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Chapter 1

General introduction

We are in the middle of a digital transformation. New revolutionising technologies
are rising all across the world. Technologies such as artificial intelligence, Internet of
Things, virtual reality, cloud computing, robotics and 3D printing are empowering
many processes. The digital transformation is also finding its way into health-
care. Digital technology impacts diagnosis, prevention, monitoring and treatment
of diseases. Technology assisted decisions can be made by healthcare professionals
resulting in more personalized treatment.

Wearable technology to analyse movement has rapidly evolved in the last two
decades. There is a growing amount of wearable sensors, apps and smartwatches
available that contribute to the analysis of mobility. This wearable technology pro-
vides new options to measure people outside of the clinic in their natural envi-
ronment. The data analysis has evolved from only being able to count steps to
complete qualitative gait analyses. Moreover, the data can be used to track symp-
toms throughout the day, which can be used to optimize the treatment [1, 2]. The
quantification of human movement with wearable sensors has provided new options
and has high potential to further improve healthcare. Therefore, the focus of this
dissertation will be on the quantification of mobility with wearable sensors.

All kinds of mobility-related activities like walking, rising from a chair and re-
gaining balance after a perturbation require a certain amount of power to perform
the action. With aging and degenerative diseases the power declines resulting in
mobility limitations. Mobility limitations have a large impact on the quality of
life. Healthcare professionals evaluate mobility limitations often by letting the pa-
tient answering questions about mobility and by visually observing the patient’s
gait pattern. The questions the patient answers provide information about the per-
ception of the limitation by the patient. During the walk that is observed by the
healthcare professional, it is very likely that the patient performs better than during
daily living, because they are more focussed on the movement when they are aware
that they are being observed. Therefore, this assessment measures capacity, what a
patient is able to do. The healthcare professional has however not obtained any in-
formation about what the patient actually does during daily living, the performance.
Improving the performance might be most important and relevant for the patient.
Therefore, quantifying performance might need to be added to the standard clinical
examination. The combined assessment of perception, capacity and performance
provides a measure of the daily function of a patient [3].

Wearable sensors can easily be used to objectively quantify mobility of people by
attaching one or multiple wearable sensors to the body. The wearable sensors make
it possible to measure in different settings, e.g. clinic and home, indoor and outdoor,
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and under different circumstances, e.g. slow walking and fast walking, single-tasking
and dual-tasking, with supervision and without supervision. There is an increasing
amount of literature showing that mobility might be influenced by the context it
is measured in. It is however still unclear how the mobility measures obtained in
different contexts relate to each other.

Aim and outline of this dissertation

The aim of this dissertation is to better understand the influence of the context
on mobility in older adults and patients with neurodegenerative disorders. First, a
theoretical background about mobility, the quantification of mobility and different
contexts is provided (Chapter 2). To get a better understanding of how mobility
parameters quantified in a supervised context (capacity) relate to similar mobility
parameters quantified in an unsupervised context (performance), the existing
literature was reviewed (Chapter 3). Potential reasons for the differences between
supervised and unsupervised mobility parameters are discussed and suggestions for
implementation of unsupervised mobility assessments in clinical care and research
are provided. In Chapter 4 the development and validation of an algorithm to
quantify arm swing during walking is presented. Arm swing is a mobility-relevant
movement that is associated with many neurodegenerative diseases and changes
with medication, as has been shown in patients with Parkinson’s disease. The
algorithm was validated for healthy adults and patients with Parkinson’s disease.
The algorithm can be used in both supervised and unsupervised environments. In
Chapter 5 the arm swing algorithm is used to analyse the effect of dopaminergic
medication on arm swing during walking of patients with Parkinson’s disease. The
effect of dopaminergic medication was assessed in different contexts. To continue
the development and especially validation of algorithms that quantify mobility
in different contexts, mobility data from participants in supervised instructed
(reflecting capacity assessments) and uninstructed environments (reflecting daily
living environment) are being collected. The study protocol is presented in Chapter
6. Both healthy participants and patients with neurological disorders are included
and perform multiple walking trials with different complexity, clinical tests and
movements generally performed during daily living. In Chapter 7 the main findings
are summarized, the results are discussed and suggestions for future research are
provided.

6
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Aim and outline

Figure 1.1: The structure of the cumulative dissertation. In study 1 the need for validated
algorithms and assessments in different contexts becomes clear, which is focused on in
studies 2, 3 and 4.
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Chapter 2

Theoretical background

Mobility

Mobility is defined by the international classification of functioning, disability and
health model as “changing and maintaining body position” [4]. In other words,
mobility is the ability to move independently or with help of assistive devices from
one location or posture to another. Mobility is needed to perform activities of daily
living and to engage in life [4]. A reduction in mobility is affecting independence and
decreases the quality of life [5, 6], highlighting the importance of mobility. Among
the most common mobility limitations are deficits in gait and balance. These deficits
are associated with an increased fall risk [7, 8], hospitalization [9, 10], mortality
[9, 11], anxiety [12], reduced cognitive function [13], and social isolation [14].

Gait and balance deficits are biomarkers [15, 16] and can be used to discriminate
healthy adults from patients with neurodegenerative diseases [17, 18]. Moreover,
gait and balance deficits can be used to differentiate between different subtypes
of neurodegenerative diseases [19–21]. Gait and balance parameters also have the
potential to detect neurodegenerative diseases in a preclinical stage of the disease
[15, 18, 22].

Mobility in the aging population

In Germany, 28.5% of the habitants are 60 years and older [23]. The aging popu-
lation is even expected to increase in the upcoming years. Aging is characterized
by a cumulative decline in multiple physiological systems. A decline in the muscu-
lar, cardiovascular, visual and vestibular system can all have an effect on mobility.
Especially the decline in the musculoskeletal system, which causes loss of muscle
strength and power, has a large effect on mobility [24, 25].

The gait pattern of healthy older adults (>60 years) is different compared to
younger healthy adults (18-40 years) [26]. This is especially visible in the spa-
tiotemporal gait parameters. Older adults have a reduced gait speed, step length,
and cadence. The temporal parameters like step time, stance time and double
support time increase with age [26]. The amplitude of arm swing during walking
decreases with age [27]. However, these changes in gait pattern seem to be at least
partly mediated by the decrease in gait speed with aging.

Balance also changes with aging. Postural stability is an interplay between the
environment and different physiological systems that decline with aging. Older
adults have more static postural sway compared to younger adults (20-40 years)
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[28].

Mobility in patients with Parkinson’s disease

Parkinson’s disease (PD) is after Alzheimer’s disease the most common neurode-
generative disorder [29]. In Germany, about 797 to 961 per 100 000 people of 50
years and older have PD [30]. PD is a progressive neurodegenerative disease caused
by a progressive loss of dopaminergic and other neurons in different areas of the
brain, preferentially in the midbrain, resulting in a range of motor and non-motor
symptoms. Motor symptoms are, for example, brady- and hypokinesia (slowness of
movement), rigidity, postural instability and tremor (mainly at rest) [31, 32]. In
early stages, the motor symptoms manifest mainly unilaterally [33].

Among one of the most disabling factors of PD are gait impairments, resulting
in mobility limitations and an increased fall risk. Patients with PD have an im-
paired motor automaticity, which has an influence on the execution of sequential
movements, including gait [33]. The impaired motor automaticity has also been
suggested to contribute to freezing of gait. Freezing of gait is an episodic inability
to generate effective steps despite the intention to walk [34, 35]. Freezing of gait
occurs especially when initiating or terminating walking, when turning, or when
walking through narrow passages [36].

The general gait pattern in PD also changes. Patients with PD walk slower, have
shorter steps, decreased cadence and increased variability compared to age-matched
healthy adults [33, 37]. The change in gait pattern can already be seen with detailed
wearable sensor-based analysis about 4 years prior to diagnosis [15]. Arm swing
during walking is also different in patients with PD compared to healthy adults:
arm swing amplitude is decreased and the asymmetry increased [38, 39]. Patients
with PD also have balance impairments. Both the static and dynamic postural
stability is worse compared to healthy adults [40–42]. Since PD is a progressive
disease, the mobility limitations get more severe over time.

The most common treatment for PD is based on dopaminergic medication [43].
Dopaminergic medication is highly effective in improving especially PD-related mo-
tor symptoms as measured with established clinical scales as the Movement Disor-
der Society revised version of the Unified PD rating scale (MDS-UPDRS) [44, 45].
Dopaminergic medication also improves some aspects of gait. Step length and gait
velocity increase and the variability decreases with medication, but gait remains
impaired compared to healthy controls [39, 46, 47]. Regarding balance there are
contradicting results whether dopaminergic medication improves or worsens postu-
ral stability [39, 48, 49].

The sensitivity to dopaminergic medication decreases with advanced disease
stages, therefore the prescribed dose often needs to be increased throughout the
course of the disease [50]. With a higher dose of dopaminergic medication, the
chance on negative side effects also increases. One of the most debilitating side
effects of dopaminergic medication is dyskinesia, which are uncontrollable involun-
tary movements [43]. Almost 40% of treated PD patients develop some form of
dyskinesia after about 5 years of treatment [51]. Dyskinesia is associated with a
decrease in the quality of life [52, 53] and falls [54, 55]. Moreover, the uncontrollable
involuntary movements can interfere with gait and balance leading to more severe
mobility limitations.
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Mobility in patients with multiple sclerosis

In 2015 multiple sclerosis (MS) had a prevalence of 0.32% in Germany and the
prevalence is increasing [56]. MS is a neuroinflammatory and -degenerative dis-
ease resulting in a loss of myelin sheath of nerve fibers. The loss of myelin sheath
comprises the conduction of action potentials leading to abnormal nerve conduction
[57, 58]. Depending on the location of the demyelination symptoms like spasticity,
pain, fatigue, vision problems and reduced sensation occur [59].

Patients with MS have a different gait pattern than healthy adults and PD
patients. The altered nerve conduction in MS can cause spasticity or weakness of
the muscles, which in combination with the reduced sensation makes it more difficult
to coordinate movements. The change in gait pattern is already seen in patients with
a relatively mild disease severity. Gait speed, cadence, step length, and swing time
are reduced and stride time, double support time, and step width are increased in
patients with MS [60].

Among one of the initial mobility limitations in patients with MS are balance
problems. The slower nerve conduction due to the demyelination is an important
factor for the decreased postural control, but the reduced sensation in the feet and
the slower integration of motor and sensory signals also play a role [61, 62]. Patients
with MS have more postural sway during quiet stance compared to healthy adults.
Moreover, patients with MS have slower postural responses to perturbations [61].

The disease progression depends on the type of MS. Most patients have a relaps-
ing and remitting variant of the disease in the early stages. In the later stages it
often changes to a progressively increasing variant. A small part of the MS patients
have a progressively increasing variant from the disease onset on [63]. Many disease-
modifying treatments are available, mainly targeting neuroinflammation. The avail-
able treatments can reduce relapses, but generally fail to slow down the progression
of the disease [58, 63].

Quantifying mobility

Clinical examinations mainly assess changes in disease-related symptoms. However,
changes in symptoms do not necessarily also mean a change in the quality of life or
daily function. For the assessment of quality of life there are multiple tools available
[64]. However, the assessment of daily function is not clearly defined. Recently it was
proposed that daily function could be captured by measuring capacity, perception
and performance [3]. Capacity is often quantified by healthcare professionals with
help of clinical scores. These scores, however, are subjective and even with the high
standardisation of clinical tests, the interrater reliability often remains low [65]. A
more objective method to quantify mobility is 3D optical motion capture. With
3D optical motion analysis, markers are adhered to the body and these markers are
measured in 3D by multiple cameras (Figure 2.1). These systems are very accurate
and are often used as gold standard in the field of movement analysis [66]. However,
these systems are expensive and require a complex setup in a laboratory.

With the rise of mobile technology it has become possible to quantify mobility
also outside of the laboratory. The type of sensor technology most frequently used
for movement analysis are inertial measurement units (IMUs, Figure 2.1b) [67].
IMUs exist of tri-axial accelerometers, tri-axial gyroscopes and optionally also tri-
axial magnetometers. The accelerometers measure linear accelerations, gyroscopes
measure angular velocity and magnetometers measure the magnetic field (existing of

11
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the earth magnetic field and the magnetic field from ferromagnetic materials that are
nearby). These wearable sensors can be placed anywhere on the body, which makes
it possible to measure all kinds of movements and symptoms [67, 68]. However,
algorithms need to be developed first to transform the raw data from the wearable
sensors into relevant mobility parameters. These algorithms also need to be validated
to make sure they actually measure what they should measure [69, 70]. Many
wearable sensors come with proprietary algorithms to extract mobility parameters.
It is not known what kind of calculations are performed within these proprietary
algorithms. More often there are no validation results available and even if they
are available the validation has been performed with healthy adults. However, as
described above, patients with neurodegenerative diseases have different movement
patterns compared to healthy adults and even across different diseases [71, 72],
therefore the algorithms should be validated for each patient group specifically before
they can be used in healthcare.

Figure 2.1: 3D optical motion capture system. A. On top the cameras hanging from the ceiling,
at the left the reflective markers measured by the cameras and at the right bottom the orientation
of the coordinate system. B. The participant wearing the reflective markers and also the inertial
measurement units.

The combination of wearable sensors and validated algorithms can be used in the
clinic to quantify the mobility-related capacity. Moreover, wearable sensors can also
be used to quantify mobility in different settings and under different circumstances
[68, 73, 74], enabling to quantify the mobility-related performance. The information
about the mobility-related capacity and performance can help to correctly diagnose
patients [17, 18], track disease progression [75, 76] and measure response to treatment
[39, 77]. However, the context in which capacity and performance are measured
might need to be taken into account, since this could have a substantial influence
on mobility.

12
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Mobility assessments in different contexts

Context is defined in the dictionary as “the surroundings, circumstances, environ-
ment, background or setting that determine, specify, or clarify the meaning of an
event or other occurrence” [78]. The context can influence human behaviour. A well
known example is the white coat effect. This white coat effect describes the phe-
nomenon that people at home might have a normal blood pressure, but the blood
pressure rises when they are at the doctor. The body responds to the presence of a
healthcare professional. This phenomenon is also seen in gait. When people walk on
a walkway knowing that they are being measured, they walk differently, compared to
when they walk back over the same walkway thinking they are not being measured
[79].

Movement analysis is most often performed in a laboratory setting, which is
an open well-lit space with a regular surface and without many distractions. In
contrast, movements during daily living are often performed in more cluttered envi-
ronments and especially outdoors also on more irregular surfaces. It might be that
patients with PD do not show any freezing of gait in the laboratory since situa-
tional demands are low. However, in more cluttered environments the demands are
higher and freezing of gait might occur more frequently [80]. Moreover, freezing of
gait is for example less likely to occur when crossing the road on a zebra crossing.
The visual rhythmic input probably compensates for the internal automaticity and
rhythm deficit in patients with PD. Rhythmic cues (visual, auditory and sensorial)
are known to improve the overall gait pattern [81]. Even walking with music en-
hances gait parameters and arm swing [82]. The gait pattern also changes during
outdoor walking on irregular surfaces. This effect is more pronounced in patients
compared to healthy adults [83, 84]. Moreover, walking on different slopes changes
the gait pattern and the arm swing [85, 86].

The situational demands in the laboratory can be increased by making the task
more complex (e.g. circular walking) or by adding a secondary task to walking.
Cognitive dual-tasks decreases the gait performance in older adults and patients with
neurodegenerative diseases in the laboratory [87, 88]. Therefore, it is very likely that
when older adults and patients with neurodegenerative diseases walk in a challenging
environment where they cannot walk straight and need to focus on the environment
as well, their walking performance will be different compared to a less challenging
context. Since dual-tasking is a rather common situation in daily living, it is unclear
how the (single-tasking) gait assessed in the laboratory (capacity) is associated with
gait assessed in their natural environment (performance). Recent studies showed
indeed that not the simple straight walking tasks, but the more complex tasks
measured in the laboratory, corresponds well with the average performance in the
natural environment [89, 90].

In the laboratory only movements during one short time frame are captured,
whereas in a daily living context movements during the whole day, across multiple
days can be captured. Gait performance measured during daily living seems to be
better at discriminating between healthy adults and patients with PD compared to
gait capacity measured in the laboratory [71]. Even the longer daily living walking
bouts (>120 s), probably corresponding with outdoor walking, seem to be better in
discriminating between healthy adults and patients with PD compared to shorter
walking bouts, which probably represents indoor walking [71]. During daily living
patients with PD fluctuate between OFF and ON medication states. In the labo-
ratory, generally only the most OFF state (overnight withdrawal of medication) or

13



2

2. Theoretical background

Figure 2.2: Fluctuations in motor function throughout the day.

the best ON state (approximately one hour after medication intake) is measured.
In OFF state patients with PD walk slower and with shorter steps compared to ON
state [39, 91, 92]. However, during daily living patients only spend a very short
time in the worst OFF state and best ON state (Figure 2.2). The patients spend
probably most time in the transition phase between the most OFF and ON state,
on which no information is gathered during the standard laboratory assessments.

