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Abstract: Neurological pathologies can alter the swinging movement of the arms during walking. 

The quantification of arm swings has therefore a high clinical relevance. This study developed and 

validated a wearable sensor-based arm swing algorithm for healthy adults and patients with 

Parkinson’s disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with 

wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for 

optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope 

data from the wearable sensors were used to calculate several arm swing parameters, including 

amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were 

extracted with systematic errors ranging from 0.1 to 0.5° and from −0.3 to 0.3°/s, respectively. These 

extracted parameters were significantly different between healthy adults and PwP as expected 

based on the literature. An accurate algorithm was developed that can be used in both clinical and 

daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted 

arm swing parameters in healthy adults and patients with movement disorders such as Parkinson’s 

disease. 
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1. Introduction 

A distinct feature of human locomotion is the rhythmic swinging motion of the arms [1,2]. The 

amplitude of the swing is associated with gait speed and cognitive loading [3,4]. Active increase of 

arm swings has the potential to stabilize gait [5]. The reduction of arm swing amplitude and other 

alterations of the arm swing pattern, including asymmetry and irregularity, can be related to 

neurological pathologies. In stroke patients, the arm swing amplitude of the affected arm is smaller 

compared to that of the controls [6]. Patients with Parkinson’s disease (PwP) also show a smaller arm 

swing amplitude and, in addition, more asymmetry, compared to controls [7–9]. Therefore, the arm 

swing is regularly evaluated in a clinical setting and has the potential to improve diagnostic accuracy 

[7,10,11] and map disease progression [7,11]. Asymmetry in PwP might be associated with disease 

progression, as a study with 16 PwP in an early disease stage reported a positive correlation between 

asymmetry and the Hoehn and Yahr (HY) stage in an off-medication state [12]. Similar results were 
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observed in eight mild PwP, showing a positive correlation between asymmetry and the Unified 

Parkinson’s Disease Rating Scale (UPDRS) of the limbs [7]. However, another study analyzed 21 PwP 

with HY stage I and 19 PwP with HY stage II using an ultrasound-based motion analysis system, and 

the study found more asymmetry in the HY stage I PwP group compared to the HY stage II PwP 

group [8]. Levodopa intake or dopaminergic treatment has shown to improve arm swing amplitude, 

peak swing velocity, and asymmetry of the amplitude in 104 moderate to severe PwP [13]. This was 

confirmed for asymmetry in another study investigating 16 mild to moderate PwP [12].  

Due to the dynamic technical development, the measurement of human movement and mobility 

has been revolutionized over the last decades and years. Wearable inertial systems (inertial 

measurement units, IMUs) are an especially attractive assessment tool for arm swings, as these 

techniques make it possible to measure movements during everyday life [10,14–16]. The relevance of 

measuring mobility in everyday lives of patients is increasingly recognized because it is likely to 

differ substantially from the mobility that is performed in front of a healthcare professional [17].  

This study presents, to our best knowledge for the first time, the technical development and 

clinical validation of a wearable sensor-based arm swing algorithm for healthy adults and PwP. 

2. Materials and Methods 

2.1. Subjects and Data Collection 

There were 15 healthy adults and 14 PwP who participated in this study. The study was 

approved by the ethical committee of the medical faculty of Kiel University (D438/18) and performed 

in accordance with the Declaration of Helsinki of 1975. All subjects provided written informed 

consent before participating. The inclusion criterion for the healthy adults was no disorders that affect 

movement, and the inclusion criterion for PwP was a Parkinson diagnosis according to UK Brain 

Bank Criteria [18].  

The healthy subjects walked at three different speeds (2, 3, and 4 km/h) on a treadmill (size: 2.2 

by 0.7 m; Woodway, Weil am Rhein, Germany) for 80 s. The PwP walked on their self-selected speed 

on the same treadmill for at least 60 s. 

2.2. Definition of Arm Swing during Locomotion 

In order to develop this algorithm, it was necessary to define the movement “arm swing” in such 

a way that on one hand it is coherent with existing information [1,2], and on the other hand also 

addresses the characteristics of the technology used. We therefore propose the following definition:  

Definition 1. Arm swing is a rotational movement of the arm, occurring during walking and running in 

bipeds with a periodicity of around 1–2 Hz. The hand and arm move freely through space in opposite directions 

with most of the movement in the sagittal plane of the body frame (backward and forward; Figure 1a).  

