations are restricted to rather small
system sizes. In order to go beyond these limits, we re-
duce the dimension of the problem by approximating the
two baths by two single long spins. The spectral prop-
erties of the model described above have recently been
studied in Ref.36, where it has been shown that the spec-
trum of the Hamiltonian exhibits systematically degen-
erate multiplets. Motivated by these findings, below we
will distinguish between an inversion symmetric system,
showing the mentioned degeneracies, and a system with
broken inversion symmetry where such degeneracies are
absent.

The work presented in this paper complements the re-
sults of Ref.34, where we analytically studied the homo-
geneous coupling case for two electron spins coupled to
a common bath of nuclear spins. Choosing the hyperfine
coupling constants to be equal to each other of course has
to be regarded as a rough approximation. However, it has
been shown that already such simple models can yield
concrete predictions and realistic results21,22,24,29,34.

Model and methods.–The Hamiltonian of two exchange
coupled electron spins, each of which is interacting with
an individual bath of nuclear spins via the hyperfine in-
teraction reads

H = ~S1 ·
N1∑
i=1

A1
i
~Ii1 + ~S2 ·

N2∑
i=1

A2
i
~Ii2 + Jex~S1 · ~S2, (1)

where ~Sj are the electron and ~Iij are the nuclear spins
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the j-th electron spin interacts with. For simplicity we
will consider N1 = N2 =: N in what follows. The param-
eter Jex denotes an exchange coupling between the two
electron spins, which can experimentally be adjusted in
a range of [−10−3, 10−3]eV, and A1

i , A2
i are the hyperfine

coupling constants. In a realistic quantum dot these are
proportional to the square modulus of the electronic wave
function at the sites of the surrounding nuclear spins. As
a typical example, in GaAs quantum dots the overall cou-

pling strength of the j-th electron spin Aj :=
∑N

i=1A
j
i is

of the order of
[
10−4, 10−5

]
eV.

Due to the spatial variation of the electronic wave
function, the hyperfine couplings are clearly inhomoge-
neous. However, in the following we consider them to be
equal to each other, meaning that Aj

i = Aj/N . Then
the Hamiltonian (1) conserves apart from the total spin
~J = ~S1 + ~S2 + ~I1 + ~I2, where ~Ij =

∑Nj

i=1
~Iij , also the

squares of the total bath spins ~I2j[
H, ~J

]
=
[
H, ~I2j

]
= 0. (2)

The first symmetry will be helpful for the exact numerical
diagonalizations of the Hamiltonian matrix11,35, through
which we will obtain the dynamics in the following. We
compute the time dependent density matrix by decom-
posing the initial state into energy eigenstates and ap-
plying the time evolution operator. Tracing out the elec-
tron degrees of freedom then yields the reduced density
matrix of the nuclear baths ρn(t) from which we can cal-
culate the time evolution of all observables. For details
the reader is referred to Ref.34.

In the following we will approximate each of the two

baths ~Ij by a single long spin. Let us briefly discuss
to which physical situation this corresponds. A general
state of a bath is a superposition of states from different
multiplets

|βj〉 =
∑
Ij ,mj

β
Ij ,mj

j |Ij ,mj〉, (3)

where the quantum numbers due to a certain Clebsch-
Gordan decomposition of the bath have been omitted.
The stronger the baths are polarized, the less multiplets
contribute to the sum in (3). Due to (2) no “cross terms”
between different multiplets contribute to the dynamics.
Considering very high polarizations we can therefore ap-
proximate (3) by |βj〉 = |I,mj〉. All dynamics is then
captured by the following simple Hamiltonian, to which
we refer to as the long spin approximation (LSA) Hamil-
tonian:

HLSA =
A1

2I
~S1 · ~I1 +

A2

2I
~S2 · ~I2 + Jex~S1 · ~S2 (4)

The form of the couplings Aj/2I results from the ob-
servation that the N bath spins can couple to I =
N/2, N/2−1, N/2−2, . . .. As we assume highly polarized
baths, we consider the maximal value I = N/2. Solving

FIG. 1: Nuclear spin dynamics for inhomogeneous (upper
panels) and homogeneous (lower panels) hyperfine couplings.
The bath state is initially randomly correlated11,35 and the
electron spin is pointing upwards. The left column shows the
case of N = 30 and a bath polarization of 0.93 while in the
right column we have N = 12 and a polarization of 0.33. Even
in the latter case the bath dynamics for inhomogeneous and
homogeneous couplings are still quite similar to each other.

for N then yields the coupling constants in (4). For later
convenience we define A := A1 +A2.