Movements performed in the laboratory are isolated standardized movements
without an actual goal. The focus is directed on controlling the body to perform
the requested task. Whereas movements performed in daily living are self-initiated
and goal directed. The focus is on reaching the goal. This difference in focus could
lead to changes in the movement patterns [93]. Moreover, the context can have
an effect on psychological and physiological factors. A clinical setting can increase
the blood pressure as seen with the white-coat effect [94]. Furthermore, patients
can change their behaviour because they might be more motivated because they are
being observed by a healthcare professional [95]. Additionally, symptoms as fatigue
and pain could have a negative effect on the gait pattern and potentially increase
fall risk [96, 97].

Brain activity can also differ with the context. Based on gait imagery, there is
more activity in several brain areas and with better coupling between those areas
during more complex walking tasks [98]. Furthermore, older adults have more ac-
tivity in the cortical regions of the brain in comparison to younger adults during
gait imagery [98]. Patients with PD have less activity in multiple brain areas during
gait imagery of simple tasks and more activity during complex tasks compared to
healthy controls [98]. The results for brain activity during real walking are not clear,
since multiple studies found contradicting results [98].

The context can also have an influence on the accuracy of the mobility analysis
algorithms. The type of surface has an effect on the step detection performance
[99, 100]. In addition, the placement of the wearable sensors can have an influence
on the accuracy. The step detection performance was lower with a wearable sensor
on the lower back compared to wearable sensors on the feet [99] or on the shanks
[100].

Within this dissertation the influence of the context on mobility and how differ-
ent contexts (e.g., diagnosis, setting, task complexity, medication state) can affect
capacity and performance measures of mobility will be analysed.

14
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Chapter 3

Long-term unsupervised mobility
assessment in movement disorders

Elke Warmerdam, Jeffrey M Hausdorff, Arash Atrsaei, Yuhan Zhou,
Anat Mirelman, Kamiar Aminian, Alberto J Espay, Clint Hansen, Luc
J W Evers, Andreas Keller, Claudine Lamoth, Andrea Pilotto, Lynn
Rochester, Gerhard Schmidt, Bastiaan R Bloem, Walter Maetzler

Lancet Neurology. 2020; 19(5):462-470.
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Abstract

Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-
integrated devices) that quantify mobility in unsupervised, daily living environments
are emerging as complementary clinical assessments. Data collected in these eco-
logically valid, patient-relevant settings can overcome limitations of conventional
clinical assessments, as they capture fluctuating and rare events. These data could
support clinical decision making and could also serve as outcomes in clinical trials.
However, studies that directly compared assessments made in unsupervised and
supervised (e.g., in the laboratory or hospital) settings point to large disparities,
even in the same parameters of mobility. These differences appear to be affected
by psychological, physiological, cognitive, environmental, and technical factors,
and by the types of mobilities and diagnoses assessed. To facilitate the successful
adaptation of the unsupervised assessment of mobility into clinical practice and
clinical trials, clinicians and researchers should consider these disparities and the
multiple factors that contribute to them.
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Introduction

Deficits in mobility are common in patients with neurological disorders and often
affect activities of daily living, work, and socialisation [4]. These deficits predict
morbidity, cognitive decline, and mortality [101–104] and negatively affect quality of
life, especially in patients with movement disorders [5, 6]. For example, in patients
with Parkinson’s disease, health-related quality of life is strongly associated with
the activities and participation components of the International Classification Of
Functioning, Disability, and Health model [105]. Therefore, it is crucial for health-
care professionals to obtain a full and objective evaluation of a patient’s mobility as a
basis for individually tailored clinical decision making and prognostication. Mobility
assessments are mainly done under supervised conditions in a laboratory or hospital
using standardised, mostly qualitative or semi-structured evaluations (panel) [106–
108]; however, many patients do paradoxically well when they know that they are
being observed. Various clinically relevant events are also difficult to capture during
these snapshot observations, because they take place over long periods of time (e.g.
the total amount of physical activity), are rare (e.g. falls or freezing episodes)
[109], occur at night (e.g. sleep disturbances), or have complex fluctuating patterns
(e.g. the response to dopaminergic treatment in Parkinson’s disease). To reliably
evaluate such events, it is important to measure patients unobtrusively and for longer
periods of time, while they move about freely and unsupervised in their daily-living
environment.

Several reviews describe the promise of unsupervised assessments of mobility us-
ing novel technologies [110, 111]. Unsupervised assessments of mobility using novel
technology, although very different from other daily living acquired parameters that
are already used in clinical routine (such as the Holter electrocardiogram [112, 113]
and blood glucose monitoring [114]), could soon be essential for the long-term eval-
uation of mobility and personalised clinical decision making in neurology [110, 111].
Unsupervised assessments might save time and cost by capturing health-related data
since these assessments would be largely independent of the availability of health-
care services. These assessments are particularly important for patients living in
rural areas or developing countries, where the number of health-care professionals is
small relative to the population size [111]. Finally, unsupervised assessments offer
patients an opportunity to become more actively involved by, for example, using
their own devices such as smartphones and receiving feedback about their own daily
living performance [115].

Unsupervised assessments of mobility can provide additional and, at least partly,
complementary information compared with supervised assessments. However, dif-
ferences with respect to the conventional evaluation need to be considered. In this
Personal View, we summarise the evidence of the weak association between mobility
assessed in the two settings and discuss potential reasons for the observed differ-
ences. We also present suggestions to facilitate the implementation of unsupervised
mobility assessment in clinical care and future research.

17
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Panel: Glossary of terms used in mobility assessment

Daily living
This term, also referred to as free living, real world, or community living, is
used to distinguish testing within the normal environment of a participant
from testing in a standardised setting, such as in the clinic or laboratory

Inertial measurement units
Sensors that measure acceleration or angular velocity, which can determine
the quality and quantity of movement using specifically developed algorithms

Mobile health technologies
Umbrella term for wearable, portable, or domestic-integrated devices that
can provide objective measures and that include digital applications, as well
as body-worn (adhered to a body surface, mainly inertial measurement units)
or frequently used patient-centred devices (e.g. smartphone and keyboard)

We focus on technologies that can measure the frequency and quality of move-
ment, and mobility characteristics

Supervised assessment
Refers to the traditional, conventional mode of assessing mobility in a labo-
ratory or clinical setting

Typically, a qualitative or semi-quantitative one-time snapshot evaluation of
mobility by a trained health-care professional

Unsupervised assessment
Refers to the quantitative assessment of mobility in the home and daily living
environment that is done continuously with new, mainly mobile, health tech-
nologies over relatively long periods of time

Wearables
Mobile devices worn on the body, such as inertial measurement units, smart-
watches, or Holter electrocardiogram monitors

Unsupervised mobility assessment

Unsupervised assessments are usually done with mobile health technologies [110]
that can measure physical activity [116–118], evaluate mobility or specific move-
ments such as gait [71, 119, 120], or detect specific symptoms in unsupervised en-
vironments [121–123]. The potential added value of unsupervised assessments in
patients with mobility deficits has been shown in several studies. For example,
both predicting the risk of future falls and discriminating fallers from non-fallers
in older adults (>60 years of age) [15, 124–126] and stroke survivors [127] appears
to be more accurate when using data collected in the unsupervised environment.
Indeed, the relevance of unsupervised mobility parameters was acknowledged by the
US Food and Drug Administration [128] and the European Medicines Agency [129],
both of which encourage the inclusion of para meters from unsupervised mobility
assessments as exploratory endpoints in clinical trials.

We did a systematic search to compare the same features of mobility (ie, gait,
turns, and postural transitions) in supervised and unsupervised assessments. 12

18
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studies done in three different populations -adults older than 60 years, patients with
Parkinson’s disease, and patients with multiple sclerosis- were identified (appendix
pp 1–3). Strikingly, the same mobility parameters obtained in different settings
with identical participants differed from -40% (e.g. gait speed and cadence in
patients with Parkinson’s disease) to 180% (end turn angular velocity in healthy
older adults, Figure 3.1). These differences are much larger than the effects usually
measured after interventions. Thus, small and even moderate treatment effects
might be buried under the variations introduced by the measurement techniques
themselves if the differences between supervised and unsupervised assessments are
not appropriately considered.

Differences between supervised and unsupervised assessments

Several reasons could explain the substantial differences in mobility parameters when
comparing supervised with unsupervised assessments (Table 3.1). Unsupervised
movements are typically self-initiated, embedded in a rich behavioural context, and
goal directed. By contrast, movements in a supervised setting are usually triggered
by a command and done in an isolated, standardised setting with limited ecological
validity [132]. For example, self-initiated finger movements activate different brain
structures compared with externally triggered movements, suggesting that the brain
generates supervised movements using networks that differ from those that generate
unsupervised movements [133, 134]. Moreover, with an external focus, attention
is directed to the outcome of the action (e.g. leaving the room), while with an
internal focus, attention is directed to controlling the body parts while executing
the movement [135]. An external focus of attention results, at least sometimes, in
more fluent movements [93].

Performance can be affected by several psychological and physiological processes
that might differ across settings. These factors include alertness, motivation, the
white-coat effect (a change [typically worsening] in a parameter because it is mea-
sured in a clinical setting), the reverse white-coat effect (a change [typically an
improvement] in a clinical parameter because it is measured in a clinical setting),
the Hawthorne effect (the change in behaviour of participants because of the aware-
ness of being studied) [95], fatigue, pain, and stress. These effects might explain
why patients rise from a chair with lower peak power in unsupervised assessments
than during supervised assessments, even when these movements are done in an
identical environment and with the same equipment [120]. Similar disparities have
been identified for other gait parameters [79]. Supervised assessments seemingly
provide a measure of someone’s best, rather than their usual performance; that is,
they capture capacity rather than performance [136, 137].

The environment is usually standardised in supervised conditions (e.g. walking
in a clean and sterile environment without distractions), but much more variable
in unsupervised conditions (e.g. furniture, lighting, patterns, colour of the environ-
ment, and obstacles). Unsupervised environments can induce large variability and
asymmetry in mobility patterns, as shown by studies that assessed walking through
busy corridors and through a city centre [100, 138]. Different types of seats and
couches (e.g. firm chair or armchair) in unsupervised conditions can also partly
explain the greater variability observed in postural transitions (ie, sit-to-stand and
stand-to-sit movements or turning over in bed) in daily living [120, 126, 139, 140].
Moreover, asymmetry can be introduced through a constrained environment that
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Figure 3.1: Percentage change from parameters measured under unsupervised conditions com-
pared with supervised conditions. Data were obtained from the 12 studies identified in our system-
atic search (appendix pp 1–3). We did not illustrate variability and asymmetry parameters because
they are especially sensitive to the environment and are probably higher for unsupervised than for
supervised assessments because of the non-instructed performance and more variable physical na-
ture of the environment [130]. Cadence is the rate at which a person steps (about 110–115 steps
per min in healthy adults). Chair rise peak power is the maximum power that is exerted to lift
the body’s centre of mass during a sit-to-stand movement [131]. Median walking acceleration is
the median of the magnitude of the acceleration during walking. Stance time is the time one leg
is in contact with the surface during a step that is taken during walking. Step time is the time it
takes to complete one step (ie, the time between initial contact of one foot and the initial contact
of the contralateral foot). Stride time (also known as gait cycle time) is the time to complete two
steps (ie, the time between initial contact of one foot and the next initial contact of the same foot).
Swing time is the time one leg is not in contact with the surface during a stride that is taken during
walking (in healthy young adults, swing time is about 40% of the stride time and with ageing and
disease, the time spent in swing time often gets smaller). *Instructions in the supervised setting
were to walk as fast as possible. †Supervised assessment was done on a treadmill with fixed speed,
the unsupervised parameters used for the comparison were matched to the treadmill speed. ‡Only
the best postural transitions reported were used to calculate the duration.
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requires gait adaptation or turning in the same direction.
Furthermore, multitasking situations are common in unsupervised environments

(e.g. walking and texting), but uncommon in supervised assessments, which could
further contribute to the observed differences. Even during supervised dual-task
walking, the gait quality was usually better than that during unsupervised walking
[89]. The presence of a partner or caregiver can also affect mobility in unsupervised
conditions. Social interactions are common during everyday walking: for example,
spouses who act as an external cue to improve walking in patients with Parkinson’s
disease or to relieve anxiety in people with a cautious gait disorder [141].

Technical limitations might also add to the differences observed. Most algo-
rithms have been developed and validated in supervised environments. Because the
amount and variability of activities and mobility are much larger in unsupervised
than in supervised environments, these algorithms might have difficulties differen-
tiating similar movements (such as picking something up from the floor and sit-to-
stand movements) that were not evaluated in the supervised assessment [142, 143].
Notably, only one study found in our systematic search used algorithms that were
explicitly validated in both standardised and non-standardised settings [144]. A
further bias might be introduced by the use of different device locations on the body
(e.g. waist or ankle). The use of distinct mobile health technologies (e.g. hard
ware or algorithms) [139, 145] could also play a part, but this aspect is limited as
a change in hardware will not have a large influence on the results of a validated
algorithm, because the data collected are the same (appendix p 4). The valida-
tion of algorithms for unsupervised daily living assessments brings new challenges
as gold-standard references are currently absent, and urgently needed [146, 147].

Finally, the statistical approaches for the analysis of supervised assessments
(e.g. means and SDs), might not be optimal for characterisation of complex data
obtained from unsupervised settings. The supervised assessment typically involves
one test, whereas the unsupervised evaluation might include thousands of walking
bouts, turns, and transitions. It is yet to be determined how to best compare
a single value with values obtained from a distribution (or histogram; Figure
3.2; appendix pp 1–3). Several studies showed that the tails of an individual’s
distribution correspond better to supervised assessments and therefore to clinical
endpoints, such as risk of falls, limitation in activities, frailty, and supervised gait
speed, compared with mean and median values [120, 132, 148].

Effect of movement type and disease on mobility

Some types of mobility (e.g. postural transitions) show seemingly larger differences
than others (e.g. walking) when comparing supervised with unsupervised conditions
(Figure 3.1). This difference might even depend on specific parameters. In a study
of patients with Parkinson’s disease, the velocity at the beginning of the turn was
similar in unsupervised and supervised conditions but was lower at the middle and
substantially higher at the end of turns under the unsupervised condition [145].

Notably, the type and severity of a disease might also have an effect on the differ-
ences between supervised and unsupervised assessments (Figure 3.1) [71, 149]. For
example, the differences in stand-to-sit duration between both settings were smaller
in older adults than in patients with Parkinson’s disease [139]. Patients with mul-
tiple sclerosis showed an even more surprising pattern. Different to patients with
Parkinson’s disease and older adults, their performance was comparable under super-
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Table 3.1: Advantages and disadvantages of supervised and unsupervised mobility assessments

Supervised as-
sessment

Unsupervised assessment

Clinometric properties (norms and
test-retest reliability)

Established In progress

Setting Artificial Ecologically valid (represents real-
world performance)

Number of assessments Snapshot, one-
time evaluation

Multiple or even continuously per-
formed tests can be obtained over days,
weeks, and months

Sensitivity to fatigue, affect, and
mood

Minimal Yes, reflects typical performance and a
range across the day and week, includ-
ing best and worse behaviours

Sensitive to white-coat,
Hawthorne, and related effects

Yes Minimal

Patient centred Not necessarily Yes
Captures real-world challenges Somewhat Yes
Real-time feedback for treatment Questionable Yes
Interpretation of results Easy More challenging
Environmental influences Minimal Yes

vised and unsupervised assessments (gait speed) [150], while showing the opposite
behaviour of what was seen in patients with Parkinson’s disease and older adults
(ie, for stance, step, and swing time, which were all lower in unsupervised condi-
tions) [144]. The reasons for these observations are not yet clear, but differences in
physical, attentional, and cognitive capabilities might contribute [151]. These dif-
ferences between supervised and unsupervised performance might even be relevant
at the subgroup level. The reported changes in turning parameters in patients with
Parkinson’s disease [145] differed substantially between fallers and non-fallers, with
or without fear of falling. Remarkably, fallers with fear of falling showed slower
turns in the supervised assessment, but faster turns in the unsupervised assessment,
than did patients in other Parkinson’s disease subgroups [145].

Implementation of unsupervised assessments in clinical prac-
tice and future research

As we anticipate that unsupervised assessments will become a prerequisite for future
clinical decision making and clinical trials, in this section we provide directions to
help move this emerging field forward (Table 3.2). Although there is still insuffi-
cient understanding of the association between supervised and unsupervised mobility
when interpreting data obtained from unsupervised environments, studies suggest
that any extrapolation of unsupervised mobility based on findings from supervised
mobility might be substantially influenced by the type, subtype and stage of the
disease, as well as type of mobility extracted from the data [139, 144, 145, 148].