 

Figure 1. (a) Definition of swings. (b) Placement and orientation of the right-handed coordinate 

system of inertial measurement unit and reflective markers. 
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This arm swing algorithm was developed for the data collected during walking. The periodicity 

of an arm swing had to be between 0.3 and 3 Hz. The minimum amplitude to define an arm swing 

was set at 5°. Only rotations around the frontal and sagittal axis were taken into account because the 

wearable sensor might not always be aligned with the sagittal plane of the body frame during the 

swinging motion of the arms. In this way, all the rotations of the arms are measured except the 

longitudinal rotations, since they will also be influenced by turns of the body. 

2.3. Equipment 

All subjects were equipped with a cluster of three reflective markers (11 mm) and an inertial 

measurement unit (IMU) (Noraxon USA Inc., Scottsdale Arizona, AZ, USA) containing 3D 

accelerometers, 3D gyroscopes, and 3D magnetometers, on each forearm. The position of the markers 

was aligned with the position of the IMUs to have a similar orientation of the right-handed coordinate 

systems (Figure 1b). The markers were captured with a 3D optical motion capture system (Qualisys 

AB, Göteborg, Sweden) at 200 Hz. Both systems recorded simultaneously at 200 Hz. 

2.4. Data Processing 

2.4.1. Inertial Measurement Unit Data 

Only the gyroscope data of the IMU were used in this offline algorithm. The algorithm was 

written with MATLAB 2017a. 

The gyroscope data were filtered with a zero-phase second order Butterworth low pass filter 

with a cut off frequency of 3 Hz to omit noise and possible tremors (�����). A principal component 

analysis (PCA) was performed on the x and y component of the angular velocity. The longitudinal 

component (z-axis) was not taken into account for the PCA in order to remove any longitudinal 

rotations (such as turning) from the data. From here on, only the first component of the PCA (�����) 

is used for the analysis. This first component represents the angular velocity in the direction of the 

arm swing. Extracting the angular velocity in the swing direction makes this algorithm insensitive to 

different wearing locations of the IMU on the forearm as long as the z-axis is aligned with the 

longitudinal axis of the arm. The angle (�) was calculated from the angular velocity in the swing 

direction (�����) by numerical integration using a trapezoidal integration approximation: 

�(�) = ∫ �����(�)��
�

���
. (1)

A symmetric moving average (�� �) was calculated with a window length of 2� + 1, where � is 

half a second (representing a window length of 1.005 s with a sample frequency of 200). The moving 

average was subtracted from the angular data to remove the low frequency drift. 

�� �(�) =  ∑ �(�) �(� + �),       � < � < � − ��
���� ; 

with �(�) =  �

�

��
, �� � = ± �

�

��
, ����

 
(2)

��������(�) =  �(�) − �� �(�). (3)

The frequency was extracted with a fast Fourier transform (FFT) from 3 s rectangular windows 

with 75% overlap. The dominant frequency was extracted from each window. The percentage of the 

power that was in the 0.3–3 Hz domain was calculated and used to determine whether there was a 

periodical movement in this specific frequency domain of arm swing motion. When this percentage 

was below an empirically determined threshold of 90%, this window was not taken into account for 

further analysis. 

The local maxima and minima from the angle signal (��������) were extracted. Both the positive 

and negative peaks needed to have a minimum peak prominence of 2° and a minimum distance of 

60% of the cycle time that was extracted from the dominant frequency per window from the FFT. The 

overlap of the 3 s rectangular windows for the peak detection was 50%. Peaks that were detected 
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multiple times due to the overlapping windows were only considered once. In between two maxima, 

only one minimum was allowed, and in between two minima only one maximum was allowed. In 

case of an extra detected peak, the smallest peak was discarded. The magnitudes of a consecutive 

minimum and maximum or a maximum and minimum were added to each other to obtain the 

amplitude of the swing. The time instants of these extrema were then used to find the extrema in the 

angular velocity in the swing direction to obtain the peak angular velocity. When a swing took longer 

than twice the average cycle time, it was discarded because of the low probability of it being an actual 

arm swing. Any outliers (peaks that were larger than three times the 80th percentile of the peaks 

detected in the angle signal) were removed because those were probably other movements than the 

regular swinging motion during walking (e.g., scratching the head). Every swing with an amplitude 

below 5° or a peak angular velocity below 10°/s was removed from the data because a high detection 

accuracy cannot be guaranteed during such small arm movements. An overview of the main steps 

taken are provided in Figure 2. 

