33 research outputs found

    The influence of the context on mobility in neurological disorders: a wearable technology approach

    Get PDF
    The evaluation of mobility of patients with neurodegenerative diseases is crucial for healthcare professionals to tailor individual treatments and track disease progression. More individualized treatment has high potential to improve quality of life and mobility, and decrease fall risk. Nowadays mobility is mainly assessed during clinical examinations. However, with the rise of digital wearable technology, it has become possible to quantify mobility objectively in different settings. It is however unclear how mobility data collected in different settings, or more general different contexts, are associated with each other. Therefore, the aim of this dissertation was to understand the influence of context on mobility in older adults and patients with neurodegenerative disorders. The first study revealed that supervised capacity and unsupervised performance measures can substantially differ from each other. Consequently, both measures provide complementary information that can be used to gain a better understanding of daily function. In the second study an algorithm to quantify arm swing was developed and validated. This algorithm was used in the third study, which showed that the effect of dopaminergic medication on arm swing in patients with PD is influenced by medication state and task complexity. We therefore highly recommend to assess patients in different contexts to get a better understanding of the effect of treatment or the disease progression. To be able to assess mobility of patients in different context more wearable sensor-based algorithms are required. With the dataset introduced in the last paper, an indefinite number of additional movement and mobility algorithms can be developed and validated. The development and validation of these algorithms can further move our understanding of the influence of context on mobility forward

    Gait Analysis to Monitor Fracture Healing of the Lower Leg

    Get PDF
    Fracture healing is typically monitored by infrequent radiographs. Radiographs come at the cost of radiation exposure and reflect fracture healing with a time lag due to delayed fracture mineralization following increases in stiffness. Since union problems frequently occur after fractures, better and timelier methods to monitor the healing process are required. In this review, we provide an overview of the changes in gait parameters following lower leg fractures to investigate whether gait analysis can be used to monitor fracture healing. Studies assessing gait after lower leg fractures that were treated either surgically or conservatively were included. Spatiotemporal gait parameters, kinematics, kinetics, and pedography showed improvements in the gait pattern throughout the healing process of lower leg fractures. Especially gait speed and asymmetry measures have a high potential to monitor fracture healing. Pedographic measurements showed differences in gait between patients with and without union. No literature was available for other gait measures, but it is expected that further parameters reflect progress in bone healing. In conclusion, gait analysis seems to be a valuable tool for monitoring the healing process and predicting the occurrence of non-union of lower leg fractures

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As align ment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≥ 92%, precision ≥ 97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (−0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As alignment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≥92%, precision ≥97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (-0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    Quantification of Arm Swing during Walking in Healthy Adults and Parkinson's Disease Patients: Wearable Sensor-Based Algorithm Development and Validation

    Get PDF
    Neurological pathologies can alter the swinging movement of the arms during walking. The quantification of arm swings has therefore a high clinical relevance. This study developed and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with Parkinson's disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope data from the wearable sensors were used to calculate several arm swing parameters, including amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted with systematic errors ranging from 0.1 to 0.5° and from -0.3 to 0.3°/s, respectively. These extracted parameters were significantly different between healthy adults and PwP as expected based on the literature. An accurate algorithm was developed that can be used in both clinical and daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing parameters in healthy adults and patients with movement disorders such as Parkinson's disease

    Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients

    Get PDF
    Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson's disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson's disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%), slalom walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%), and turning (IC: recall [Formula: see text] 85%, precision [Formula: see text] 95%, F1 score [Formula: see text]91%; FC: recall [Formula: see text] 84%, precision [Formula: see text] 95%, F1 score [Formula: see text]89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events

    Scoring the Sit-to-Stand Performance of Parkinson's Patients with a Single Wearable Sensor

    Get PDF
    Monitoring disease progression in Parkinson's disease is challenging. Postural transfers by sit-to-stand motions are adapted to trace the motor performance of subjects. Wearable sensors such as inertial measurement units allow for monitoring motion performance. We propose quantifying the sit-to-stand performance based on two scores compiling kinematics, dynamics, and energy-related variables. Three groups participated in this research: asymptomatic young participants (n = 33), senior asymptomatic participants (n = 17), and Parkinson's patients (n = 20). An unsupervised classification was performed of the two scores to differentiate the three populations. We found a sensitivity of 0.4 and a specificity of 0.96 to distinguish Parkinson's patients from asymptomatic subjects. In addition, seven Parkinson's patients performed the sit-to-stand task "ON" and "OFF" medication, and we noted the scores improved with the patients' medication states (MDS-UPDRS III scores). Our investigation revealed that Parkinson's patients demonstrate a wide spectrum of mobility variations, and while one inertial measurement unit can quantify the sit-to-stand performance, differentiating between PD patients and healthy adults and distinguishing between "ON" and "OFF" periods in PD patients is still challenging