Technical limitations should be also addressed, for example, by using the same
mobile health technologies, located in the same place, for both supervised and un-
supervised measurements. The algorithms used to calculate mobility parameters
should be validated, to the highest degree possible, in both settings. Moreover,
algorithms for mobility assessments should be validated separately for each type
of neurological movement disorder as they might be associated with distinct move-
ment patterns [71, 72]. Notably, even healthy people move differently at different
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Table 3.2: Gaps, challenges, and steps toward a more informed use of supervised and unsupervised
mobility assessments

Gaps and challenges Potential resolution
Supervised
versus un-
supervised
mobility as-
sessment

Weak associations might exist between
the measures of these two assessments

Acknowledge the limited understanding
when comparing supervised with un-
supervised data and conduct more re-
search to gain a better understanding
of the interactions between these types
of assessments

Algorithms Algorithms for the assessment of unsu-
pervised mobility are difficult to vali-
date

Work on new approaches that can be
used to validate algorithms for unsuper-
vised mobility assessment against, or at
least correlated with, clinically estab-
lished parameters

Age and type
of disease

Different age phases and diseases have
different mobility performances, and a
one-size-fits-all mobility-assessing algo-
rithm might deliver low accuracy values
in at least some cohorts

Develop and validate algorithms for
the evaluation of unsupervised mobility
separately per age groups and diseases

Harmonisation Description of metadata, assessment
protocol, and validation method have
not yet been harmonised in the field,
hindering the comparison across stud-
ies

Use standardised protocols to report,
particularly concerning the description
of the primary data, duration of assess-
ments, description of the data analysis
process, or reference to the algorithm
and its validation

Data analysis Statistical analysis and selection of
summary measures of unsupervised
data might be very different from usual
statistical approaches

Explore new options for data analysis,
such as the extremes of mobility perfor-
mance during the day

Patient-
reported
outcome
measures

Associations between unsupervised as-
sessment and patient-reported outcome
measures are scarcely investigated

Studies investigating either unsuper-
vised mobility or patient-reported out-
come measures should consider includ-
ing the other evaluation tool and com-
pare outcomes on an exploratory level

Behaviour The effect of unsupervised mobility as-
sessment on the behaviour of the user
has not been investigated

Studies investigating this aspect are ur-
gently needed; focus should be on as-
sessment systems that provide feedback
to the users

Upper body
movements

Studies investigating upper body move-
ments under supervised and unsuper-
vised conditions are rare

More studies are necessary to see
whether similar results in mobility are
seen for upper body movements

ages [152, 153] and fitness levels [153]. Another requirement to increase the useful-
ness of unsupervised measures is harmonised reporting of parameters (e.g. as a core
dataset across studies), and should include the reporting of meta-data (ie, data that
accompany and describe the primary data) [154]. The duration of the unsupervised
assessments should be standardised and the type of movement assessed should be
reported in detail [154, 155].

Special emphasis should also be placed on more sophisticated analyses of unsu-
pervised data. A promising approach is to consider and leverage specific episodes of
mobility (e.g. turning, sit-to-stand, and stand-to-sit movements, and other move-
ments used regularly during the day) and novel parameters, such as the distribution
and extreme values of mobility parameters (Figure 3.2) [120, 132, 148, 156]. So far,
these analyses have been done only for healthy older adults and not for patients
with neurological disorders. An example could be the evaluation of the effects of an
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experimental therapy. The effects might be measured best in the optimum state (im-
provement in supervised assessment and the best 10% of an individual’s distribution
of the unsupervised assessment), while the median and lower range of an individ-
ual’s distribution might be informative of changes throughout the day (Figure 3.2).
Future trials could use this information as outcomes.

Figure 3.2: Gait speed measures based on evaluation in the laboratory and in the daily living
environment in a 78-year-old woman with a history of falls. (A) The supervised testing yields a
single value (101 cm/s), as indicated by the arrow. (B) By contrast, the daily living, unsupervised
testing yields hundreds of tests of gait speed and a distribution of values. The daily living values are
based on 30 s walking bouts from a 1-week recording [89]. Multiple measurements, in contrast to a
single, one-time snapshot, might be highly valuable for the improvement of assessment protocols.
In many of these unsupervised tests, gait speed is lower than that seen during supervised testing.

Variability measures can serve as a useful example of how important it is for
clinicians and researchers to have a deep understanding of how their treatment and
compounds influence mobility in daily life. Some variability measures (e.g. stride
length variability) are highly affected by the environment and should be measured in
a supervised setting, which better reflects the patient’s capacity [130]. In the home
environment, decreased variability with similar mean values might be a positive
outcome if the goal of an intervention is to reduce motor response fluctuations in
patients with Parkinson’s disease. In a trial investigating patients with suboptimal
treatment, a decrease in variability associated with an improvement of mean values
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can indicate more consistent good performance during the day. In trials focusing
on behavioural symptoms, increased variability might indicate better adaptability,
more variable and enriched physical activity, and social interactions. Thus, the
context is crucial for evaluating the effect of an intervention.

Whether data obtained from unsupervised environments provide relevant pro-
gression and treatment response information, rather than acting as markers of rou-
tine, fixed behaviours or trait markers, should be evaluated in future studies. Trait
markers could still be good measures of progression, but appropriate interpretation
is key for practical use. For example, the actions done during daily living are very
different per individual, but show a surprisingly similar pattern within an individual
[157].

Future statistical analyses should take advantage of the high number of repeated,
specific movements occurring during long-term observation periods in unsupervised
environments (Figure 3.2) [120, 145]. Deep learning, machine learning, and artificial
intelligence approaches should be applied. Algorithms that learn from data have
shown remarkable success in making accurate predictions for complex problems that
previously depended on human skills (e.g. referral for eye diseases [158], detection
of Parkinson’s disease motor fluctuations) [159].

Future work should further explore the associations between objective digital
measures with conventional measures of mobility, and with patient-reported outcome
measures (PROMs) and caregiver-reported outcomes. Both PROMs (in this case,
subjectively) and mobile health technologies (in this case, objectively) offer remote
measurements in the unsupervised setting, and both approaches are potentially more
ecologically valid and more meaningful to patients and their caregivers than are data
acquired in the traditional clinical setting. Among the studies that we identified,
only four assessed correlations with PROMs related to mobility, with contrasting
findings (appendix pp 1–3).

We should keep in mind that mobile health technologies might alone cause be-
havioural changes, even when no feedback is provided (e.g. Hawthorne effect), but
especially if feedback is provided (e.g. to induce compliance). Studies are needed
to investigate if and when the performance of the user in the unsupervised set-
ting becomes similar to that in the supervised setting, and whether the induced
behavioural changes themselves might have therapeutic effects that could interfere
with the evaluation. For example, patients who know that they are equipped with
mobile health technologies might increase their level of physical activity, particularly
when feedback about their own performance is provided.

Health-care professionals should also interpret their supervised assessments cau-
tiously, as these findings could have limited ecological value. To improve their value,
we suggest to provide natural, everyday life-like situations and instructions during
supervised assessments. Explicit goals should be given to the patients, forcing them
to focus on the goal instead of on the actual movements that must be performed
to reach the goal [154]. For example, instructing a sitting person to walk allows for
a more naturalistic observation of the sit-to-stand performance, because the person
focuses more on the walking task rather than the necessary transition from sit-to-
stand. Other opportunities to observe uninstructed movements occur when patients
move in the waiting room or on their way to the clinician’s office [160]. It is also
essential to gain as much information as possible about the living environment of
the person being assessed. If the person has cluttered furniture at home, health-
care professionals might focus more on assessing mobility in small, crowded places
instead of large, open hospital hallways. Additionally, the type of furniture, lighting,
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patterns, and other environmental factors might be important [161].
Mobility differences between the supervised and unsupervised setting can also be

relevant for the measurement of other symptoms and deficits. For example, deficits
in upper extremity movement occur in many patients with neurological disorders
[162], and several methods have been proposed to continuously assess upper limb
bradykinesia in daily life [69]. However, a direct comparison of these various symp-
toms in supervised and unsupervised settings remains absent. One exception is a
study that assessed habitual keyboard typing behaviour in patients with Parkinson’s
disease [163]. This study showed that various key-stroke metrics as measured in the
clinic were strongly correlated with those obtained at the patient’s home, suggesting
that some upper extremity performances (in this case, a measure of bradykinesia)
are similar under supervised and unsupervised conditions. This finding underscores
the need to assess different aspects of motor functioning on a case-by-case basis.

Conclusions

There is increasing evidence that, depending on whether mobility is assessed
under supervised or unsupervised conditions, the results can differ substantially
[89, 120, 132, 164]. These striking differences and the importance of measurements
obtained in both settings call for expanding our knowledge about unsupervised mo-
bility (Table 3.2). Unsupervised mobility parameters could be implemented to im-
prove clinical care and could act as primary or secondary end points in future inter-
vention trials.

Search strategy and selection criteria

We searched PubMed, Web of Science, and Google Scholar for articles pub-
lished in English, Dutch, or German between Aug 1, 2014, to Aug 1, 2019 with
the search terms “environment* OR setting* OR compare”, “supervised OR lab
OR laboratory OR standard* OR clinic*”, “unsupervised OR home OR real
life OR real world OR daily life OR daily living OR free living”, and “wearable
sensor OR inertial sensor OR inertial measurement unit OR acceleromet* OR
gyroscope OR pendant sensor”, not “intervention [Title/Abstract] OR reha-
bilitation[Title/Abstract] OR heart rate[Title/Abstract] OR energy expendi-
ture[Title/Abstract] OR classification[Title/Abstract]”. Studies were relevant
if they measured similar mobility parameters with a wearable device in a
supervised and in an unsupervised setting among patients with a neurologi-
cal disorder or older adults (with mean or median age of at least 60 years).
Reference lists of relevant articles were screened for additional references to
generate the final reference list, and the authors were asked to provide input.
The final reference list was generated on the basis of the relevance of papers
to the topics that are discussed in this Personal View.
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Appendix

Table 3.3: Sample characteristics, parameters measured, technology used, setting, instructions, and main findings of studies comparing quantitative parameters
of supervised versus unsupervised movement and mobility aspects.
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# = Parameters not considered in further analyses due to lack of similarity in the parameters between settings or due to the redundancy of parameters (4th

column). Asym = asymmetry. MS = Multiple sclerosis. NA = not available. OA = older adults. PD = Parkinson’s disease. Var = variability
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Figure 3.3: Comparison of the raw signals of two inertial measurement units (IMUs) from different brands. Two IMUs from different brands (Noraxon myomotion,
brand 1, and Gait Up physilog 5, brand 2) were placed on top of each other on the lower back during a walking assessment, and then the raw data was extracted.
Vertical acceleration (from the accelerometer) and angular velocity (from the gyroscope) are displayed. In the top two graphs (A and B), an offset to one of
the signals was added to be able to see the different signals. In the bottom graphs (C and D), data is shown without offset (i.e. the “original” data) which
demonstrates that the different IMUs collected almost the identical raw signals.
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4. Quantification of arm swing during walking

Abstract

Neurological pathologies can alter the swinging movement of the arms during
walking. The quantification of arm swings has therefore a high clinical relevance.
This study developed and validated a wearable sensor-based arm swing algorithm
for healthy adults and patients with Parkinson’s disease (PwP). Arm swings of
15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each
wrist while walking on a treadmill, and (ii) with reflective markers for optical
motion capture fixed on top of the respective sensor for validation purposes. The
gyroscope data from the wearable sensors were used to calculate several arm swing
parameters, including amplitude and peak angular velocity. Arm swing amplitude
and peak angular velocity were extracted with systematic errors ranging from
0.1 to 0.5° and from −0.3 to 0.3°/s, respectively. These extracted parameters
were significantly different between healthy adults and PwP as expected based on
the literature. An accurate algorithm was developed that can be used in both
clinical and daily-living situations. This algorithm provides the basis for the use
of wearable sensor-extracted arm swing parameters in healthy adults and patients
with movement disorders such as Parkinson’s disease.

Keywords: Gait; Gyroscope; Inertial measurement unit; Parkinson’s disease

32



4

Materials and Methods

Introduction

A distinct feature of human locomotion is the rhythmic swinging motion of the
arms [165, 166]. The amplitude of the swing is associated with gait speed and cog-
nitive loading [27, 167]. Active increase of arm swings has the potential to stabilize
gait [168]. The reduction of arm swing amplitude and other alterations of the arm
swing pattern, including asymmetry and irregularity, can be related to neurologi-
cal pathologies. In stroke patients, the arm swing amplitude of the affected arm is
smaller compared to that of the controls [169]. Patients with Parkinson’s disease
(PwP) also show a smaller arm swing amplitude and, in addition, more asymmetry,
compared to controls [38, 170, 171]. Therefore, the arm swing is regularly eval-
uated in a clinical setting and has the potential to improve diagnostic accuracy
[22, 170, 172] and map disease progression [22, 170]. Asymmetry in PwP might be
associated with disease progression, as a study with 16 PwP in an early disease stage
reported a positive correlation between asymmetry and the Hoehn and Yahr (HY)
stage in an off-medication state [173]. Similar results were observed in eight mild
PwP, showing a positive correlation between asymmetry and the Unified Parkinson’s
Disease Rating Scale (UPDRS) of the limbs [170]. However, another study analyzed
21 PwP with HY stage I and 19 PwP with HY stage II using an ultrasound-based
motion analysis system, and the study found more asymmetry in the HY stage I
PwP group compared to the HY stage II PwP group [171]. Levodopa intake or
dopaminergic treatment has shown to improve arm swing amplitude, peak swing
velocity, and asymmetry of the amplitude in 104 moderate to severe PwP [39]. This
was confirmed for asymmetry in another study investigating 16 mild to moderate
PwP [173].

Due to the dynamic technical development, the measurement of human move-
ment and mobility has been revolutionized over the last decades and years. Wearable
inertial systems (inertial measurement units, IMUs) are an especially attractive as-
sessment tool for arm swings, as these techniques make it possible to measure move-
ments during everyday life [67, 172, 174, 175]. The relevance of measuring mobility
in everyday lives of patients is increasingly recognized because it is likely to differ
substantially from the mobility that is performed in front of a healthcare professional
[176].

This study presents, to our best knowledge for the first time, the technical de-
velopment and clinical validation of a wearable sensor-based arm swing algorithm
for healthy adults and PwP.

Materials and Methods

Subjects and Data Collection

There were 15 healthy adults and 14 PwP who participated in this study. The study
was approved by the ethical committee of the medical faculty of Kiel University
(D438/18) and performed in accordance with the Declaration of Helsinki of 1975.
All subjects provided written informed consent before participating. The inclusion
criterion for the healthy adults was no disorders that affect movement, and the
inclusion criterion for PwP was a Parkinson diagnosis according to UK Brain Bank
Criteria [177].

The healthy subjects walked at three different speeds (2, 3, and 4 km/h) on a
treadmill (size: 2.2 by 0.7 m; Woodway, Weil am Rhein, Germany) for 80 s. The
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PwP walked on their self-selected speed on the same treadmill for at least 60 s.

Definition of Arm Swing during Locomotion

In order to develop this algorithm, it was necessary to define the movement “arm
swing” in such a way that on one hand it is coherent with existing information
[165, 166], and on the other hand also addresses the characteristics of the technology
used. We therefore propose the following definition:

Definition 1. Arm swing is a rotational movement of the arm, occurring during
walking and running in bipeds with a periodicity of around 1–2 Hz. The hand and
arm move freely through space in opposite directions with most of the movement in
the sagittal plane of the body frame (backward and forward; Figure 4.1a).

Figure 4.1: (a) Definition of swings. (b) Placement and orientation of the right-handed coordinate
system of inertial measurement unit and reflective markers.

This arm swing algorithm was developed for the data collected during walking.
The periodicity of an arm swing had to be between 0.3 and 3 Hz. The minimum
amplitude to define an arm swing was set at 5°. Only rotations around the frontal
and sagittal axis were taken into account because the wearable sensor might not
always be aligned with the sagittal plane of the body frame during the swinging
motion of the arms. In this way, all the rotations of the arms are measured except
the longitudinal rotations, since they will also be influenced by turns of the body.

Equipment

All subjects were equipped with a cluster of three reflective markers (11 mm) and
an inertial measurement unit (IMU) (Noraxon USA Inc., Scottsdale Arizona, AZ,
USA) containing 3D accelerometers, 3D gyroscopes, and 3D magnetometers, on
each forearm. The position of the markers was aligned with the position of the IMUs
to have a similar orientation of the right-handed coordinate systems (Figure 4.1b).
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The markers were captured with a 3D optical motion capture system (Qualisys
AB, Göteborg, Sweden) at 200 Hz. Both systems recorded simultaneously at 200 Hz.

Data Processing

Inertial Measurement Unit Data

Only the gyroscope data of the IMU were used in this offline algorithm. The algo-
rithm was written with MATLAB 2017a.

