22,452 research outputs found

    The network organisation of consumer complaints

    Full text link
    Interaction between consumers and companies can create conflict. When a consensus is unreachable there are legal authorities to resolve the case. This letter is a study of data from the Brazilian Department of Justice from which we build a bipartite network of categories of complaints linked to the companies receiving those complaints. We find the complaint categories organised in an hierarchical way where companies only get complaints of lower degree if they already got complaints of higher degree. The fraction of resolved complaints for a company appears to be nearly independent on the equity of the company but is positively correlated with the total number of complaints received. We construct feature vectors based on the edge-weight - the weight of an edge represents the times complaints of a category have been filed against that company - and use these vectors to study the similarity between the categories of complaints. From this analysis, we obtain trees mapping the hierarchical organisation of the complaints. We also apply principal component analysis to the set of feature vectors concluding that a reduction of the dimensionality of these from 8827 to 27 gives an optimal hierarchical representation.Comment: 9 pages, 6 figures, 1 tabl

    Flow Motifs Reveal Limitations of the Static Framework to Represent Human interactions

    Full text link
    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies suggest that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site (and of a sexual network), the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices con- taining only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices

    Physics reach of CERN-based SuperBeam neutrino oscillation experiments

    Get PDF
    We compare the physics potential of two representative options for a SuperBeam in Europe, studying the achievable precision at 1\sigma with which the CP violation phase (\delta) could be measured, as well as the mass hierarchy and CP violation discovery potentials. The first setup corresponds to a high energy beam aiming from CERN to a 100 kt liquid argon detector placed at the Pyh\"asalmi mine (2300 km), one of the LAGUNA candidate sites. The second setup corresponds to a much lower energy beam, aiming from CERN to a 500 kt water \v{C}erenkov detector placed at the Gran Sasso underground laboratory (730 km). This second option is also studied for a baseline of 650 km, corresponding to the LAGUNA candidate sites of Umbria and the Canfranc underground laboratory. All results are presented also for scenarios with statistics lowered by factors of 2, 4, 8 and 16 to study the possible reductions of flux, detector mass or running time allowed by the large value of \theta_{13} recently measured.Comment: 15 pages, 4 figure

    Stability of smectic phases in hard-rod mixtures

    Get PDF
    Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.Comment: 14 pages, 16 figures. To appear in JC
    corecore