213 research outputs found
Effect of FET geometry on charge ordering of transition metal oxides
We examine the effect of an FET geometry on the charge ordering phase diagram
of transition metal oxides using numerical simulations of a semiclassical model
including long-range Coulomb fields, resulting in nanoscale pattern formation.
We find that the phase diagram is unchanged for insulating layers thicker than
approximately twice the magnetic correlation length. For very thin insulating
layers, the onset of a charge clump phase is shifted to lower values of the
strength of the magnetic dipolar interaction, and intermediate diagonal stripe
and geometric phases can be suppressed. Our results indicate that, for
sufficiently thick insulating layers, charge injection in an FET geometry can
be used to experimentally probe the intrinsic charge ordering phases in these
materials.Comment: 4 pages, 4 postscript figure
Theory of the Quantum Hall Smectic Phase II: Microscopic Theory
We present a microscopic derivation of the hydrodynamic theory of the Quantum
Hall smectic or stripe phase of a two-dimensional electron gas in a large
magnetic field. The effective action of the low energy is derived here from a
microscopic picture by integrating out high energy excitations with a scale of
the order the cyclotron energy.The remaining low-energy theory can be expressed
in terms of two canonically conjugate sets of degrees of freedom: the
displacement field, that describes the fluctuations of the shapes of the
stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and
improved Introduction. Final version as it will appear in Physical Review
Moisture susceptibility of high and low compaction dry process crumb rubber modified asphalt mixtures
The field performance of dry process crumb rubber-modified (CRM) asphalt mixtures has been reported to be inconsistent with stripping and premature cracking on the surfacing. One of the concerns is that, because achieving field compaction of CRM material is difficult due to the inherent resilient nature of the rubber particle, nonuniform field compaction may lead to a deficient bond between rubber and bitumen. To assess the influence of compaction, a series of CRM and control mixtures was produced and compacted at two levels: 4% (low, optimum laboratory compaction) and 8% (high, field experience) air void content. The long-term durability, in regard to moisture susceptibility of the mixtures, was assessed by conducting repeated moisture conditioning cycles. Mechanical properties (stiffness, fatigue, and resistance to permanent deformation) were determined in the Nottingham Asphalt Tester. Results indicated that compared with conventional mixtures, the CRM mixtures, regardless of compaction effort, are more susceptible to moisture with the degree of susceptibility primarily depending on the amount of rubber in the mixture, rather than the difference in compaction. This behavior is different from that of conventional mixtures in which, as expected, poorly compacted mixtures were found to be more susceptible to moisture than were well-compacted mixtures
Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking
A field-theoretic description of the critical behaviour of the weakly
disordered systems is given. Directly, for three- and two-dimensional systems a
renormalization analysis of the effective Hamiltonian of model with replica
symmetry breaking (RSB) potentials is carried out in the two-loop
approximation. For case with 1-step RSB the fixed points (FP's) corresponding
to stability of the various types of critical behaviour are identified with the
use of the Pade-Borel summation technique. Analysis of FP's has shown a
stability of the critical behaviour of the weakly disordered systems with
respect to RSB effects and realization of former scenario of disorder influence
on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the functions for arbitrary
dimension of syste
Nanoscale Phenomenology from Visualizing Pair Formation Experiment
Recently, Gomes et al. [1] have visualized the gap formation in nanoscale
regions (NRs) above the critical temperature T_c in the high-T_c superconductor
Bi_2Sr_2CaCu_2O_{8+\delta}. It has been found that, as the temperature lowers,
the NRs expand in the bulk superconducting state consisted of inhomogeneities.