The gyroscope data were filtered with a zero-phase second order Butterworth
low pass filter with a cut off frequency of 3 Hz to omit noise and possible tremors
(ωfilt). A principal component analysis (PCA) was performed on the x and y
component of the angular velocity. The longitudinal component (z-axis) was not
taken into account for the PCA in order to remove any longitudinal rotations
(such as turning) from the data. From here on, only the first component of the
PCA (ωPCA1) is used for the analysis. This first component represents the angular
velocity in the direction of the arm swing. Extracting the angular velocity in the
swing direction makes this algorithm insensitive to different wearing locations of
the IMU on the forearm as long as the z-axis is aligned with the longitudinal axis of
the arm. The angle (α) was calculated from the angular velocity in the swing direc-
tion (ωPCA1) by numerical integration using a trapezoidal integration approximation:

α(t) =

∫ t

τ=0

ωPCA1(τ)dτ. (4.1)

A symmetric moving average (m̂α) was calculated with a window length of 2q+1,
where q is half a second (representing a window length of 1.005 s with a sample
frequency of 200). The moving average was subtracted from the angular data to
remove the low frequency drift.

m̂α(n) =

q∑
j=−q

b(j)α(n+ j), q < n < N − q; (4.2)

with b(j) =

{
1
4q
, if j = ±q

1
2q
, else

αdetrend(t) = α(t)− m̂α(t). (4.3)

The frequency was extracted with a fast Fourier transform (FFT) from 3 s rect-
angular windows with 75% overlap. The dominant frequency was extracted from
each window. The percentage of the power that was in the 0.3–3 Hz domain was
calculated and used to determine whether there was a periodical movement in this
specific frequency domain of arm swing motion. When this percentage was below an
empirically determined threshold of 90%, this window was not taken into account
for further analysis.

The local maxima and minima from the angle signal (αdetrend) were extracted.
Both the positive and negative peaks needed to have a minimum peak prominence
of 2° and a minimum distance of 60% of the cycle time that was extracted from the
dominant frequency per window from the FFT. The overlap of the 3 s rectangular
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windows for the peak detection was 50%. Peaks that were detected multiple times
due to the overlapping windows were only considered once. In between two maxima,
only one minimum was allowed, and in between two minima only one maximum was
allowed. In case of an extra detected peak, the smallest peak was discarded. The
magnitudes of a consecutive minimum and maximum or a maximum and minimum
were added to each other to obtain the amplitude of the swing. The time instants
of these extrema were then used to find the extrema in the angular velocity in the
swing direction to obtain the peak angular velocity. When a swing took longer
than twice the average cycle time, it was discarded because of the low probability
of it being an actual arm swing. Any outliers (peaks that were larger than three
times the 80th percentile of the peaks detected in the angle signal) were removed
because those were probably other movements than the regular swinging motion
during walking (e.g., scratching the head). Every swing with an amplitude below 5°
or a peak angular velocity below 10°/s was removed from the data because a high
detection accuracy cannot be guaranteed during such small arm movements. An
overview of the main steps taken are provided in Figure 4.2.

Figure 4.2: Block diagram of the arm swing algorithm

Additionally, the peak angular velocity was divided into forward and backward
angular velocities, based on whether it was a minimum or a maximum in the an-
gular velocity in the swing direction. This makes it possible to analyze potential
differences caused by the direction of the movement. When there were no periodical
movements of the arm or the arm movements were too small, no arm swing pa-
rameters were calculated. To understand whether the amplitude and peak angular
velocity were calculated during the complete walking bout or only for a shorter pe-
riod, the percentage of time in which there were swings detected in one arm during
the walking bout was extracted. How frequently the arms moved was represented in
the frequency as was extracted with the FFT. The similarity between neighboring
swings was represented with the regularity. The regularity was calculated based on
the autocorrelation of the angle [178]. The autocorrelation was extracted with a 4.5
s Tukey window with a cosine fraction of 0.3 and a 99% overlap of the windows.
The maximum autocorrelation of each window was extracted, and the average of
these values was taken as regularity. A regularity of 1 means that a swing is exactly
similar to its neighboring swings.

When both arms were measured and the IMUs were synchronized, the percentage
of simultaneously occurring arm swings in both arms was calculated. Arm swings
were deemed simultaneous when a change in direction (i.e., forward to backward or
backward to forward) of an arm swing in one arm was within 500 ms from a change
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in direction of the arm swing in the other arm. If at least 60% of the walking episode
was with simultaneously swinging arms, the asymmetry index (ASI) was calculated
for the average amplitude and peak angular velocity. For the calculation of the ASI,
only the phases with swings detected in both arms simultaneously were taken into
account [179]:

ASI =
(L−R)

max(L,R)
× 100 (4.4)

where L is the amplitude or the peak angular velocity of the left arm and R the
similar parameter of the right arm. An ASI of 0% reflects identical values of the left
and right arm. The coordination between the left and right arm was calculated when
during at least 60% of the walking episode, arm swings were detected in both arms
simultaneously. The coordination was based on the normalized cross-correlation
of which the minimum value was calculated. The absolute of this minimum was
calculated for each swing during the phases where there were arm swings in both
arms simultaneously, of which then the average was taken to obtain the coordination.
This is a slightly adjusted version of [173], where they calculated the maximum of
the absolute signal instead of the absolute minimum.

rLR(m) =

∑N−m−1
n=0 ωPCA1_L(n+m) ωPCA1_R(n)√∑N−m−1

n=0 ωPCA1_L(n)2
√∑N−m−1

n=0 ωPCA1_R(n)2
, (4.5)

coordination =
1

n

∑
|min(rLR(m))|. (4.6)

with ωPCA1_L and ωPCA1_R the angular velocity in swing direction of the left and
right arms respectively, and m ranging from 0 ± 0.5 s. A value of 1 indicates that
the left and right arms swing with a similar rhythm that is exactly out of phase with
each other. A value of 0 indicates that there is no coordination between the arms.

The algorithm is available online (https://github.com/EWarmerdam/ArmSwing
Algorithm).

Optical Data

Gaps in the optical data smaller than 250 ms were filled based on marker in-
tercorrelations [180]. The parts of the data with gaps larger than 250 ms were
discarded. A local coordinate system was calculated from the three markers
on the wrist. The angular velocity was obtained from the derivative of the
orientation. The orientation was also used to calculate the Cardan angles (order:
zxy). The angle and angular velocity were rotated in the swinging direction
based on the results from the PCA of the IMU data. From there on, the ampli-
tude and peak angular velocity were obtained in the same way as with the IMU data.

Statistical Analysis

For the validation, the data of both arms were taken together. To compare the angle
and the angular velocity between both systems, the root mean square errors (RMSe)
between the IMU and the optical data were calculated. A Bland–Altman analysis
was performed to extract the systematic error (average of the difference between
the IMU-derived and the optical system-derived data) and the random error (95%
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confidence intervals ± systematic error) of the arm swing amplitude and the peak
angular velocity [181]. The average absolute error was calculated to obtain the
magnitude of the error between the two systems.

For the clinical validation, the arm swing parameters of the healthy partici-
pants walking at different speeds were compared to those of the PwP group. The
amplitude, peak angular velocity, percentage of walking bout with arm swing, fre-
quency, and regularity were calculated with averaged data of the left and right
arms. The percentage of the walking bout with the arm swing in both arms simul-
taneously, asymmetry, and coordination were calculated by comparing left versus
right arm data. For the asymmetry, the magnitude was taken for the analysis. A
Mann–Whitney U test was used to test for significance (p < 0.05).

Results

One PwP was taken out of the analysis because all amplitudes of the arm movements
did not reach the 5° threshold. An overview of the remaining participants taken into
the analysis is provided in Table 4.1.

Table 4.1: Demographics (mean ± standard deviation) of the subjects.

Healthy Adults PD Patients
n (male) 15 (9) 13 (5)

Age [years] 31 ± 9 71 ± 9
Body mass index [kg/m2] 23.4 ± 2.7 28.5 ± 5.9

Hoehn and Yahr stage (1–5) NA 2.8 ± 0.7

Healthy Adults

Fifteen healthy adults walked at three different speeds on a treadmill. The RMSe
of the angle and angular velocity between the IMU- and optical system-derived
signals were below 1° and below 0.05°/s, respectively (Figure 4.3, Table 4.2). The
systematic errors were in the range of 0.1 to 0.5° for the amplitude and -0.1 to
0.3°/s for the peak vertical velocity of the different speeds (Figure 4.4, Table 4.2).
The random error of the amplitude was between 2.2 and 2.7°, and the random error
of the peak angular velocity was between 4.2 and 5.3°/s. The absolute errors ranged
from 0.9 to 1.1° for the amplitude and from 1.4 to 1.9°/s for the peak angular velocity.

Patients with Parkinson’s Disease

Thirteen PwP walked at their preferred speed (average 1.4 km/h) on a treadmill.
The RMSe between the IMU-derived and optical system-derived data was 1.16°
for the angle and 0.16°/s for the angular velocity (Figure 4.3, Table 4.2). The
systematic errors were 0.2° and -0.3°/s for the amplitude and peak angular velocity,
respectively (Figure 4.4, Table 4.2). The random errors were 3.8° and 6.8°/s, and
the absolute errors were 1.1° and 2.0°/s for the amplitude and peak angular velocity,
respectively.
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Figure 4.3: The angle of the inertial measurement unit (IMU) and optical data of a healthy
participant and of a patient with Parkinson’s disease.

Table 4.2: Error measures of IMU-derived arm swing data, compared to optical system-derived
data.

Healthy
Adults 2
km/h

Healthy
Adults 3
km/h

Healthy
Adults 4
km/h

PwP
Pre-
ferred

Angle RMSe [°] 0.83 0.91 0.72 1.18
Angular velocity RMSe [°/s] 0.03 0.03 0.03 0.16

No. of swings 3885 3788 4103 1762
Systematic error 0.1 0.4 0.5 0.2

Amplitude [°] Random error 2.6 2.2 2.7 3.8
Absolute error 0.9 0.9 1.1 1.1
Systematic error -0.1 -0.1 0.3 -0.3

Peak angular velocity Random error 4.2 4.4 5.3 6.8
[°/s] Absolute error 1.4 1.6 1.9 2.0

PwP: patients with Parkinson’s disease; RMSe: root mean square error.

Clinical Validation

All the arm swing parameters were extracted with the algorithm and compared
between the groups. The percentage of the walk with swinging motion in one arm
was the only parameter that was significantly different between the groups on all
speeds. On higher speeds, more significant differences were found between the
groups (Table 4.3).
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Figure 4.4: Bland–Altman plots are shown with the arm swing amplitude and peak angular
velocity at 2 km/h (a), 3 km/h (b), and 4 km/h (c) for the healthy adults and at the preferred
speed (d) for patients with Parkinson’s disease. On the x-axes, the average of the IMU and
optical results are presented, and on the y-axes the differences between IMU and optical results
(IMU-optical) are presented.

Discussion

This study presents the development and the validation of an arm swing algorithm
based on wearable sensors (i.e., IMUs) positioned on the wrists for healthy adults and
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Table 4.3: IMU-based arm swing parameters for the healthy adults and the patients with Parkin-
son’s disease.

Healthy
Adults 2
km/h

Healthy
Adults 3
km/h

Healthy
Adults 4
km/h

PwP
Pre-
ferred

Amplitude [°] 16 23* 36* 17
Peak angular velocity [°/s] 57 84* 122* 60
Forward peak angular velocity [°/s] 59 87* 124* 60
Backward peak angular velocity [°/s] 55 80* 120* 59
Percentage of walk with swinging motion in an
arm [%]

93* 99* 99* 78

Frequency [Hz] 0.9 0.9 0.9 0.9
Regularity (0–1) 0.8 0.9* 0.9* 0.7
Percentage of walk with swinging motion in both
arms simultaneously [%]

90* 97* 98* 64

Absolute amplitude asymmetry index [%] 20 17 20 36
Absolute peak angular velocity asymmetry index
[%]

19 18 21 33

Coordination (0–1) 0.7 0.8 0.8 0.8

*: significantly different from patients with Parkinson’s disease (p < 0.05); see the data
processing part in the methods for the calculations and interpretation of the parameters. For the
asymmetry and coordination, seven PwP could be included in the analysis; the other four did not

fulfil the criteria for the calculation of these parameters (see Methods section).

PwP. Based on our data, the algorithm is extremely accurate. Arm swing amplitude
and peak angular velocity can all be extracted with a very small systematic error
compared to the reference system.

The random errors are slightly higher for the PwP group compared to the healthy
adults group. This may -at least partly- be due to the less fluent movement of the
arms in PwP. It can be seen in Figure 4.3 and in the RMSe (Table 4.2) that the
IMU and optical data do not overlap as well in the PwP compared to the curves
derived from a healthy adult. This deviation between the IMU and optical data is
especially seen around the peaks.

The healthy adults were measured at multiple speeds. Based on visual interpre-
tation, the walking speed was not of influence on the accuracy of the algorithm. This
should make the algorithm suitable for measuring arm swings in usual daily-living
situations, which is particularly relevant for longitudinal and therapy studies. How-
ever, the algorithm itself cannot detect when someone is walking and might therefore
include other repetitive movements of the arm that are performed throughout the
day. Ideally, the arm swing algorithm should therefore be combined with a gait
detection algorithm [182, 183] when used for measurements outside the lab to make
sure as much as possible that arm swings are only analyzed during walking. It should
also be noted that a walking bout needs to be at least 3 s for the algorithm to work.
For daily-living assessments, a higher minimum walking bout length might need to
be set to exclude artefacts. This can omit wrongly increased variability of the data.
Users of the algorithm should also take arm swing data from longer walking bouts
with a certain degree of caution, as also during such walking episodes, arm move-
ments that are not arm swings as defined in the introduction can occur. Examples
are arm movements that are not based on freely moving hands (e.g., when swinging
a bag or using Nordic walking sticks) and animated movements (e.g., performed
based on a given rhythm that comes from earphones of external sources).

According to the protocol of a future study or the main objectives of clinical
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management that aim to integrate this algorithm in their approaches, the algorithm
may be adapted to individual needs and situations. For example, in this particular
study, arm swings with an amplitude below 5° were excluded. This is a very low
threshold (corresponding to a horizontal displacement of 6 cm with an arm length
of 70 cm), and can lead to false positive results in less strictly defined data sets (for
example, it may detect movements of the arms and hands that are in the pockets
during walking). Therefore, for daily-living assessments, we suggest increasing the
threshold for the amplitude and combining it with a gait detection algorithm. Future
studies must evaluate which thresholds have the highest accuracies, especially when
recording unsupervised daily-living data. It should be mentioned again that this
inaccuracy falls within the clinical and phenomenological domain and does not call
into question the high technical validity of the algorithm (i.e., the compliance with
the reference; see above).

For an initial clinical validation, all the parameters from the algorithm were
extracted and compared between healthy adults and PwP. The percentage of the
walk with swinging motion of the arms was significantly different in PwP, compared
to all walking conditions performed with healthy adults. This makes a comparison
of the arm swings between the groups difficult because we have to assume that in the
PwP group, those arm swings are exactly the ones not included in the calculation
that fall below the specified threshold of 5°. Therefore, the following qualitative
comparisons must be interpreted with caution. Nevertheless, differences can be
found in all group comparisons (Table 4.3).

When we compared the 4 km/h condition of the healthy adults, which comes
probably closest to their preferred speed, we found significant differences in arm
swings between the groups, and this finding corresponds to the literature [33, 184,
185]. Since we found less significant differences on 2 km/h, it could be that walking
speed has an influence on the differences found between healthy adults and PwP,
which certainly has to be investigated in future studies.

The lateralization of the disease may also have a relevant influence on arm swing
parameters in PwP. A study with slow walking speeds on a treadmill only found
significant differences for the amplitude between the most affected side of PwP com-
pared to healthy adults [171]. Our results on asymmetry corroborate these prelimi-
nary results. The percentages of the walks with simultaneously performed swinging
motions in both arms were substantially lower in PwP, compared to healthy adults
at all measured walking speeds. We assume similarly according to our reasoning
in the above paragraph that all qualitative evaluations that were performed in the
PwP group may thus underestimate the real asymmetry and lack of coordination
of arm swings because it is exactly those arm swings with high asymmetry and low
coordination values that are excluded based on our threshold (arm swing > 5°).
Nevertheless, it is noticeable (see also Table 4.3) that PwP have higher amplitude
and peak angular velocity asymmetry indices than healthy adults. In conclusion,
our preliminary clinical results indicate that the known differences in arm swing
between PwP and healthy adults can be reliably and accurately detected with this
algorithm, and future clinical studies may include this algorithm.