 

Figure 2. Block diagram of the arm swing algorithm. 

Additionally, the peak angular velocity was divided into forward and backward angular 

velocities, based on whether it was a minimum or a maximum in the angular velocity in the swing 

direction. This makes it possible to analyze potential differences caused by the direction of the 

movement. When there were no periodical movements of the arm or the arm movements were too 

small, no arm swing parameters were calculated. To understand whether the amplitude and peak 

angular velocity were calculated during the complete walking bout or only for a shorter period, the 

percentage of time in which there were swings detected in one arm during the walking bout was 

extracted. How frequently the arms moved was represented in the frequency as was extracted with 

the FFT. The similarity between neighboring swings was represented with the regularity. The 

regularity was calculated based on the autocorrelation of the angle [19]. The autocorrelation was 

extracted with a 4.5 s Tukey window with a cosine fraction of 0.3 and a 99% overlap of the windows. 

The maximum autocorrelation of each window was extracted, and the average of these values was 

taken as regularity. A regularity of 1 means that a swing is exactly similar to its neighboring swings.  

When both arms were measured and the IMUs were synchronized, the percentage of 

simultaneously occurring arm swings in both arms was calculated. Arm swings were deemed 

simultaneous when a change in direction (i.e., forward to backward or backward to forward) of an 

arm swing in one arm was within 500 ms from a change in direction of the arm swing in the other 

arm. If at least 60% of the walking episode was with simultaneously swinging arms, the asymmetry 

index (ASI) was calculated for the average amplitude and peak angular velocity. For the calculation 

of the ASI, only the phases with swings detected in both arms simultaneously were taken into  

account [20]: 

��� =  
(� − �)

max (�, �)
 × 100 (4)

where L is the amplitude or the peak angular velocity of the left arm and R the similar parameter of 

the right arm. An ASI of 0% reflects identical values of the left and right arm. The coordination 

between the left and right arm was calculated when during at least 60% of the walking episode, arm 
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swings were detected in both arms simultaneously. The coordination was based on the normalized 

cross-correlation of which the minimum value was calculated. The absolute of this minimum was 

calculated for each swing during the phases where there were arm swings in both arms 

simultaneously, of which then the average was taken to obtain the coordination. This is a slightly 

adjusted version of [12], where they calculated the maximum of the absolute signal instead of the 

absolute minimum.  

���(�) =  
∑ �����_�(���) �����_�(�)�����

���

�∑ �����_�(�)� �����
��� �∑ �����_�(�)� �����

���

, (5)

������������ =
�

�
∑�min����(�)��. (6)

with �����_�  and �����_�  the angular velocity in swing direction of the left and right arms 

respectively, and � ranging from 0 ± 0.5 s. A value of 1 indicates that the left and right arms swing 

with a similar rhythm that is exactly out of phase with each other. A value of 0 indicates that there is 

no coordination between the arms.  

The algorithm is available online (https://github.com/EWarmerdam/ArmSwingAlgorithm). 

2.4.2. Optical Data 

Gaps in the optical data smaller than 250 ms were filled based on marker intercorrelations [21]. 

The parts of the data with gaps larger than 250 ms were discarded. A local coordinate system was 

calculated from the three markers on the wrist. The angular velocity was obtained from the derivative 

of the orientation. The orientation was also used to calculate the Cardan angles (order: zxy). The angle 

and angular velocity were rotated in the swinging direction based on the results from the PCA of the 

IMU data. From there on, the amplitude and peak angular velocity were obtained in the same way 

as with the IMU data. 

2.5. Statistical Analysis 

For the validation, the data of both arms were taken together. To compare the angle and the 

angular velocity between both systems, the root mean square errors (RMSe) between the IMU and 

the optical data were calculated. A Bland–Altman analysis was performed to extract the systematic 

error (average of the difference between the IMU-derived and the optical system-derived data) and 

the random error (95% confidence intervals ± systematic error) of the arm swing amplitude and the 

peak angular velocity [22]. The average absolute error was calculated to obtain the magnitude of the 

error between the two systems.  