    Cognitive dual-task cost depends on the complexity of the cognitive task, but not on age and disease

    Get PDF
    Introduction Dual-tasking (DT) while walking is common in daily life and can affect both gait and cognitive performance depending on age, attention prioritization, task complexity and medical condition. The aim of the present study was to investigate the effects of DT on cognitive DT cost (DTC) (i) in a dataset including participants of different age groups, with different neurological disorders and chronic low-back pain (cLBP) (ii) at different levels of cognitive task complexity, and (iii) in the context of a setting relevant to daily life, such as combined straight walking and turning. Materials and methods Ninety-one participants including healthy younger and older participants and patients with Parkinson's disease, Multiple Sclerosis, Stroke and cLBP performed a simple reaction time (SRT) task and three numerical Stroop tasks under the conditions congruent (StC), neutral (StN) and incongruent (StI). The tasks were performed both standing (single task, ST) and walking (DT), and DTC was calculated. Mixed ANOVAs were used to determine the effect of group and task complexity on cognitive DTC. Results A longer response time in DT than in ST was observed during SRT. However, the response time was shorter in DT during StI. DTC decreased with increasing complexity of the cognitive task. There was no significant effect of age and group on cognitive DTC. Conclusion Our results suggest that regardless of age and disease group, simple cognitive tasks show the largest and most stable cognitive effects during DT. This may be relevant to the design of future observational studies, clinical trials and for clinical routine

    Reliability of IMU-Derived Temporal Gait Parameters in Neurological Diseases

    Get PDF
    Evaluating gait is part of every neurological movement disorder assessment. Generally, the physician assesses the patient based on their experience, but nowadays inertial measurement units (IMUs) are also often integrated in the assessment. Instrumented gait analysis has a longstanding tradition and temporal parameters are used to compare patient groups or trace disease progression over time. However, the day-to-day variability needs to be considered especially in specific patient cohorts. The aim of the study was to examine day-to-day variability of temporal gait parameters of two experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. We recruited 49 participants (24 women (age: 78 years ± 6 years, BMI = 25.1 kg/m2 and 25 men (age: 77 years ± 6 years, BMI = 26.5 kg/m2 )) from the neurogeriatric ward. Two gait distances (4 m and 20 m) were performed during the first session and repeated the following day. To evaluate reliability, the Intraclass Correlation Coefficient (ICC2,k) and minimal detectable change (MDC) were calculated for the number of steps, step time, stride time, stance time, swing time, double limb support time, double limb support time variability, stride time variability and stride time asymmetry. The temporal gait parameters showed poor to moderate reliability with mean ICC and mean MDC95% values of 0.57 ± 0.18 and 52% ± 53%, respectively. Overall, only four out of the nine computed temporal gait parameters showed high relative reliability and good absolute reliability values. The reliability increased with walking distance. When only investigating steady-state walking during the 20 m walking condition, the relative and absolute reliability improved again. The most reliable parameters were swing time, stride time, step time and stance time. Study results demonstrate that reliability is an important factor to consider when working with IMU derived gait parameters in specific patient cohorts. This advocates for a careful parameter selection as not all parameters seem to be suitable when assessing gait in neurogeriatric patients

    Reliability of IMU-Derived Static Balance Parameters in Neurological Diseases

    Get PDF
    Static balance is a commonly used health measure in clinical practice. Usually, static balance parameters are assessed via force plates or, more recently, with inertial measurement units (IMUs). Multiple parameters have been developed over the years to compare patient groups and understand changes over time. However, the day-to-day variability of these parameters using IMUs has not yet been tested in a neurogeriatric cohort. The aim of the study was to examine day-to-day variability of static balance parameters of five experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. A group of 41 neurogeriatric participants (age: 78 ± 5 years) underwent static balance assessment on two occasions 12-24 h apart. Participants performed a side-by-side stance, a semi-tandem stance, a tandem stance on hard ground with eyes open, and a semi-tandem assessment on a soft surface with eyes open and closed for 30 s each. The intra-class correlation coefficient (two-way random, average of the k raters' measurements, ICC2, k) and minimal detectable change at a 95% confidence level (MDC95%) were calculated for the sway area, velocity, acceleration, jerk, and frequency. Velocity, acceleration, and jerk were calculated in both anterior-posterior (AP) and medio-lateral (ML) directions. Nine to 41 participants could successfully perform the respective balance tasks. Considering all conditions, acceleration-related parameters in the AP and ML directions gave the highest ICC results. The MDC95% values for all parameters ranged from 39% to 220%, with frequency being the most consistent with values of 39-57%, followed by acceleration in the ML (43-55%) and AP direction (54-77%). The present results show moderate to poor ICC and MDC values for IMU-based static balance assessment in neurogeriatric patients. This suggests a limited reliability of these tasks and parameters, which should induce a careful selection of potential clinically relevant parameters
    corecore