A study reporting about prodromal changes of gait in PD was recently published
[15], but it did not report about arm swing behavior. The algorithm presented here
can now be used to analyze such data sets with higher granularity and more exhaus-
tive information about body movement. The algorithm can also extend the move-
ment assessment for observational studies, clinical trials, and clinical management
to the daily-living environment, an area that we have not been able to investigate
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and understand in much detail so far. The evaluation of disease progression and
response to treatment in PwP has a similar or even higher relevance, not only for
the amplitude of arm swings but also for all other parameters presented in Table
4.3. Arm swing parameters could help to differentiate healthy adults from PwP, and
they may be useful for the detection and diagnosis of additional diseases associated
with impaired mobility (such as multiple sclerosis). Of course, the application of
this algorithm also opens up new options in the evaluation of arm swings in the
context of aging in general, with respect to the significance of arm swings in fallers,
and how arm swings differ between supervised and unsupervised environments, to
name a few examples.

Some aspects should be taken into account when using the algorithm in future
studies. First, turns during walking in daily living have no influence on the algorithm
itself, since rotations around the longitudinal axis are not taken into account. When
the walking turns should be separated from the walking data, a turning algorithm
should be used to detect the turns [119, 186]. Second, in general, the arm moves in
phase with the contralateral leg. However, on slower speeds, the arms can swing in
a 2:1 ratio with the legs instead of 1:1 [187, 188]. This in itself is no issue for the
algorithm. However, during the transition phases between these two ratios (Figure
4.3, about 7 s), it depends on how fast the frequency changes and whether the
swing is above the set thresholds if this swing in between is detected. When it
is detected, it might influence the variance of the data, since the amplitude, peak
angular velocity, and average angular velocity are smaller compared to the other
swings. Third, people can be measured on one or two wrists. It is self-explanatory
that in case of only one wearable device, the percentage time where there was a
swing in both arms, the asymmetry, and the coordination cannot be calculated.
Fourth, for some of the PwP, there were only a few arm swings detected during the
walking bout because the arm movements did not exceed the 5° threshold. This is
likely to happen more often in severe PwP.

The study faces the limitation that during the measurements the participants
walked on a treadmill, which results in slightly different upper body movements
compared to over ground walking [189]. However, we consider this a minor is-
sue, as the main aim of the study was the validation of the IMU-derived arm
swing algorithm against a reference that was assessed simultaneously. Moreover,
the healthy controls were in their young adulthood and thus substantially younger
than PwP. This implies that we are mapping an age effect in the clinical validation
data for which we cannot correct in this data set. However, we are optimistic that
we will still map a Parkinson-associated difference, as our data confirm the data
from previously published studies. We are also working on a detailed representation
of arm swings in existing data sets of large cohorts, including the TREND study
(https://www.trend-studie.de/).

Conclusions

An arm swing algorithm was developed and validated for both healthy adults and
PwP. The algorithm is highly accurate in a clinical environment and has high
potential to be used in a daily-living environment as well.
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Abstract

The evidence of the responsiveness of dopaminergic medication on gait in patients
with Parkinson’s disease is contradicting. This could be due to differences in com-
plexity of the context gait was in performed. This study analyses the effect of
dopaminergic medication on arm swing, an important movement during walking, in
different contexts. Forty-five patients with Parkinson’s disease were measured when
walking at preferred speed, fast speed and dual-tasking conditions in both OFF
and ON medication states. At preferred, and even more at fast speed, arm swing
improved with medication. However, during dual-tasking, there were only small or
even negative effects of medication on arm swing. Comparisons of arm swing pa-
rameters of patients with Parkinson’s disease with controls suggests that the effects
of both dopaminergic depletion and dopaminergic replacement are substantially in-
fluenced by the context. Assuming that dual-task walking most closely reflects
real-life situations, the results suggest that the effect of dopaminergic medication on
mobility-relevant movements, such as arm swing, might be small in everyday condi-
tions. This should motivate further studies to look at medication effects on mobility
in Parkinson’s disease, as it could have highly relevant implications for Parkinson’s
disease treatment and counselling.

Keywords: Arm swing; Dual-task; Gait; Levodopa; Treatment
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Introduction

Dopaminergic medication is the most common treatment for people with Parkinson’s
disease. It is highly effective in improving Parkinson’s disease-related symptoms
such as bradykinesia, rigidity and tremor, as has been shown, for example, with the
unified Parkinson’s disease rating scale (UPDRS), its revised version (MDS-UPDRS)
and other established clinical scales [44, 45, 190, 191].

However, contradicting results were found concerning the effect of dopaminergic
medication on gait deficits associated with Parkinson’s disease. Only gait speed,
stride length and stride velocity have consistently shown an increase with medication
in multiple studies with different disease severities [39, 44, 77], study protocols [44,
46, 47, 92, 192] and measurement equipments [39, 44, 46, 91, 92, 193, 194]. The
effects of dopaminergic medication on other gait parameters are not entirely clear.
For example, although one relatively large study found an increased cadence (steps
per minute) with dopaminergic medication [39], four others –with comparable cohort
characteristics- did not [46, 92, 192, 194]. One study found a decrease in stance time
[91], but another study –again with comparable cohort characteristics- did not [39].
Contradicting results were also found for double limb support (for example, one
study found no significant change [39], where other studies found a decrease with
medication [91, 92, 195]) and gait variability (three studies found no significant
change [46, 91, 196], four studies found a decrease with medication [46, 47, 194,
196]). Similarly, there are contradicting results concerning the effect of dopaminergic
medication on arm swing parameters in Parkinson’s disease. For example, arm swing
asymmetry only decreased with medication in one [173], but not in another study
[39].

Brain activity differs with the complexity of walking tasks and with neurological
pathologies [98]. We therefore hypothesize that at least some of the above-mentioned
contradicting results may be explained by differences in the context where the re-
spective walking task is performed. This hypothesis is, at least indirectly, supported
by studies that found an effect of task complexity on the effect of medication on
certain gait parameters (e.g., gait speed [197] and stride time variability [198]).
Moreover, two studies reported a change in the difference of walking parameters
between Parkinson’s disease and controls, depending on the walking paradigm (be-
tween preferred and fast walking condition: gait speed, swing velocity, step time and
swing time; between preferred and dual-task condition: stride length and percentage
swing time [199, 200]). These differences in response of mobility patterns to different
stimuli and demands could have highly relevant implications for Parkinson’s disease
treatment and counselling, as human behaviour depends on the use of highly diverse
mobility strategies [90].

We therefore measured in this study the effect of dopaminergic medication on a
specific movement, i.e., arm swing, during preferred, fast and dual-task walking. We
compared the values of the patients with matched controls to analyse whether with
medication the patients have comparable values as controls. We then compared the
delta of medication ON minus OFF, of different arm swing parameters between the
different walking conditions. We chose arm swing because arm swing (i) is relatively
easy and very reliable to measure [201], (ii) is influenced by cognitive dual-tasks
[27, 167, 202] that occur regularly in daily life, (iii) is influenced by Parkinson’s
disease (smaller arm swing amplitudes and more asymmetry compared to controls)
[38, 170, 171], and (iv) is influenced by dopaminergic medication. For example,
arm swing amplitude and angular velocity increase with medication [39, 173, 203].
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Results

Demographics and task performance of the included Parkinson’s disease patients
and controls are provided in Table 5.1.

Table 5.1: Demographics and disease characteristics (mean ± standard deviation (range)) of the
participants.

MDS-UPDRS III = motor part of the Movement Disorders Society-sponsored revision of
the unified Parkinson’s disease rating scale; MoCA = Montreal cognitive assessment.

The following changes of arm swing parameters due to dopaminergic medication
were significant (see also Figure 5.1 and Supplementary Table 5.4): Main amplitude
and peak angular velocity increased with medication in the preferred and fast walk-
ing condition, but not in the dual-task condition. Amplitude asymmetry decreased
with medication in the preferred and dual-task conditions, but not at fast speed.

48



5

Results

Arm swing coordination only increased in the fast walking condition. Regularity
improved with medication only in the preferred condition. The sideways ampli-
tude decreased with medication during the preferred and fast walking condition,
but increased during the dual-task condition.

Cognitive performance as measured with subtractions per minute improved with
medication during the single-task (P = 0.012), but not during the dual-task. The
responsiveness to dopaminergic medication was significantly different between the
single-task and dual-task (P = 0.005; Figure 5.2). Moreover, cognitive dual-task
costs were significantly different per medication state (P = 0.027), -29% in OFF
state and -12% in ON state.

When comparing the respective arm swing parameters from patients with Parkin-
son’s disease with control values (grey stars in Figure 5.1), then in the OFF phase
during preferred speed two of the six investigated arm swing parameters (regular-
ity and asymmetry) were significantly worse, and in the ON phase one parameter
(regularity). During fast speed, five investigated arm swing parameters were sig-
nificantly worse in the OFF phase than in the control group and asymmetry was
significantly better than in controls. Also in the ON phase, all six investigated arm
swing parameters were significantly different from the control group, but only one of
them was worse (regularity), and the other five were better than the control values.
During dual-task walking, one parameter (coordination) was significantly worse in
both, the OFF and ON phase, than in the control group and one other parameter
(asymmetry) was significantly worse in the OFF phase than in the control group.

The degree of responsiveness of respective arm swing parameters to dopamin-
ergic medication are shown in Figure 5.2 for the 33 participants with a complete
dataset. At preferred speed, the responsiveness to dopaminergic medication was
moderate for amplitude asymmetry and small for all other arm swing parameters.
At fast speed, the responsiveness to medication was large for main amplitude, peak
angular velocity, coordination and sideways amplitude (decrease), small for ampli-
tude asymmetry and negligible for regularity. The responsiveness to medication was
small for the cognitive single-task. In the dual-task condition, the responsiveness
to dopaminergic medication was moderate for amplitude asymmetry and sideways
amplitude (increase), small for regularity, coordination and cognitive performance,
and negligible for main amplitude and peak angular velocity.

The following responses of arm swing parameters to dopaminergic medication
were significantly different across the different walking conditions in Parkinson’s
disease (special characters in Figure 5.2 and Supplementary Table 5.5): In the fast
walking condition, main amplitude, peak angular velocity, coordination and side-
ways amplitude were significantly more responsive (i.e., better) and asymmetry was
significantly less responsive (i.e. worse) than in the preferred walking condition.
Regularity was not significantly different between these two conditions. In the dual-
task walking condition, main amplitude, regularity and sideways amplitude were
significantly less responsive (i.e. worse) than in the preferred walking condition.
Peak angular velocity, amplitude asymmetry and coordination were not significantly
different between these two conditions. In the dual-task walking condition, ampli-
tude asymmetry was significantly more responsive (i.e., better) and main amplitude,
peak angular velocity, coordination, sideways amplitude, and cognitive performance
were significantly less responsive (i.e. worse) than in the fast walking condition.
Regularity was not significantly different between these two conditions.
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Figure 5.1: Arm swing parameters during the different medication states and different walking
conditions. The grey horizontal lines indicate the values of the controls. Black * above horizontal
lines, connecting different box plots = P < 0.05 between medication states; Grey * lateral to
the box plots = P < 0.05 compared to controls (above grey horizontal line = higher value than
controls; below grey horizontal line = lower value than controls). All data are corrected for gait
speed. Center line: median; box limits: upper and lower quartiles; whiskers: 1.5 × interquartile
range.
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Figure 5.2: Responsiveness of the arm swing parameters and the cognitive subtraction task to
dopaminergic medication. A positive standardized response mean (SRM) indicates an improvement
with medication and a negative SRM a worsening with medication. 0.20 ≤ SRM < 0.50 represents
a small, 0.50 ≤ SRM < 0.80 a moderate and SRM ≥ 0.80 a large responsiveness to dopaminergic
medication [39]. * = significantly different from preferred speed; # = significantly different from
fast speed/single task condition.

Almost none of the ON-OFF changes in arm swing parameters correlated with
any ON-OFF changes of the MDS-UPDRS (part three total score and subscores).
The only exceptions were sideways amplitude and MDS-UPDRS rigidity subscore
during the preferred speed condition (P = 0.018), as well as coordination of arm
swing and postural instability and gait disorder score (PIGD) during the dual-task
walking condition (P = 0.027; Table 5.2). Several of the ON-OFF changes in the
arm swing parameters correlated with the Levodopa equivalent daily dose (LEDD).
At preferred speed, main amplitude, peak angular velocity and coordination
correlated with LEDD (P = 0.005, P = 0.004, P = 0.015, respectively; Table 5.2).
At fast speed, arm swing asymmetry correlated negatively with LEDD (P = 0.001).
However, during the dual tasking condition, none of the ON-OFF changes of the
arm swing parameters correlated significantly with the LEDD.
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Table 5.2: Correlation coefficients of the changes in arm swing parameters with medication and the changes in MDS-UPDRS III (subscores) with medication,
and the LEDD values.

Significant correlations in bold (P < 0.05). Dual = dual-task walking; LEDD = Levodopa equivalent daily dose; MDS-UPDRS = Movement Disorders
Society-sponsored revision of the unified Parkinson’s disease rating scale; PIGD = postural instability and gait disorder; Pref = preferred speed.
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Discussion

This study shows, to our knowledge for the first time, that the effect of dopaminergic
medication on arm swing is substantially influenced by the context in which patients
with Parkinson’s disease walk. Arm swing during walking improved with dopamin-
ergic medication at preferred walking speed, and it improved even more during fast
walking at least for some parameters (main amplitude, peak angular velocity, co-
ordination and sideways amplitude). However, the responsiveness of dopaminergic
medication on arm swing changed drastically by adding a cognitive dual-task to
walking compared to preferred and fast walking only, respectively. In the dual-task
walking condition, the responsiveness to dopaminergic medication was low for most
arm swing parameters, and sideways amplitude got even worse. Only amplitude
asymmetry improved, because the amplitude of the more affected arm increased,
while the amplitude of the less affected arm decreased, reducing the difference be-
tween both arms (Supplementary Figure 5.3). A different response to medication in
the more and the less affected side was only seen for amplitude and peak angular
velocity during the dual-task condition. We suggest that the talking out loud pro-
vides rhythmical stimulation that could have a positive effect on the coordination
between both arms causing a more symmetrical arm swing pattern. The correlations
between the change in arm swing parameters with dopaminergic medication and the
LEDD support that the responsiveness to dopaminergic medication is influenced by
the context. At preferred walking speed, three arm swing parameters correlated
with LEDD values, at fast speed only one and none during dual-tasking.

The changes in main arm swing amplitude, peak angular velocity and coordina-
tion with medication at preferred speed corresponds with other studies investigating
gait aspects in Parkinson’s disease [39, 173, 203]. In previous studies, looking at
gait parameters, it has been seen that mainly the amplitude- and velocity-based
measures (step length, gait velocity, step velocity) improved with medication at
preferred speed, which is comparable to our results [39, 44, 77, 92, 192]. The re-
duction in arm swing asymmetry found in this study corresponded with one study
[173], but not with another which was probably due to the inclusion of patients with
dyskinesia in that study [39]. Other studies also found effects of medication on gait
parameters during more challenging (fast) walking conditions [47, 192]. Concern-
ing more complex walking paradigms contradicting results were found [197, 198].
One study even found a larger reduction in stride time variability with medication
during dual-tasking compared to single-tasking [198]. Since gait speed significantly
changed between medication states and single- and dual-tasking, these effects could
very well be mediated by gait speed. This issue holds also true for studies inves-
tigating arm swing. To our knowledge, none of the currently available arm swing
studies controlled their results for gait speed, although it is known that arm swing is
influenced by this parameter [27, 204, 205] and dopaminergic medication increases
gait speed [46, 77, 91, 192]. In this study, many significant Spearman’s correlations
of arm swing parameters with gait speed were found, with values reaching up to
0.47 (asymmetry, fast speed) for patients with Parkinson’s disease in OFF medica-
tion state, up to 0.53 (main amplitude, dual-tasking) for patients with Parkinson’s
disease in ON medication state and up to 0.61 (peak angular velocity, dual-tasking)
for the controls. We therefore recommend to perform this gait speed correction in
future studies, otherwise, there may be a risk that gait speed-associated (and not
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disease state-associated) aspects are measured.
The arm swing parameters from the patients with Parkinson’s disease were com-

pared to matched controls to analyse the differences between the groups after con-
trolling for gait speed. Moreover, to analyse whether with medication the arm swing
parameters would be comparable to controls (Figure 5.1). The overall very distinct
patterns of arm swing differences between patients with Parkinson’s disease dur-
ing OFF as well as during ON phases, compared to control values, suggest that 1)
dopaminergic depletion does not "generate" a uniform movement pattern in arm
swing, but this is substantially influenced by the context; 2) the compensation of
this dopaminergic depletion is not equivalent to "control-like". This is especially
evident during fast speed, where most of the collected arm swing parameters were
even significantly “better” than those of controls; and 3) the dual-task walking condi-
tion shows relatively little differences between people with and without Parkinson’s
disease (only 3 out of 18 calculations were significant), suggesting that arm swing as
performed in daily life may not be relevantly affected by both, dopamine depletion
and dopamine replacement therapy. This is in agreement with another study that
found that arm swing measured during daily living is not a very good parameter to
discriminate between patients with Parkinson’s disease and controls [206]. That the
performance of patients with Parkinson’s disease in ON medication state is in some
parameters significantly better than in controls is surprising and we can only specu-
late about the reasons for this phenomenon. One explanation could be that patients
with Parkinson‘s disease use their arm swing energy to move the body forward as
soon as medication allows this (and based on the assumption that upper extremities
benefit potentially more from dopaminergic medication than the lower extremities).
Such a behaviour can be clinically observed in –at least some- patients with normal
pressure hydrocephalus. Another reason could have to do with that sensory atten-
uation is affected in Parkinson’s disease, and obviously influenced by dopaminergic
treatment [207]. Sensory attenuation describes the phenomenon whereby sensory
input elicited by self-generated actions is reduced compared to sensory input gen-
erated externally. According to recent literature [207], it could be that dopamine
replacement therapy leads to increased sensory attenuation. Therefore, it is possible
that this increased sensory attenuation in patients with Parkinson’s disease, induced
by dopaminergic medication, lead to a reduced awareness (and thus, control) of arm
swing.