For the clinical validation, the arm swing parameters of the healthy participants walking at 

different speeds were compared to those of the PwP group. The amplitude, peak angular velocity, 

percentage of walking bout with arm swing, frequency, and regularity were calculated with averaged 

data of the left and right arms. The percentage of the walking bout with the arm swing in both arms 

simultaneously, asymmetry, and coordination were calculated by comparing left versus right arm 

data. For the asymmetry, the magnitude was taken for the analysis. A Mann–Whitney U test was 

used to test for significance (p < 0.05).  

3. Results 

One PwP was taken out of the analysis because all amplitudes of the arm movements did not 

reach the 5° threshold. An overview of the remaining participants taken into the analysis is provided 

in Table 1. 

Table 1. Demographics (mean ± standard deviation) of the subjects. 

 Healthy Adults PD Patients 

n (male) 15 (9) 13 (5) 

Age [years] 31 ± 9 71 ± 9 
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Body mass index [kg/m2] 23.4 ± 2.7 28.5 ± 5.9 

Hoehn and Yahr stage (1–5) NA 2.8 ± 0.7 

3.1. Healthy Adults 

Fifteen healthy adults walked at three different speeds on a treadmill. The RMSe of the angle 

and angular velocity between the IMU- and optical system-derived signals were below 1° and below 

0.05°/s, respectively (Figure 3, Table 2). The systematic errors were in the range of 0.1 to 0.5° for the 

amplitude and −0.1 to 0.3°/s for the peak vertical velocity of the different speeds (Figure 4, Table 2). 

The random error of the amplitude was between 2.2 and 2.7°, and the random error of the peak 

angular velocity was between 4.2 and 5.3°/s. The absolute errors ranged from 0.9 to 1.1° for the 

amplitude and from 1.4 to 1.9° for the peak angular velocity.  

 

Figure 3. The angle of the inertial measurement unit (IMU) and optical data of a healthy participant 

and of a patient with Parkinson’s disease. 

Table 2. Error measures of IMU-derived arm swing data, compared to optical system-derived data. 

  

Healthy 

Adults 

2 km/h 

Healthy 

Adults 

3 km/h 

Healthy 

Adults 

4 km/h 

PwP 

Preferred 

Angle RMSe [°] 0.83 0.91 0.72 1.18 

Angular velocity RMSe [°/s] 0.03 0.03 0.03 0.16 

No. of swings 3885 3788 4103 1762 

Amplitude [°] 

Systematic error 0.1 0.4 0.5 0.2 

Random error 2.6 2.2 2.7 3.8 

Absolute error 0.9 0.9 1.1 1.1 

Peak angular velocity [°/s] 

Systematic error −0.1 −0.1 0.3 −0.3 

Random error 4.2 4.4 5.3 6.8 

Absolute error 1.4 1.6 1.9 2.0 

PwP: patients with Parkinson’s disease; RMSe: root mean square error. 



Sensors 2020, 20, 5963 7 of 12 

 

 

Figure 4. Bland–Altman plots are shown with the arm swing amplitude and peak angular velocity at 

2 km/h (a), 3 km/h (b), and 4 km/h (c) for the healthy adults and at the preferred speed (d) for patients 

with Parkinson’s disease. On the x-axes, the average of the IMU and optical results are presented, and 

on the y-axes the differences between IMU and optical results (IMU-optical) are presented. 

3.2. Patients with Parkinson’s Disease 

Thirteen PwP walked at their preferred speed (average 1.4 km/h) on a treadmill. The RMSe 

between the IMU-derived and optical system-derived data was 1.16° for the angle and 0.16°/s for the 

angular velocity (Figure 3, Table 2). The systematic errors were 0.2° and −0.3°/s for the amplitude and 

peak angular velocity, respectively (Figure 4, Table 2). The random errors were 3.8° and 6.8°/s, and 

the absolute errors were 1.1° and 2.0°/s for the amplitude and peak angular velocity, respectively. 
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3.3. Clinical Validation 

All the arm swing parameters were extracted with the algorithm and compared between the 

groups. The percentage of the walk with swinging motion in one arm was the only parameter that 

was significantly different between the groups on all speeds. On higher speeds, more significant 

differences were found between the groups (Table 3). 

Table 3. IMU-based arm swing parameters for the healthy adults and the patients with Parkinson’s 

disease. 