High nuclear polarizations of up to 80% have been ex-
perimentally demonstrated in Refs.43–46. In particular,
Ref.46 also discussed the possibility of polarizing two nu-
clear ensembles in different directions. However, a ques-
tion concerning the LSA arises from assuming the cou-
plings to be homogeneous: As demonstrated in Ref.34,
this approximation is a good one for short time scales,
whereas for longer times artifacts occur. As the nuclear
dynamics are slow, it has to be questioned in how far
homogeneous couplings are adequate in order to evaluate
nuclear spin dynamics. As a result from our numerics, we
find that the influence of inhomogeneities is suppressed
with increasing polarization. This is illustrated Fig. 1
where we compare cases of high and low polarization.
Even in the latter case the dynamics for both types of
couplings are very close to each other, justifying the ne-
glection of inhomogeneities at high polarizations.

Swapping nuclear spin polarizations.–We will now eval-
uate the nuclear spin dynamics within the LSA and ex-
plore the possibility of swapping the state of oppositely
polarized spin baths, 〈Iz1 〉 = −〈Iz2 〉. Our initial state |α〉
will be a simple product state between the electron and
the nuclear state |α〉 = |αe〉|αn〉. Since both baths are
spatially well separated, the initial nuclear state is again
a product state of the two long spins. In what follows,
we will always work in subspaces of fixed Jz =: M where
only the z-component has a non-zero expectation value
〈Izj (t)〉. Moreover, we will assume the z-component of
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FIG. 2: The nuclear baths are considered to consist of spins
with length (1/2). The frame marks the LSA system with
the smallest possible bath spin length I = 1/2. Here the
dynamics of all four spins are highly coherent provided the
values of all couplings are close to each other, motivating the
condition (5) (see text).

FIG. 3: Nuclear spin dynamics for Jex/(A/2I) = 3.5, ∆ = 0
and |α〉 = (1/

√
13) (2|⇑⇓〉+ 3|⇓⇑〉) |M − I, I〉. The upper

panel shows data data I = 80 and M = 0 where the expecta-
tion values 〈Izj (t)〉 decay rapidly to zero. In the bottom panel
we consider I = 1500 and M = 159 where an almost complete
swap of the nuclear spins is observed.

the total electron spin to be initially zero, i.e. the spins
are antiparallel. Similar results as to be presented below
are obtained for more general initial states of the electron
spin system.

More importantly, we will concentrate on exchange
couplings being of the same order of magnitude as the
hyperfine coupling strength,

Jex/(A/2I) ≈ 1, (5)

meaning that the two electron spins are coupled as
strongly to each other as they are coupled to the bath
spins. This is motivated by the following observation.
Let us consider (4) for the smallest possible value, I =
1/2. As shown by elementary numerics, the dynamics of
all four spins are, under the condition (5), highly coher-
ent, and the nuclear spin states can nicely be swapped,
i.e. at the end of the process the expectation values
〈Izj (t)〉 are, to a very good degree of accuracy, exchanged

as compared to the initial state. Let us now consider the
two baths in the original model (1) to consist of spins with
length (1/2), as already assumed for the derivation of the
couplings in (4). As depicted in Fig. 2, the complete sys-
tem can now be regarded as set of I = 1/2 models. Thus,
from a heuristic point of view, the biggest chance to swap
the full baths exists if all the subsystems are swapped.
Hence, the exchange coupling has to be of the order of
the coupling between the electron and the bath spins for
any subsystem. For homogeneous couplings within the
baths, this means that Jex ≈ A/N , which translates into
(5) for the LSA, as explained above.

However, on the first sight, it does not seem to be
possible to swap the initially antiparallel nuclear spins
I > 1/2, even if the condition (5) is fulfilled. This is
demonstrated in the upper panel of Fig. 3, where we
consider I = 80, Jex/(A/2I) = 3.5 and a zero “detun-
ing” ∆ := A2 − A1 = 0. This corresponds to a situation
in which the two quantum dots have the same geome-
tries. We choose the comparatively generic electron spin
state |αe〉 = (1/

√
13) (2|⇑⇓〉+ 3|⇓⇑〉) (similar results oc-

cur for other choices) and plot the dynamics for antiparal-
lel nuclear spin configurations with the maximal possible
z components |αn〉 = |−I, I〉. As seen from the figure,
the expectation values of the bath spins decrease quite
rapidly to zero and are far away from being properly
swapped.