The cognitive performance increased with dopaminergic medication in the single-
task condition, but not in the dual-task condition (Figure 5.2). This effect was ac-
companied by significantly more pronounced subtraction task dual-task costs in the
medication OFF state compared to the ON state. We interpret these results accord-
ing to already existing literature [208, 209] in that way that, when patients with
Parkinson‘s disease perform a dual-task in OFF state, they prioritise the cognitive
task. This prioritization of the cognitive task could have detrimental effects on the
walking performance.

In the dual-task condition, the cognitive performance as well as most arm swing
parameters did not improve with dopaminergic medication. A possible explanation
for this could be the “levodopa overdose hypothesis” [210]. Dopaminergic medica-
tion does not target one specific brain area [198]. For example, it affects the meso-
corticolimbic pathway which has a negative effect on cognitive function, including
executive function that is required to control gait in patients with Parkinson’s dis-
ease [198, 211, 212]. This could be a cause for the absent improvement in cognitive
performance and most arm swing parameters.
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Discussion

Although clinical assessments are in many aspects different from daily living
assessments [176], studies have shown that more complex clinical assessments cor-
respond relatively well with the average values of daily living assessments [89, 90].
Our study shows that the effect of dopaminergic medication on arm swing is rather
small or even negative during dual-tasking. This implies that dopaminergic medi-
cation might, for this specific and potentially very relevant movement [166], not be
very beneficial in real life situations. For handwriting it also has been shown that
dopaminergic medication had no effect on the more complex writing tasks, compared
to writing down letters or one word repeatedly in patients with Parkinson’s disease
[213]. We can thus confirm these findings with another upper limb movement (arm
swing), and contribute evidence that the effect of dopaminergic medication should
not only be tested under standardised conditions, but absolutely must also be tested
under daily-relevant situations. It seems possible that these medication effects differ
substantially between supervised and daily-life (-relevant) conditions, and to a sig-
nificant disadvantage for affected patients. The even negative effect of dopaminergic
medication on sideways amplitude during dual-tasking could indicate a decrease in
dynamic postural stability with dopaminergic medication, which must certainly be
investigated in more detail in future studies. Nevertheless, it is possible that the
difference in dopaminergic responsiveness due to different walking conditions affects
not only the upper but also the lower extremities. During simple static postu-
ral stability tasks a positive effect of dopaminergic medication was found [39, 48],
when more complex (eyes closed and dual-task conditions) static postural stability
tasks were performed there was no effect of dopaminergic medication found [214].
During dynamic postural stability tasks there were also no effects of dopaminergic
medication found and in the PIGD subgroup the postural stability even frequently
deteriorated with medication [49, 190]. Therefore it seems that dopaminergic med-
ication does not improve the postural stability during complex tasks. Interestingly,
this phenomenon could also be seen in other neurotransmitter systems. During
preferred speed and simple dual-task walking conditions, patients with Parkinson’s
disease, treated with the cholinesterase inhibitor rivastigmine, had a significantly
better (reduced) step time variability compared to the placebo-treated group in a
simple walking paradigm, but there were no significant differences found between
the two groups during a complex dual-task walking condition [215].

None of the ON-OFF changes of arm swing parameters correlated significantly
with respective changes of the total MDS-UPDRS III score. This observation
strongly argues that arm swing is a movement that is largely independent of "clas-
sic" Parkinson’s disease symptoms. This is all the more remarkable as there was
no effect observed in any of the three different walking conditions. If this obser-
vation can also be confirmed in independent studies and cohorts, and this effect is
potentially also shown in free living environments, arm swing parameters in Parkin-
son’s disease could be used as an easily and frequently detectable complementary
sign for disease progression and treatment response in clinical routine and clinical
trials. Moreover, there was a positive correlation between the rigidity subscore and
sideways amplitude in the preferred walking speed condition (and somewhat less
pronounced and not significant in the dual-task walking condition). Rigidity causes
the absence or reduction of trunk rotations. Rotations of the thorax are known to
contribute to arm swing [216], therefore with decreased trunk rotations a smaller
arm swing amplitude, in both main and sideways direction, was expected. This was
however not the case for the sideways amplitude. It seems plausible that, due to
rigidity, the trunk can contribute less to balance recovery during walking in PD.
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Consequently, sideways arm swing could serve as a compensatory movement to re-
cover from balance perturbations. To determine whether the sideways amplitude
is a parameter for (limitations of) dynamic balance, further research is required.
The other significant (negative) correlation observed was between PIGD items and
arm swing coordination during dual-task walking. The postural instability and gait
problems could cause a more unstable gait pattern and the arms might be used to
compensate for any balance disturbances. Compensatory movements of the arms
might negatively influence the timing between the left and right arm. The postural
instability can especially be prominent during dual-tasking where patients prioritize
the cognitive performance causing a decrease in postural stability according to the
“posture second” strategy [208]. This significant negative correlation could speak
for the usefulness of this parameter for determining the severity of (and therapy
response to) PIGD symptoms, e.g. under everyday conditions [89].

This study faces limitations. First, participants performed both OFF and ON
assessments on the same day and always OFF before ON, therefore fatigue is a
possible confounder in this study. However, all study participants were allowed
to take breaks at any time during the individual task performance. Second, only
patients with mild to moderate disease severity were included, which means that
the results cannot be extrapolated to more advanced disease stages.

Taken together, this study shows that the responsiveness of dopaminergic
medication on arm swing in people with Parkinson’s disease depends on context
and task complexity. These results should motivate more granular and extensive
research in the area of task complexity-influenced responsiveness of mobility aspects
to dopaminergic medication in Parkinson’s disease.

Methods

Participants

Forty-five patients with a diagnosis of Parkinson’s disease according to the UK
Brain Bank Society Criteria [177] and a Hoehn & Yahr stage between 1 and 3
(reflecting mild to moderate disease severity) were recruited at the University Hos-
pital of Tübingen, Germany. Patients with an impaired range of motion of the
shoulder due to trauma were excluded as well as patients with dyskinesia, because
dyskinesia most probably has a significant and “uncontrollable” influence on gait
parameters [39]. The participants were, as far as possible, age- and gender-matched
to an already existing control cohort with the identical experimental setting (lon-
gitudinal observational Tübingen Evaluation of Risk Factors for Early Detection of
Neurodegeneration (TREND) study, 4th visit). Inclusion and exclusion criteria of
the TREND study were reported elsewhere [15]. In brief, it included older adults
recruited from the population concerning risk factors of age-associated neurological
diseases. Exclusion criteria were, among others, signs of neurodegenerative diseases,
stroke, inflammatory central nervous disease, intake of dopaminergic and antipsy-
chotic drugs.

The ethical committee of the Medical Faculty of the University of Tübingen
approved this study (715/2011B02) and also the TREND study (190/2009BO2).
All participants gave a written informed consent prior to testing according to the
declaration of Helsinki.
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Data collection

In both studies, identical walking tasks were assessed. Participants walked a 20
m walkway up and down for 1 minute, under three conditions: (i) preferred speed
(“Walk at your preferred walking speed”), (ii) fast speed (“Please walk as fast as
you can, do not run, do not risk falling”), and (iii) fast speed in combination with
a serial subtraction task started from a three digit number (“Please walk as fast as
you can, do not run, do not risk falling, and subtract serial sevens as fast as you
can from the number I will shortly tell you”). This serial subtraction task was also
separately performed as single-task. Parkinson’s disease participants performed
the assessments first OFF medication (overnight withdrawal from dopaminergic
medication) and 30 minutes to 2 hours after medication intake (based on the
participant’s feedback when they usually experience best ON) in ON medication
condition. In both medication states the motor part of the MDS-UPDRS, part
III, was assessed. The MDS-UPDRS part II was also assessed, but only assessed
once. The dopaminergic medication the patients took was collected from the
medical file to calculate the LEDD [217]. During the assessments, all participants
wore an inertial measurement unit with tri-axial accelerometers, gyroscopes and a
magnetometer (128 Hz sample frequency; Opal APDM, Portland, USA) on each
wrist and one on the lower back.

Data processing

All completed straight walking phases of the 1 minute walk were extracted (turns
were discarded from the data with help of a turn detection algorithm validated for
patients with Parkinson’s disease and healthy older adults [119]). The gait speed was
calculated by dividing the 20 m walked distance by the time it took to walk those 20
m (based on the turn detection described above). The arm swing parameters from
the straight walking phases were extracted with an arm swing algorithm validated for
patients with Parkinson’s disease and healthy adults [201]. Arm swing was defined
as “a rotational movement of the arm, occurring during walking and running in
bipeds with a periodicity of around 1-2 Hz. The hand and arm move freely through
space in opposite directions with most of the movement in the sagittal plane of the
body frame” [201]. To omit false positives, only arm swings with an amplitude of at
least 5° were taken into account [201]. The first three and last three swings of the
straight walking phases were excluded from the analysis so that only steady state
walking phases were considered.

The arm swing algorithm extracts information from both arms, which results
in the following parameters (Table 5.3): main amplitude (amplitude in main swing
direction), peak angular velocity, regularity, coordination and asymmetry [201]. We
also included in this analysis sideways amplitude, reflecting the amplitude of the
movement during the swing in the direction orthogonal to the main swing direction
(movements around the longitudinal axis are not taken into account). Sideways
arm swing could be a compensatory movement to get the center of mass back above
the base of support. This movement therefore may reflect, as a measure of dynamic
postural stability, correction or adaptation movements during walking [218]. The
parameter was calculated from the second component of the principal component
analysis [201]. The dual-task costs for the cognitive serial subtraction task were
calculated for both medication states [209].
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Table 5.3: Description of the arm swing parameters. Exact calculations of the parameters can be
found in [201].

Parameter Description
Main amplitude [°] The average magnitude of a swing in the main swing direction
Peak angular veloc-
ity [°/s]

The average maximal angular velocity of a swing

Asymmetry [%] The non-directional difference in main amplitude between
both arms (0% left and right arm swing on average with a
similar main amplitude; 100% left and right arm swing on
average with an entirely different main amplitude)

Coordination (0-1) A measure for the timing between the left and right arm (1
if both arms move exactly out of phase, e.g. left arm at most
forward point and right arm at most backward point; 0 if
both arms do not move in a similar rhythm), the calculation
is based on a cross-correlation

Regularity angular
velocity (0-1)

The similarity of a swing with its neighbouring ipsilateral
swings (1 similar; 0 not similar), the calculation is based on
an auto-correlation

Sideways amplitude
[% of main ampli-
tude]

The average proportion of movement that occurs orthogonal
to the main swing direction

Statistical analysis

Since arm swing is affected by gait speed [27, 204, 205], the parameters were cor-
rected for this parameter using a linear regression between gait speed and each arm
swing parameter per condition and per (medication) group. All parameters were
corrected to their estimated value at 1 m/s. Wilcoxon signed rank tests were used
to analyse the effects of dopaminergic medication on the arm swing parameters as
well as the differences between Parkinson’s values and control values. Tests were
two-tailed with a significance level of 0.05.

To analyse the effect of medication on the cognitive performance during single-
tasking and dual-tasking Wilcoxon signed rank tests were performed. As well as for
the effect of medication on the dual-task costs.

The standardized response mean (SRM) was calculated by dividing the average of
the change (x̄change) by the standard deviation of the change in a certain parameter:

x̄change =
1

N

N∑
i=1

(xi,on − xi,off ) (5.1)

SRM =
x̄change√

1
N−1

∑N
i=1 |(xi,on − xi,off )− x̄change|2

(5.2)

N represents the amount of participants and xi the arm swing parameter of each
participant in ON or OFF state, with 0.20 ≤ SRM < 0.50 representing a small, 0.50
≤ SRM < 0.80 a moderate and SRM ≥ 0.80 a large responsiveness to dopaminergic
medication [39].

The significances of dopaminergic medication effects between the three walking
conditions were analysed with a repeated measures ANOVA. A Greenhouse-Geisser
correction was performed when the assumption of sphericity was violated. P <
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0.05 was considered significant. Post hoc testing was performed with Bonferroni
corrections to control for type 1 errors.

Spearman correlations were performed to test associations between ON-OFF
effects of arm swing parameters and clinical scores (total MDS-UPDRS III, and
MDS-UPDRS subscores: bradykinesia (items 3.4, 3.5, 3.6, 3.8 [219]), rigidity (item
3.3), tremor (items 2.10, 3.15, 3.16, 3.17, 3.18 [220]) and PIGD (items 2.12, 2.13,
3.10, 3.11, 3.12 [221]), and LEDD. Significance of these exploratory analyses was
considered when P < 0.05.

Data availability

The data from this study are available upon reasonable request. The TREND study
(https://www.trend-studie.de/) is registered in the German Clinical Trials
Register with number DRKS00022058. The algorithm to extract the arm swing
parameters is freely available online (https://github.com/EWarmerdam/ArmSwing
Algorithm [201]).
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Supplementary material

Table 5.4: Results from the Wilcoxon signed rank test to analyse the effect of dopaminergic medication on arm swing as well as the difference with controls.

Table 5.5: The results of the repeated measures ANOVA that compared the dopaminergic medication responsiveness per walking condition.

In bold the significant results. Post hoc testing was performed with Bonferroni correction. df = degrees of freedom; pref = preferred.
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Figure 5.3: The arm swing parameters for the more and less affected side during the different medication states and different walking conditions.
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6. Study protocol

Abstract

Healthy adults and neurological patients show unique mobility patterns over the
course of their life span and disease. Quantifying these mobility patterns could sup-
port diagnosing, tracking disease progression and measuring the response to treat-
ment. This quantification can be done with wearable technology, such as inertial
measurement units (IMUs). Before the IMUs can be used to quantify mobility, al-
gorithms need to be developed and validated. As mobility patterns differ across
lifespan and between different neurological diseases, this validation must be per-
formed in different age groups and with disease-specific datasets. We hereby present
a study protocol for a full-body mobility dataset of healthy young and older partic-
ipants and neurological patients. All participants will be measured simultaneously
with IMUs and a 3D optical motion capture system. This study will provide a
dataset that can be used to develop and validate IMU-based mobility algorithms for
healthy adults and neurological patients.

This study will include healthy adults (18-60 years), healthy older adults (>60
years), and patients with Parkinson’s disease (PD), multiple sclerosis (MS), with a
recent symptomatic stroke and with chronic low back pain (CLBP). Specific clinical
scales and questionnaires will be collected. All participants will perform standard-
ized mobility tasks as well as non-standardized activities of daily living. During
these assessments they will wear 15 IMUs and 47 reflective markers that will be
captured by the optical motion capture system.

This study aims at building the largest dataset for the development and vali-
dation of IMU-based mobility algorithms for people with and without neurological
diseases. It is anticipated to provide this dataset for further research use and
collaboration, with the ultimate goal to use such resources effectively and to bring
IMU-based mobility algorithms as quickly as possible into clinical routine and into
assessment panels of clinical trials.

Keywords: Balance, Chronic low back pain, Gait, Movement analysis, Multiple
sclerosis, Parkinson’s disease, Stroke, Wearable sensors

64



6

Methods and design

Background

Healthy adults, as well as patients with neurological diseases, such as Parkinson’s
disease (PD), stroke and multiple sclerosis (MS) show unique mobility patterns over
the course of their life span and disease. These unique mobility patterns can be
used for diagnosis [17, 222], tracking disease progression [106], measuring efficacy
of treatment [39] and detecting side effects of chronic medication intake [121]. In
clinical routine, mobility patterns are generally evaluated by healthcare professionals
during a clinical or in-praxis examination. Objective evaluation methods can provide
additional and potentially more ecologically valid measures. Wearable technology,
more specifically inertial measurement units (IMUs) are highly suited for objective
movement analysis and can even be used to analyse mobility patterns outside the
clinic and praxis, i.e. the usual environment [3, 176].

Currently, results of such mobility analyses differ substantially between different
IMU devices [223, 224]. This is most likely due to multiple reasons, including lack
of standardization of IMU position on the body and lack of (disease-) specific and
thorough validation of the algorithms used to extract and analyse raw data. Thus,
before these IMUs are used in the natural environment of the healthy adults and
patients, clear information about the best position of the IMUs to calculate mobility-
related parameters should be gathered and a thorough and specific validation of the
used algorithms must be performed [176, 225, 226].