 

Healthy 

Adults 

(2 km/h) 

Healthy 

Adults 

(3 km/h) 

Healthy 

Adults 

(4 km/h) 

PwP 

(Preferred) 

Amplitude [°] 16 23 * 36 * 17 

Peak angular velocity [°/s] 57 84 * 122 * 60 

Forward peak angular velocity [°/s] 59 87 * 124 * 60 

Backward peak angular velocity [°/s] 55 80 * 120 * 59 

Percentage of walk with swinging motion in an arm [%] 93 * 99 * 99 * 78 

Frequency [Hz] 0.9 0.9 0.9 0.9 

Regularity (0–1) 0.8 0.9 * 0.9 * 0.7 

Percentage of walk with swinging motion in both arms 

simultaneously [%] 
90 * 97 * 98 * 64 

Absolute amplitude asymmetry index [%] 20 17 20 36 

Absolute peak angular velocity asymmetry index [%] 19 18 21 33 

Coordination (0–1) 0.7 0.8 0.8 0.8 

*: significantly different from patients with Parkinson’s disease (p < 0.05); see the data processing part 

in the methods for the calculations and interpretation of the parameters. For the asymmetry and 

coordination, seven PwP could be included in the analysis; the other four did not fulfil the criteria for 

the calculation of these parameters (see Methods section). 

4. Discussion 

This study presents the development and the validation of an arm swing algorithm based on 

wearable sensors (i.e., IMUs) positioned on the wrists for healthy adults and PwP. Based on our data, 

the algorithm is extremely accurate. Arm swing amplitude and peak angular velocity can all be 

extracted with a very small systematic error compared to the reference system.  

The random errors are slightly higher for the PwP group compared to the healthy adults group. 

This may—at least partly—be due to the less fluent movement of the arms in PwP. It can be seen in 

Figure 3 and in the RMSe (Table 2) that the IMU and optical data do not overlap as well in the PwP 

compared to the curves derived from a healthy adult. This deviation between the IMU and optical 

data is especially seen around the peaks. 

The healthy adults were measured at multiple speeds. Based on visual interpretation, the 

walking speed was not of influence on the accuracy of the algorithm. This should make the algorithm 

suitable for measuring arm swings in usual daily-living situations, which is particularly relevant for 

longitudinal and therapy studies. However, the algorithm itself cannot detect when someone is 

walking and might therefore include other repetitive movements of the arm that are performed 

throughout the day. Ideally, the arm swing algorithm should therefore be combined with a gait 

detection algorithm [23,24] when used for measurements outside the lab to make sure as much as 

possible that arm swings are only analyzed during walking. It should also be noted that a walking 

bout needs to be at least 3 s for the algorithm to work. For daily-living assessments, a higher minimum 

walking bout length might need to be set to exclude artefacts. This can omit wrongly increased 

variability of the data. Users of the algorithm should also take arm swing data from longer walking 

bouts with a certain degree of caution, as also during such walking episodes, arm movements that 

are not arm swings as defined in the introduction can occur. Examples are arm movements that are 

not based on freely moving hands (e.g., when swinging a bag or using Nordic walking sticks) and 
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animated movements (e.g., performed based on a given rhythm that comes from earphones of 

external sources). 

According to the protocol of a future study or the main objectives of clinical management that 

aim to integrate this algorithm in their approaches, the algorithm may be adapted to individual needs 

and situations. For example, in this particular study, arm swings with an amplitude below 5° were 

excluded. This is a very low threshold (corresponding to a horizontal displacement of 6 cm with an 

arm length of 70 cm), and can lead to false positive results in less strictly defined data sets (for 

example, it may detect movements of the arms and hands that are in the pockets during walking). 

Therefore, for daily-living assessments, we suggest increasing the threshold for the amplitude and 

combining it with a gait detection algorithm. Future studies must evaluate which thresholds have the 

highest accuracies, especially when recording unsupervised daily-living data. It should be mentioned 

again that this inaccuracy falls within the clinical and phenomenological domain and does not call 

into question the high technical validity of the algorithm (i.e., the compliance with the reference; see 

above).  

For an initial clinical validation, all the parameters from the algorithm were extracted and 

compared between healthy adults and PwP. The percentage of the walk with swinging motion of the 

arms was significantly different in PwP, compared to all walking conditions performed with healthy 

adults. This makes a comparison of the arm swings between the groups difficult because we have to 

assume that in the PwP group, those arm swings are exactly the ones not included in the calculation 

that fall below the specified threshold of 5°. Therefore, the following qualitative comparisons must 

be interpreted with caution. Nevertheless, differences can be found in all group comparisons (Table 

3).  