Surprisingly, this apparently negative result turns out
to be related to the size of the baths in the following
sense: Consider an initial state with the electron spins
being in an arbitrary linear combination of |⇑⇓〉, |⇓⇑〉 and
a nuclear state |Iz1 , Iz2 〉 fulfilling, say, Iz1 < 0, Iz2 > 0 with
|Iz1 | < |Iz2 |, i.e. the “magnetization” Mr := M/(2I + 1)
is nonzero, Mr = (|Iz2 | − |Iz1 |)/(2I + 1) 6= 0. Here we
find that for magnetizations larger than a certain “crit-
ical” value M c

r (slightly depending on the electron spin
state) the expectation value 〈Iz1 (t = 0)〉 is, to a an ex-
cellent degree of accuracy, completely reversed. As a
representative example, in the left panel of Fig. 4 we
plot the quantity 〈Iz1 (t)〉 for I = 200 with, as before,

|αe〉 = (1/
√

13) (2|⇑⇓〉+ 3|⇓⇑〉) as initial electron spin
state. We consider two different initial nuclear states
|αn〉 = |M − I, I〉, where the corresponding value of Mr

is in one case exactly at, in the other case lower than the
critical M c

r at the given nuclear spin length. In the latter
case the reversal of 〈Iz1 (t)〉 is slightly incomplete.

It is now a key observation that M c
r (I) strongly de-

creases with increasing spin length I. This is demon-
strated in the right panel of Fig. 4 for spin lengths up to
I = 600, where a clear power law scaling is found:

M c
r ≈ e−

1
2 · I− 1

3 (6)

Hence, for a large enough value of I the magnetization
M c

r will be so close to zero that, up to irrelevant correc-
tions, antiparallel nuclear spin configurations can indeed
be swapped. To give a quantitative example, for I = 106

(as typical for the nuclear spin bath of GaAs quantum
dots) the above power law leads to M c

r = 0.006 implying
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FIG. 4: Left panel: 〈Iz1 (t)〉 for Jex/(A/2I) = 3.5,
∆ = 0 and I = 200. The initial state is |α〉 =
(1/
√

13) (2|⇑⇓〉+ 3|⇓⇑〉) |M − I, I〉 where two values of the
magnetization Mr = M/(2I + 1) are considered; Mr = Mc

r =
0.11 corresponds to the critical value at I = 200. The verti-
cal lines are guides to the eye indicating the value needed for
a complete reversal of 〈Iz1 (t)〉. Right panel: Mc

r versus spin
length I for the same initial state as in the left panel: The fit
results in a power-law decrease Mc

r (I) = e−0.5I−0.33. Thus,
for large enough spin baths antiparallel nuclear spin configu-
rations can, to an excellent degree of accuracy, be swapped.

FIG. 5: Left panel: Reversal of 〈Iz1 (t)〉 for the same situa-
tion as in Fig. 4 left panel, but ∆ = −1.2A and Mr = 0.09:
Breaking inversion symmetry facilitates swapping the nu-
clear states. Right panels: Swap time τ at ∆ = 0 and
Jex/(A/2I) = 3.5 as a function of I (upper panel), and at
I = 200 as a function of (Jex/(A/2I)) (lower panel). In the
upper case we find a power law as τ = e0.015I1.19 (hI/πA), in
the lower case τ = e7.51 [Jex/(A/2I)]−1.003 (hI/πA).

that baths with Iz1 = −0.988Iz2 can be swapped. Finally,
in the bottom panel of Fig. 3 we plot 〈Iz1 (t)〉 and 〈Iz2 (t)〉
for I = 1500 (which is about the largest system size ac-
cessible to our numerics): Obviously we are very close to
a full swap.

Moreover, the performance of such a swap process can
significantly be further improved by departing from the
symmetric case ∆ = A1 −A2 = 0, i.e. considering differ-
ent geometries for the two quantum dots: The left panel
of Fig. 5 shows 〈Iz1 (t)〉 for the same situation as in the left
panel of Fig. 4, but ∆ = −1.2A and Mr = 0.09 (which
is lower than M c

r = 0.11 found before for ∆ = 0). As
seen, 〈Iz1 (t = 0)〉 is still fully reversed. Interestingly, this
result turns out to be rather independent of the precise
value of ∆ 6= 0 (including its sign), suggesting that the
observed increase of “swap performance” goes back to
some qualitative change in the dynamical properties. In
fact, as shown in Ref.36, the spectrum of inversion sym-
metric systems exhibit a macroscopically large subspace
of energetically degenerate multiplets. Although the ini-
tial states considered throughout this manuscript lie in
energy quite far away from those degenerate levels, it is
an interesting question to what extend both observations
are related.