The accuracy of algorithms for the analysis of IMU-derived data is dependent
on laborious validation studies, which cannot be performed in every laboratory and
specifically for every single research question. In such validation studies, these IMU-
derived algorithms need to be compared to data extracted from reference tools for
the assessment of mobility, such as 3D optical motion capture systems. As mobility
patterns differ across lifespan and between different neurological diseases, this val-
idation must be performed in different age groups and in disease-specific datasets.
To our best knowledge, there is currently no representative dataset available that
allows for such validation by providing multiple IMU positions in a variety of neu-
rological diseases. We present here a study protocol for a full-body mobility dataset
of healthy young and older participants and neurological patients, including PD,
MS, stroke and chronic low back pain (CLBP). All participants will be measured
simultaneously with 15 IMUs and 47 reflective markers that are tracked with a 3D
optical motion capture system. The assessment will include standardized mobility
tasks as well as non-standardized activities of daily living. Specific clinical scales
will be provided as anchors. The aim of the study is to provide a dataset to the
research community that can be used to develop and validate IMU-based mobility
algorithms for healthy adults and neurological patients.

Methods and design

Ethics

This study was approved by the ethical committee of the Medical Faculty of Kiel
University (D438/18) and is in accordance with the principles of the Declaration
of Helsinki. All participants will receive written and oral information about the
measurements. The participants have to provide written informed consent before
the start of the measurements. The study is registered in the German Clinical Trials
Register (DRKS00022998).
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Participants

This study will include healthy adults (18-60 years), healthy older adults (>60
years), and patients with PD (according to the UK Brain Bank Criteria [177]),
MS (according to the McDonalds criteria [58]), patients with a recent (<4 weeks)
symptomatic stroke and patients with CLBP, whose patients characteristics are de-
scribed elsewhere [227]. Healthy adults will be recruited via flyers that will be placed
in public facilities. Neurological patients will be recruited from the neurology wards
and outpatient clinics of the University Hospital Schleswig-Holstein (UKSH), Cam-
pus Kiel, Germany. Inclusion criteria are 18 years and older, and the ability to walk
independently without walking aid. Exclusion criteria are a Montreal Cognitive As-
sessment score <15 and other movement disorders that affect mobility performance,
as judged by the assessor.

Clinical and demographic data

Demographic data, including age, gender, weight, height, foot size, handedness, will
be recorded. Furthermore, comorbidities of all participants will be assessed with
the Charlson Comorbidity Index [228]. The cognitive function will be assessed with
the Montreal Cognitive Assessment [229]. Generic health status will be assessed
with the EQ-5D-5L [230]. Activities of daily-living will be assessed with the Lawton
Instrumental Activities of Daily Living Scale [231] and the German Funktionsfra-
genbogen Hannover [232]. Sarcopenia will be assessed with the SARC-F [233]. Pain
will be assessed with the Visual Analogue Scale [234]. Vibratory sensation will be
assessed with a tuning fork (Rydel-Seiffer) [235]. Fatigue will be assessed with the
Fatigue Severity Scale [236]. The perceived self-efficacy will be assessed with the
General Self-Efficacy Scale [237]. The motor function of all participants will be as-
sessed with the motor part of the Movement Disorders Society Sponsored Revision
of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [106].

Disease specific scales

From all the patient with a neurological disorder, the diagnosis, disease duration
as well as the medication (type, dose and frequency) that the patients take will be
collected from the medical record. Additionally, for the PD patients the Hoehn &
Yahr stage [238], for the MS patients the Expanded Disability Status Scale [107] and
for the stroke patients the NIH Stroke Scale will be assessed [239].

Equipment

Participants will be measured with IMUs (Noraxon USA Inc., myoMOTION, Scotts-
dale, AZ, USA), containing a triaxial accelerometer (+/- 16 g), triaxial gyroscope
(+/- 2000 degrees/sec) and triaxial magnetometer (+/- 1.9 Gauss). A total of 15
IMUs will be attached to different body segments (Figure 6.1A). IMUs are therefore
fixed to the following body segments: head, sternum, upper arms, fore arms, pelvis,
thighs, shanks (proximal), ankles and feet. The IMUs will be secured with elastic
bands with a special hold for the IMU attached to it. In case the participant has
pockets in the shorts, a 16th IMU will be placed in the pocket. The data will be
collected with a sample frequency of 200 Hz.

As reference, a twelve-camera optical motion capture system (Qualisys AB, Göte-
borg, Sweden) will be used to record full-body movements with 200 Hz. A total of
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47 reflective markers (19 mm) will be adhered to the body (Figure 6.1B) for all
movement assessments. A minimum of three markers can be found on the following
body segments: head, sternum, upper arms, fore arms, hands, lower back, thighs,
shanks and feet. During static calibration trials, 8 additional reflective markers (19
mm) will be placed on the body (elbows, knees and ankles) to be able to estimate
joint positions (the exact positions of all the reflective markers are described in Sup-
plementary Table 6.1). The IMU data and the optical data will be synchronized
with help of a TTL signal.
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Figure 6.1: A. Placement of inertial measurement units (IMUs) including the orientation. B.
Placement of the reflective markers measured by the optical motion capture system.

Two reflex light barriers (Telemecanique, photo-electronic sensor XULM06031,
Rueil-Malmaison, France) standing 5 m apart will be used to measure the preferred
over ground gait speed.

The over ground walking will be performed on a walkway with a width of 1
m. The start and end of the 5 m during which steady state gait is recorded will be
marked by cones with reflective markers (30 mm) on top of them. For the assessment
of longer gait bouts a treadmill (Woodway, Waukesha, WI, USA) of 2.10 by 0.70
m with a split belt option will be used. Dual-task assessments during over ground
walking will be performed on a smartphone with a screen size of 4.5 inch (Alcatel
One Touch Pop 2). A simple reaction time test and a numerical Stroop test will be
used as dual-task (developed with https://www.neurobs.com/menu_presentatio
n/menu_features/mobile).
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The whole assessment of each participant will be videotaped by two cameras
(GoPro Inc., Hero Session, San Mateo, CA, USA). The videos will be synchronized
with the IMUs and optical data with help of a synchronization light that turned on
and off at the start and end of each measurement.

Protocol

Patients with PD will be asked to perform the whole protocol part twice, both on
and off dopaminergic medication. An overview of the protocol is given in Figure 6.2.

Figure 6.2: Overview of the protocol. The first three assessments will be performed in this fixed
order, the remaining assessments will be performed in randomized order. An explanation of each
assessment is provided in the text.

At the start, the preferred over ground speed will be measured with reflex light
barriers. Participants will start walking about 2 m before the first light barrier and
will stop walking about 2 m after the second light barrier. The average gait speed
of five trials will be calculated and used as walking speed on the treadmill.

All trials listed below will be recorded with IMUs and the optical motion capture
system.

Each assessment starts with a calibration trial where participants stand in a
neutral pose (feet at hip width and arms hanging along the body). This trial will
be repeated every time an IMU or marker is displaced. Next the MDS-UPDRS part
III will be assessed. These trials will always be performed in this fixed order at the
beginning of the measurement. Hereafter, the standardized and non-standardized
mobility assessments will be performed in randomized order.

Standardized mobility assessments

During the treadmill trial, participants will start standing on a treadmill, then the
speed will be gradually increased to a speed that is comfortable for the participant.
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The participant will walk for 60 s at this speed. Thereafter, the speed of the tread-
mill will be gradually adapted to the preferred over ground walking speed which is
measured at the start of the protocol. The participant will walk again 60 s at this
speed.

A subset of the healthy young adults will participate in a split-belt protocol
which is described in the supplementary material.

• Short physical performance battery (SPPB)

– Side-by-side stand (“Please stand with your feet together for 10 seconds,
try not to move your feet”)

– Semi-tandem stand (“Please stand with the heel of one foot touching the
big toe of the other foot for 10 seconds, you can put either foot in front,
try not to move your feet”)

– Tandem stand (“Please stand with the heel of one foot in front while
touching the toes of your other foot, you can put either foot in front, try
not to move your feet”)

– 4 m gait (“Please stand with the toes of both feet on the starting line and
walk over to the end of the walkway at your normal gait speed”)

– 4 m gait (“Please stand again with the toes of both feet on the starting
line and walk over to the end of the walkway at your normal gait speed”)

– Repeated chair Stand (“Please stand up straight five times in a row as fast
as possible without using your arms”)

• 3 m Timed up and go (“Please stand up from the chair, walk at preferred speed
towards the cone, turn around it in the direction of your preference, walk back
and sit down”)

• Five time sit to stand test (“Please stand up straight five times in a row at
your preferred speed without using your arms if possible”)

• “Choreography“: a series of movements related to the flexibility of the lower
back (see supplementary material). The choreography contains flexion, exten-
sion and rotational movements of the back, as well as a combination of those
movements (“Please perform the movements that are shown one by one on the
pictures”)

The following standardized walking assessments will take place on the 5 m walkway
(Figure 6.3). All participants will be asked to start two steps before the start of the
walkway and stop walking two steps after the end of the walkway.

• Straight walking

– Slow speed (“Please walk half of your normal walking speed”; Figure 6.3A)
– Preferred speed (“Please walk at your normal walking speed”)
– Fast speed (“Please walk as fast as possible, without running or falling”)

• Sideways walking (“Please walk sideways, do not cross your legs during this
walk”)

• Backwards walking (“Please walk backwards at a speed that is comfortable for
you”)
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• Obstacles: an obstacle with a height of 10 cm, and one with a height of 20
cm will be placed at the three meter point with reflective markers on the top
of each side (Figure 6.3B), and a forward walk will be performed once for
each obstacle (“Please walk at your normal walking speed and step over the
obstacle”)

• Slalom: cones will be placed every meter in the middle of the walkway. Each
cone will have a reflective marker on top (“Please walk at your normal speed
around the cones, do not step over them”; Figure 6.3C)

• Single and dual-tasking. This paradigm will be performed with two tasks with
different complexity on a smartphone. The first task will be a simple reaction
time test where participants will have to tap on the screen as fast as possible
after a black square appears on the screen. There are six time intervals ranging
from 1000 to 2000 ms (increased in steps of 200 ms), which determines the time
it will take for the black square to appear on the screen. Each time interval
occurs four times and the order of the 24 options is randomized. The reaction
time will be recorded. The second test will be a numerical Stroop test, during
this test two numbers will appear on the screen and the participants have to
tap on the number that is highest in value. Within this test there are three
conditions; 1. Neutral, the font size of both numbers is equal, 2. Congruent,
the number highest in value has a larger font size, 3. Incongruent, the number
highest in value has a smaller font size (Figure 6.4). In total 24 responses will
be required, eight of each condition. The order in which the 24 options occur
in the test is randomized. The reaction time as well as the accuracy will be
recorded.

– Simple reaction time task on a smartphone while standing (“Please tap on
the screen as fast as possible after a black square appears on the screen”)

– Numerical Stroop task on a smartphone while standing (“On the screen
will appear each time two numbers, please tap on the largest number in
value, not the largest number in size”)

– Walking up and down the 5 m walkway for 30 seconds, turning direction
was not instructed (“Please walk up and down the walkway at your normal
speed and stay within the area marked by the cones”; Figure 6.3D)

– Walking up and down the 5 m walkway and performing the simple reaction
time test on the smartphone (“Please perform the simple reaction time
test again as instructed before and walk up and down the walkway at
your normal speed at the same moment”)

– Walking up and down the 5 m walkway and performing the Numerical
Stroop test on the smartphone (“Please perform the numerical Stroop
test again as instructed before and walk up and down the walkway at
your normal speed at the same moment”)
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Figure 6.3: The walkway for the different over ground walking trials. A. The walkway without
any extra attributes, B. The walkway with the obstacle, C. The walkway for the slalom assess-
ment, D. The walkway for the dual-tasking assessments. The green circles represent the reflective
markers captured with the optical motion capture system. E. Top view of the laboratory with the
orientation of the optical motion capture system (right-handed coordinate system).
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Figure 6.4: The three conditions of the numerical Stroop test that will be performed on smart-
phone.

Non-standardized activities of daily living assessment

The non-standardized mobility assessment consists of common daily activities that
will be performed by the participants. The daily activities that will be performed
are listed below. The order of the activities will not be fixed and will be decided by
the researcher in the flow of this assessment.

• Setting a table (plates, cutlery, glasses)

• Eating and drinking (including opening a bottle and pouring a drink)

• Cleaning a table

• Lifting/replacing objects from different heights

• Ironing and folding a T-shirt

• Tooth brushing

• Multiple chair rises

• Sitting and reading out loud

• Sitting and talking

• Opening a cabinet and taking objects out of it

Discussion

This study will collect full-body mobility data from healthy young, older adults, and
patients with PD, MS, stroke and CLBP. Each participant group will contain at least
20 participants with a maximum of 200 participants in total. All participants will be
simultaneously measured with IMUs and optical motion capture. To our knowledge,
this will be the first mobility dataset with full-body IMU and optical motion capture
of healthy adults and multiple neurological patient groups of such size. The dataset
can be used to develop and validate IMU-based algorithms for people with and
without neurological diseases. With validated algorithms it will become possible to
analyse mobility patterns both in the clinic and in the natural environment [176].
This objective information could help with diagnosing [17, 222], tracking disease
progression [106] and measuring the response to treatment [39, 121].
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Other studies with full-body IMU and optical motion capture included only
young healthy participants [240–242]. Moreover, the participants performed a lim-
ited number of tasks that were not always mobility-related. Studies with full-body
IMUs measuring either mobility-related tasks in older adults or symptoms in PD
patients did not measure simultaneously with optical motion capture [147, 243, 244].
Other mobility related-studies that validated IMU-based algorithms against optical
motion capture only measured the lower body simultaneously with both systems
[245, 246]. The upper body can however also provide relevant information regarding
mobility [39, 162].

The data that will be collected within this study will contain full-body IMU and
optical motion capture data from a range of mobility-related tasks performed by
both healthy participants and multiple neurological patient groups. Therefore, new
and valuable information will be added to already existing datasets.

A large amount of standardized mobility assessments will be performed. There
will be short (5 m) walking trials with different types of walking (straight, back-
wards, slalom, obstacle, sideways, dual-tasking). This will make it possible to test
the accuracy of algorithms during straight walking and more complex walking as-
sessments, which are likely to influence gait patterns [87, 247, 248]. To analyse the
performance of algorithms during longer walks, there will be treadmill data col-
lected. The split-belt treadmill walking data (speed reduction of 25% on one side
[249]) can be used to analyse how well an algorithm deals with gait asymmetry. The
SPPB, timed up and go and five chair rise test are well known assessment tools that
are frequently performed in the clinic [250–252]. More information from these tests
can be extracted by adding one or a few IMUs [253, 254]. The non-standardized
assessment part with activities of daily living can be used to develop and validate
algorithms for the analysis of the performance in the natural environment of the
patients. The different movements performed throughout all the assessments and
the IMUs on different body parts make it also possible to define which IMU position
is the most accurate to quantify a certain movement.

With the data from the different groups, disease-specific mobility patterns can be
extracted and compared between diseases. These disease-specific mobility patterns
could help to correctly diagnose patients [17, 222]. It will also be possible to analyse
how these mobility patterns change during the courses of the diseases, since the
PD and MS groups will include patients with different disease stages [255]. All PD
patients that consent in conducting assessments during ON and OFF dopaminergic
medication states, will be measured in both conditions. This data will help assessing
the effect of novel mobility algorithms and parameters to measure effect of treatment
[39].

With the data from the different assessments it will be possible to analyse mobil-
ity in different circumstances. With the dual-task assessments it will, for example,
be possible to measure how much the mobility deteriorates with an easy and a more
complex dual-task. The walk with a low and a high obstacle will provide informa-
tion about the obstacle negotiation performance, which could indicate whether the
individual has an increased risk of falling [256, 257]. Moreover, the clinical scores
and questionnaires can be related to the mobility performance during the different
assessments [258, 259].

This study will have some limitations. The laboratory where the assessments
will be performed is relatively small. Therefore, only 5 m of steady state walking
can be captured on the over ground walkway and the distances covered during
the non-standardized activities of daily living will also not exceed the 5 m. The
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measurements will last about three hours because of the many assessments that will
be performed. It is possible that not every participant will be able to perform all
assessments due to fatigue or loss of motivation, and that only a subset of the data
can therefore be collected for those participants.

In conclusion, this study aims at building the largest currently available database
for future development and validation of IMU-based mobility algorithms. It will in-
clude representative numbers of healthy adults over a large age range, as well as
patients with diverse neurological diseases. The combined analysis of demographic
and clinical data with full-body IMU and optical motion capture data should stimu-
late highly efficient research in this area, to eventually catalyse the implementation
of accurate mobility parameters in clinical routine and assessment panels of clinical
trials.