The fact that the size of the inhomogeneity [2] is close to the minimal size of
the NR [1] leads to a conclusion that the superconducting phase is a result of
these overlapped NRs. In the present paper we perform the charge and
percolation regime analysis of NRs and show that at the first critical doping
x_{c1}, when the superconductivity starts on, each NR carries the positive
electric charge one in units of electron charge, thus we attribute the NR to a
single hole boson, and the percolation lines connecting these bosons emerge. At
the second critical doping x_{c2}, when the superconductivity disappears, our
analysis demonstrates that the charge of each NR equals two. The origin of
x_{c2} can be understood by introducing additional normal phase hole fermions
in NRs, whose concentration appearing above x_{c1} increases smoothly with the
doping and breaks the percolation lines of bosons at x_{c2}. The last one
results in disappearing the bulk bosonic property of the pseudogap (PG) region,
which explains the upper bound for existence of vortices in Nernst effect [3].
Since [1] has demonstrated the absence of NRs at the PG boundary one can
conclude that along this boundary, as well as in x_{c2}, all bosons disappear.Comment: 4 pages, 1 figure. Good quality figure one can find in published
journal paper. Added 4 new references. Section of arXiv: 1010.043
Phase separation in the two-dimensional electron liquid in MOSFETs
We show that the existence of an intermediate phase between the Fermi liquid
and the Wigner crystal phases is a generic property of the two-dimensional pure
electron liqd in MOSFET's at zero temperature. The physical reason for the
existence of these phases is a partial separation of the uniform phases.
We discuss properties of these phases and a possible explanation of
experimental results on transport properties of low density electron gas in Si
MOSFET's. We also argue that in certain range of parameters the partial phase
separation corresponds to a supersolid phas e discussed in [AndreevLifshitz].Comment: 11 pages, 3 figure
Randomized controlled trial protocol to improve multisensory neural processing, language and motor outcomes in preterm infants.
Premature infants are at risk for abnormal sensory development due to brain immaturity at birth and atypical early sensory experiences in the Neonatal Intensive Care Unit. This altered sensory development can have downstream effects on other more complex developmental processes. There are currently no interventions that address rehabilitation of sensory function in the neonatal period.
This study is a randomized controlled trial of preterm infants enrolled at 32-36 weeks postmenstrual age to either standard care or standard care plus multisensory intervention in order to study the effect of multisensory intervention as compared to standard care alone. The study population will consist of 100 preterm infants in each group (total n = 200). Both groups will receive standard care, consisting of non-contingent recorded parent's voice and skin-to-skin by parent. The multisensory group will also receive contemporaneous holding and light pressure containment for tactile stimulation, playing of the mother's voice contingent on the infant's pacifier sucking for auditory stimulation, exposure to a parent-scented cloth for olfactory stimulation, and exposure to carefully regulated therapist breathing that is mindful and responsive to the child's condition for vestibular stimulation. The primary outcome is a brain-based measure of multisensory processing, measured using time locked-EEG. Secondary outcomes include sensory adaptation, tactile processing, speech sound differentiation, motor and language function, measured at one and two years corrected gestational age.
This is the first randomized controlled trial of a multisensory intervention using brain-based measurements in order to explain the causal effects of the multisensory intervention on neural processing changes to mediate neurodevelopmental outcomes in former preterm infants. In addition to contributing a critical link in our understanding of these processes, the protocolized multisensory intervention in this study is therapist administered, parent supported and leverages simple technology. Thus, this multisensory intervention has the potential to be widely implemented in various NICU settings, with the opportunity to potentially improve neurodevelopment of premature infants.
NIH Clinical Trials ( clinicaltrials.gov ): NCT03232931 . Registered July 2017
Analytical approach to bit-string models of language evolution
A formulation of bit-string models of language evolution, based on
differential equations for the population speaking each language, is introduced
and preliminarily studied. Connections with replicator dynamics and diffusion
processes are pointed out. The stability of the dominance state, where most of
the population speaks a single language, is analyzed within a mean-field-like
approximation, while the homogeneous state, where the population is evenly
distributed among languages, can be exactly studied. This analysis discloses
the existence of a bistability region, where dominance coexists with
homogeneity as possible asymptotic states. Numerical resolution of the
differential system validates these findings.Comment: To appear in Int. J. Mod. Phys.
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Tools and data services registry: a community effort to document bioinformatics resources.
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools
- …