Finally, in the right panels of Fig. 4 we analyze the
duration τ of the swap process as a function of the spin
length I as well as the ratio Jex/(A/2I) for again ∆ = 0.
In both cases we find power law dependencies leading for
a realistic system size of I = 106 to a swap time of τ of
a few ten seconds.

Entangling the nuclear baths.– In order to measure the
entanglement between the long bath spins, we utilize the
(logarithmic) negativity L defined by40,41

L = log2

(
‖ρ1n‖1

)
, (7)

where ‖.‖1 denotes the trace norm ‖A‖1 = Tr(
√
A+A),

and ρ1n is the partial transpose of ρn with respect to the

first spin ~I1. Since

‖ρ1n‖1 = 1 + 2|
∑
i

E<
i | , (8)

where E<
i denote the eigenvalues smaller than zero, the

negativity essentially measures in how far the partial
transpose fails to be positive, indicating non-classical
correlations42.

In order to evaluate the dynamics of the negativity,
ρ1n has to be diagonalized in each time step considered.
This is a numerical effort which restricts us to system
sizes somewhat smaller than considered before. The left
panels of Fig. 6 show the entanglement dynamics for two
spin lengths I = 20, 80 at comparatively high polariza-
tion Mr = 0.8 and ∆ = 0. The initial state is the same
as used before, |α〉 = (1/

√
13) (2|⇑⇓〉+ 3|⇓⇑〉) |M − I, I〉.

In both cases the dynamics are rather similar to each
other: A rapid increase of the negativity is followed by
a more or less regular oscillation around a mean value
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FIG. 6: Left panels: Negativity L(t) for I = 20, 80 and
Mr = 0.8, Jex/(A/2I) = 3.5, ∆ = 0. Right panel: Maximal
relative negativity L200

r in the time interval [0, 200](hI/πA) as
a function of spin length I for otherwise identical parameters.
We find a clearly increasing curve, indicating that for large
enough sizes, the baths can be fully entangled.

which increases with the spin length I. In particular, the
negativity never returns to zero.

In order to quantify these observations we introduce
a relative negativity Lr = L/Lmax, where Lmax =
log2 (2I + 1) is an upper bound of L (cf. Ref.47), and an-
alyze the maximum L200

r of this quantity attained within
a fixed interval [0, 200](hI/πA). The results are plot-
ted in the right panel of Fig. 6. While the spin lengths
achievable here are too small to allow for a quantitatively
meaningful fit, the data still shows a significant growth
with increasing I (suggesting, in fact, a power law). This
observation implies that, similarly as for swapping nu-
clear spin states, also entangling spin baths benefits from
large bath sizes. We note that this effect is not due to
the simple growth of the reduced density matrix with in-
creasing I since we are considering the relative negativity
where such influences are scaled out. On the other hand,
by the same argument, the maximal relative negativity
should decrease with increasing magnetization at fixed I;
an example for this behavior is shown in the left panel of
Fig. 7.

In the right panel of Fig. 7 we finally demonstrate
the influence of a non-zero detuning for different spin
lengths and magnetizations. Similarly to the results re-

garding a nuclear swap, the entanglement is enhanced by
a non-zero detuning with its precise value being again of
minor importance. This supports the conjecture that the
systematic degeneracy reported in Ref.36 has a clear dy-
namical signature. Interestingly, breaking the inversion
symmetry has stronger influence for higher magnetiza-
tion.

Conclusions.–In summary we have studied the spin

FIG. 7: Left panel: Maximal relative negativity L200
r versus

Mr for I = 15, ∆ = 0 and the same initial state as in Fig. 6.
Right panel: L200

r as a function of the detuning ∆ for various
parameters. The precise value of the detuning is again of no
particular importance.

and entanglement dynamics of the nuclear baths in a
double quantum dot. Each of the two electron spins was
considered to interact with an individual bath via ho-
mogeneous couplings. In order to lower the dimension
of the problem, both baths have been approximated by
long spins. We focused on the virtue of the hyperfine in-
teraction and regarded the electron spins as an effective
coupling between the baths. We demonstrated that it is
possible to swap them if their size is large enough, and
provided strong indication that, under the same condi-
tions, it might be even possible to fully entangle them.
Surprisingly, it turns out to be advantageous to use dots
of different geometry (enabling for ∆ 6= 0) to built up
the double quantum dot.
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via SFB 631.
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