When we compared the 4 km/h condition of the healthy adults, which comes probably closest 

to their preferred speed, we found significant differences in arm swings between the groups, and this 

finding corresponds to the literature [25–27]. Since we found less significant differences on 2 km/h, it 

could be that walking speed has an influence on the differences found between healthy adults and 

PwP, which certainly has to be investigated in future studies.  

The lateralization of the disease may also have a relevant influence on arm swing parameters in 

PwP. A study with slow walking speeds on a treadmill only found significant differences for the 

amplitude between the most affected side of PwP compared to healthy adults [8]. Our results on 

asymmetry corroborate these preliminary results. The percentages of the walks with simultaneously 

performed swinging motions in both arms were substantially lower in PwP, compared to healthy 

adults at all measured walking speeds. We assume similarly according to our reasoning in the above 

paragraph that all qualitative evaluations that were performed in the PwP group may thus 

underestimate the real asymmetry and lack of coordination of arm swings because it is exactly those 

arm swings with high asymmetry and low coordination values that are excluded based on our 

threshold (arm swing > 5°). Nevertheless, it is noticeable (see also Table 3) that PwP have higher 

amplitude and peak angular velocity asymmetry indices than healthy adults. In conclusion, our 

preliminary clinical results indicate that the known differences in arm swing between PwP and 

healthy adults can be reliably and accurately detected with this algorithm, and future clinical studies 

may include this algorithm. 

A study reporting about prodromal changes of gait in PD was recently published [28], but it did 

not report about arm swing behavior. The algorithm presented here can now be used to analyze such 

data sets with higher granularity and more exhaustive information about body movement. The 

algorithm can also extend the movement assessment for observational studies, clinical trials, and 

clinical management to the daily-living environment, an area that we have not been able to 

investigate and understand in much detail so far. The evaluation of disease progression and response 

to treatment in PwP has a similar or even higher relevance, not only for the amplitude of arm swings 

but also for all other parameters presented in Table 3. Arm swing parameters could help to 

differentiate healthy adults from PwP, and they may be useful for the detection and diagnosis of 

additional diseases associated with impaired mobility (such as multiple sclerosis). Of course, the 

application of this algorithm also opens up new options in the evaluation of arm swings in the context 
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of aging in general, with respect to the significance of arm swings in fallers, and how arm swings 

differ between supervised and unsupervised environments, to name a few examples. 

Some aspects should be taken into account when using the algorithm in future studies. First, 

turns during walking in daily living have no influence on the algorithm itself, since rotations around 

the longitudinal axis are not taken into account. When the walking turns should be separated from 

the walking data, a turning algorithm should be used to detect the turns [29,30]. Second, in general, 

the arm moves in phase with the contralateral leg. However, on slower speeds, the arms can swing 

in a 2:1 ratio with the legs instead of 1:1 [31,32]. This in itself is no issue for the algorithm. However, 

during the transition phases between these two ratios (Figure 3, about 7 s), it depends on how fast 

the frequency changes and whether the swing is above the set thresholds if this swing in between is 

detected. When it is detected, it might influence the variance of the data, since the amplitude, peak 

angular velocity, and average angular velocity are smaller compared to the other swings. Third, 

people can be measured on one or two wrists. It is self-explanatory that in case of only one wearable 

device, the percentage time where there was a swing in both arms, the asymmetry, and the 

coordination cannot be calculated. Fourth, for some of the PwP, there were only a few arm swings 

detected during the walking bout because the arm movements did not exceed the 5° threshold. This 

is likely to happen more often in severe PwP. 

The study faces the limitation that during the measurements the participants walked on a 

treadmill, which results in slightly different upper body movements compared to over ground 

walking [33]. However, we consider this a minor issue, as the main aim of the study was the 

validation of the IMU-derived arm swing algorithm against a reference that was assessed 

simultaneously. Moreover, the healthy controls were in their young adulthood and thus substantially 

younger than PwP. This implies that we are mapping an age effect in the clinical validation data for 

which we cannot correct in this data set. However, we are optimistic that we will still map a 

Parkinson-associated difference, as our data confirm the data from previously published studies. We 

are also working on a detailed representation of arm swings in existing data sets of large cohorts, 

including the TREND study (https://www.trend-studie.de/).  

5. Conclusions 

An arm swing algorithm was developed and validated for both healthy adults and PwP. The 

algorithm is highly accurate in a clinical environment and has high potential to be used in a daily-

living environment as well. 
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