75



6

6. Study protocol

Supplementary material

Table 6.1: Information about the placement of the reflective markers and the corresponding name
in the data files. See also Supplementary Figure 6.5.

IMU = inertial measurement unit; l/r = marker is placed both on the left and right side; m =
marker is placed around the midline of the body; st = indicates that this is a static marker that is
only on the body during the static calibration trials.
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Figure 6.5: Placement of the reflective markers and the corresponding name in the data files. Full
names and descriptions can be found in Supplementary Table 6.1.

Treadmill split-belt protocol

A subset of the healthy young adults will be asked to participate in two split-belt
trials. The speed of the treadmill will be set to the comfortable walking speed from
the first part of the first treadmill trial at which the participant will walk for 60 s.
Then the speed of one of the two belts will be reduced with 25% for 120 s. This will
be followed by another 60 s with both belts at the same comfortable walking speed.
This trial will then be repeated with a speed reduction of the other belt. The order
in which belt the speed was reduced first will be randomized.

Choreography assessment

The choreography assessment will exist of a series of movements related to the
flexibility of the lower back. The participants will first perform a full flexion and
extension of the back. Second, a right and left rotation of the back will be performed,
which will be followed by a right and left lateral flexion of the back. Thereafter,
the participants will pretend to lift an object from the floor (which is located in
front and slightly to the right of the participant), they will lift this above the head
and put it back on the floor (in front and slightly to the left of them). This is a
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movement that combines flexion and rotation of the back. Lastly, the participants
will sit down and lift up the right leg while keeping it bended and pretend to put
on a sock, which will then be repeated with the left leg.
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Chapter 7

General discussion

The evaluation of mobility of patients with neurodegenerative diseases is crucial
for healthcare professionals to tailor individual treatments and track disease
progression. More individualized treatment has high potential to improve the
quality of life, improve mobility and decrease fall risk. Nowadays mobility is mainly
assessed during clinical examinations. However, with the rise of digital wearable
technology, it has become possible to quantify mobility objectively in different
settings. It is however unclear how mobility data collected in different settings, or
more general different contexts, are associated with each other. Therefore, the aim
of this dissertation was to understand the influence of context on mobility in older
adults and patients with neurodegenerative disorders.

Main findings

Chapter 3 focused on the systematic evaluation of studies that compared the same
mobility parameters measured in supervised and unsupervised contexts with each
other. This evaluation revealed differences ranging from -40% to 180% change be-
tween the two contexts. The type of movement and the type of diagnosis as well
as psychological, physiological, cognitive, environmental and technical factors influ-
enced these differences. Because of the influence of context, the unsupervised perfor-
mance assessments provide complementary information to the supervised capacity
assessments. For the implementation of unsupervised performance assessments in
clinical practice and research, a few factors need to be considered. Data analysis
of unsupervised performance data should make use of the high amount of move-
ment repetitions measured. Moreover, the algorithms to extract mobility-related
parameters should be validated in both contexts as far as possible. The mobility-
related parameters obtained from the algorithms should be analysed to see which
parameters are relevant disease progression and treatment response markers.

In Chapter 4, the development of an algorithm to quantify arm swing during
walking from wearable sensor data from a wrist-worn IMU was described. The
algorithm was validated for healthy adults and patients with PD. The algorithm
was highly accurate as well as sensitive enough to detect differences in arm swing
between healthy adults and patients with PD.

Subsequently, as described in Chapter 5, this arm swing algorithm was used to
analyse the effect of dopaminergic medication on arm swing in patients with PD
during tasks with different complexity. Arm swing showed moderate improvements
with dopaminergic medication at preferred walking speed. Large improvements with
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medication were found for several arm swing parameters at fast walking speed. How-
ever, the responsiveness of arm swing to medication during dual-tasking was small or
even negative. It was concluded that, since dual-tasking most closely resembles the
average real-life performance, the effect of dopaminergic medication on arm swing
during real life might be limited.

In Chapter 6, a study protocol was introduced for the collection of full-body
wearable sensor data as well as full-body optical motion capture data from mobility
performed under standardized conditions (reflecting the typical assessment in the
clinical and laboratory environment) and non-standardized conditions (reflecting
daily life performance). It describes the protocol of a, to our best knowledge, unique
dataset worldwide of this extent and granularity that can be used by the research
community to validate mobility algorithms. Data will be collected from healthy
adults (18-60 years), healthy older adults (>60 years), PD patients, MS patients,
stroke patients and patients with low back pain caused by orthopaedic issues. In
more detail, this dataset can be used to continue the research regarding the influence
of the context on mobility, as well as the development and validation of wearable
sensor-based algorithms that can quantify mobility in different contexts.

Performance assessments

The performance measures provide complementary information to the capacity mea-
sures that are commonly quantified during clinical examinations (Chapter 3). This
is for a large part because of the different contexts they are measured in. In real
life, where the performance measures are captured, there is no supervision from
healthcare professionals, the environment is more cluttered and contains more ob-
stacles, the movements that are performed are self-initiated and goal-directed, and
movements are more frequently part of multi-tasking actions.

Improvements in capacity do not automatically indicate an improvement in per-
formance. Since patients spend most of their time in their own environment and
not in the clinic, it is more relevant for the patients to improve their performance.
Therefore, performance assessments should be implemented into clinical practice and
as outcome in clinical trials to be able to quantify changes in performance. With
the implementation of regular performance assessments, healthcare professionals can
monitor the patient from distance and less clinical visits will be required. This can
be beneficial particularly in rural areas where distances to the clinic can be large
[111]. Less clinical visits and remote monitoring of mobility could have been espe-
cially beneficial during the recent COVID-19 pandemic, which increased the need
for telemedicine [260, 261].

Although performance might be the most relevant measure for the patient,
it still remains important to regularly measure the capacity in a standardized
setting due to different reasons. First, information about how well someone
can do specific tasks provides information about the general capacity of a pa-
tient. Second, parameters obtained in standardized settings are more stable than
performance measures, simply because one can control better for influencing factors.
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The influence of the context on the association between capac-
ity and performance

Capacity and performance are two different measures that are associated with each
other [262, 263]. It is known that capacity-related measures of mobility are influ-
enced by the context they are measured in. The task complexity, medication status,
diagnosis and many more factors can influence capacity. It is also known that the
mobility-related performance is influenced by the context. The walking setting, in-
door versus outdoor or even versus rough surface or flat versus inclined surface, can
all affect the walking performance. A few studies showed that the capacity of older
adults measured during simple tasks correlate best with the more extreme perfor-
mance values (close to the maximum performance measured) [120, 132, 148]. On the
other hand, complex capacity tasks are probably more associated with the average
performance values, since these more complex tasks better represent real life situa-
tions [89, 90] (Figure 7.1). Therefore, we recommend healthcare professionals to add
a dual-task assessment to the clinical examination. This dual-task assessment might
give the healthcare professional a better indication of how patients move during real
life.

Figure 7.1: The association between capacity and performance with different task complexity
(simulated data).

As discussed in Chapter 1, measuring capacity, performance and perception could
provide information about the daily function of patients [3]. However, with the
research presented in this dissertation it has become clear that the context affects
capacity and performance measures and the association between those two measures.
Therefore, the association between capacity, performance and perception is more
complex as previously described (Figure 7.2 A) [3]. In this dissertation, a new version
of the daily function assessment is proposed to which an extra level was added to
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Figure 7.2: A. The daily function assessment as it was originally proposed [3]. B. The new
proposed version of the daily function assessment. With a change in context the association
between capacity and performance changes (indicated by the different thickness of the arrows). The
associations with perception are in grey, because no information is available about the influence of
the context on perception.

represent the influence of the context (Figure 7.2 B). This version is however still
incomplete since it is unknown what the influence of the context is on mobility-
related perception.

The influence of the context on treatment effect

Treatment of neurodegenerative disorders should have an effect on all three mea-
sures of the daily function assessment model: capacity, performance and perception.
However, the effect of treatment can change between different contexts. In Chapter
5, it was shown that during simple tasks, dopaminergic medication had moderate
to large positive effects on arm swing of PD patients. However, during dual-tasking
medication had either small or negative effects on arm swing. Another study also
showed that gait did improve with dopaminergic medication during simple tasks,
but not during dual-tasking [197]. Moreover, the effect of dopaminergic medication
on postural stability also seems to be influenced by the task complexity. Two studies
found an improvement in several sway parameters during 30 s quite stance with the
eyes open, which is a relatively easy task [39, 48]. Another study that added also
an eyes closed and dual-task condition to the simple quite stance task did not find
improvements in postural sway with dopaminergic medication [214]. A study that
provided perturbations during quite stance by rotating the platform the PD patients
were standing on, which is also a more complex task, did not find improvements of
dopaminergic medication either [190]. Since more complex tasks represent daily liv-
ing more closely, it could be that dopaminergic medication is not beneficial during
daily living. To understand the effect of treatment during daily living, a first step
would be to additionally assess the capacity during tasks with a higher complexity.
In the future, the performance assessments should also be implemented to be able
to directly assess the effect of treatment on the performance.

It is clear that treatments like physiotherapy or resistance training can improve

82



7

implementation of performance measurements

capacity [264, 265]. However, it is unclear how well this transfers to the real life per-
formance. It is known from research in sports that for example, resistance training
improves muscle strength, but that this does not always directly improve their sport
performance [264]. Training needs to be more sport specific to achieve improvements
in the sport performance. This could also be the case for movement-related ther-
apies in patients with neurodegenerative diseases. It has already been shown that
healthy young adults that trained a specific balance task, rapidly improved their
performance on this task, but did not improve their performance in other balance
task [266]. Therapies might therefore need to be more context specific. This can
only be explored by implementing performance measurements in the future.

Recommendations for the implementation of performance
measurements

Complex tasks can be added relatively easy to the clinical examination to improve
the capacity measures. There are however multiple steps that need to be taken
before we can really implement the performance measurements in routine clinical
care. Performance measures are starting to be used more often in research [267, 268].
Moreover, the European Medicines Agency and the US Food and Drug Administra-
tion encourage the use of performance measures as exploratory endpoints in clinical
trials. This is necessary to continue exploring the association between capacity and
performance measures and for trying out new data analysis methods to see how we
can benefit most from the performance assessments. With the information provided
in this dissertation we are taking a step forward, but a few more steps need to be
taken.

To measure all possible movements and symptoms during daily living, patients
have to be equipped with many wearable sensors. This is not feasible during daily
living and the amount of devices that need to be worn for performance assessments
should be minimal to keep the adherence of the users high. How many wearable
sensors need to be worn will depend on the type of movement and symptoms that
are most interesting to be quantified [122]. This will be disease-dependent and might
even be subtype- and severity-dependent. For many movements and symptoms, it
is not clear yet which sensor location can be used best. This can in the future
be explored in more detail with the dataset that was introduced in Chapter 6.
Ideally the sensor data from smartwatches and smartphones are also used (these
contain the similar type of sensors as IMUs), since these are devices that the patients
might already have and wear. These might therefore be the least obtrusive and it
has already been shown that they are feasible for assessing mobility [269]. When
additional wearable sensors are used, it should be made sure that the battery has
a long lifetime, because having to charge the wearable sensors could also affect the
adherence [270, 271].

The amount of algorithms that is available to analyse performance data from
wearable sensors is limited. More open source algorithms should be developed and
especially validated for the different diseases and for use in daily living, like the
arm swing algorithm introduced in Chapter 4 and other mobility-related algorithms
[100, 119, 272]. For the analysis of performance data, we should take advantage
from the high amount of repetitions of movements, since single occurrences could
be largely influenced by changes in context. The distribution should for example be
taken into account. The effect of a treatment might be best evaluated by looking at
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changes in the top and maybe even bottom 10% of the distribution [120, 132, 148].
Detecting changes in the overall distribution could be used to analyse fluctuations
over time. Other methods to analyse the data, like artificial intelligence and machine
learning algorithms should also be explored. These methods have already been
shown to perform well on data from clinical examinations [273, 274], and are starting
to be tested with performance data [275]. These methods can deal well with the large
quantity of data from performance assessments. However, care should be taken with
these methods because they lack transparency [276]. The contribution of specific
parameters or data features to the classification is often not known in much detail,
making it hard to clinically interpret the analysis.

The outcomes from the analyses and algorithms need to be validated before they
can be used in routine clinical care. We recommend that algorithms that detect or
classify specific movements should be validated with datasets that have at least video
data from patients [147]. Algorithms that measure the quality of movements should
be compared to gold standard/reference systems, such as optical motion capture or
force plate data [277]. The detection of symptoms and fluctuations in performance
and symptoms should be compared to clinical scores and patient-reported outcome
measures [278, 279]. The test-retest reliability should be tested for all outcome
parameters as well as the sensitivity and the minimal clinically relevant change
[110, 280].

From the available validated outcome measures it should be explored which pa-
rameters are the relevant biomarkers to detect or track a certain disease, progression
aspects of the disease and treatment responses. What the relevant biomarkers are
will be disease and biomarker type-dependent and might even depend on disease
subtypes and disease severity [16, 49, 280]. Per biomarker should then be explored
how often and for how long the performance should be measured to obtain a reliable
result for the respective question [281].

This scenario can even be developed further: The collected biomarker data needs
to be managed and visualised to be able to track the progression over time. The
results can be linked to the digital health record and should then be accessible to the
patient and, when the patients grants them access, to the healthcare professional and
other people involved in (the treatment of) the disease [282]. This feedback on the
biomarker data could improve the long-term adherence to using wearable sensors.
Wearable sensors are in general well accepted by users/patients [283, 284], but long-
term adherence can be an issue [285, 286]. However, feedback could also influence
the behaviour of the patients, which might not always be wanted especially in clinical
trials investigating new compounds and other treatments where this behaviour could
be part of the outcome parameters.

Limitations

Both mobility and context are broad terms containing many different aspects.
Within this dissertation only a limited amount of mobility-related and context-
related aspects were discussed. Especially regarding the type of diseases, only PD
and MS were taken into account. For the comparison of supervised and unsuper-
vised assessments (Chapter 3), no research was available for other diseases. However,
with the dataset introduced in Chapter 6 the research regarding the influence of the
context on mobility can now also be extended to patients with a stroke and with
structural lower back pain problems.

Wearable sensors in combination with algorithms can be used to quantify
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performance-related mobility, but interpreting the results remains difficult. For
example, a decrease in step length during a walking bout could be an indication for
one of the PD-related symptoms bradykinesia (a reduction in speed and amplitude
of repetitive movements), but can also be due to fatigue, fear of falling or a change
in the slope of the walking surface. It might be easier to interpret the data by adding
more wearable sensors. With data from multiple body parts, the data interpretation
will become easier, but wearing many sensors might not be feasible for the patients
and might not be good for the adherence.

In this dissertation, only one type of sensor was taken into account, the iner-
tial measurement unit. There are more wearable sensors available that measure
mobility-related aspects like EMG (electromyography) and insoles with pressure
sensors. Moreover, ambient motion sensors are starting to be used more often in
research [287]. Ambient motion sensors are sensors located in a fixed place in a space
that can track e.g. movements of persons in that space [288]. Since these sensors
always measure in the same setting, the influence of context on the mobility will be
smaller.

Outlook

As discussed above in the section with recommendations for the implementation of
performance assessments, there are still many factors that need to be explored before
the performance assessments can become part of routine clinical care. When per-
formance assessments are part of clinical care, patients can besides discussing their
problems with a healthcare professional, also share their objective performance data
with them. Together with the clinical examination, the healthcare professional has
then information about the capacity, performance and perception at their disposal.
This way the healthcare professional has a more complete view on the health prob-
lems and it will become easier to correctly diagnose patients in an earlier disease
stage. This might make it possible to start treatment earlier and potentially slow
down the progression of the disease in an earlier stage. This will increase the quality
of life of patients and reduce healthcare costs.

Performance assessments can be used to objectively track the disease progression
by regularly assessing the patients. With the regular performance data, healthcare
professionals gain more insight on which activities and symptoms cause the most
problems during daily living. This information can be used to individually tailor
the treatment and thereafter to measure the response to treatment. Performance
assessments can also be processed in real-time to measure the immediate effect of
treatment. This could for example be used in patients with PD to indicate when
a new dose of dopaminergic medication should be taken, e.g. when the symptoms
seem to get worse again.

Smartphones and smartwatches cannot only be used to measure the performance,
but they could also be used to measure the perception. Apps are being developed
where patients can regularly answer a few questions related to their health [175]. In
this way, additional, e.g. non-motor symptoms can be tracked, as most of them can-
not be measured directly with wearable sensors. These electronic patient-reported
outcomes can provide more regular perception data since they can be assessed fre-
quently in between clinical visits. A next step in the development of these digital
tools for the assessment of daily life of the patients will thus be to increase the num-
ber of validated diaries for the assessment of symptom perception, and to associate
these digital perception and performance data consequently with each other. The

85



7

7. General discussion

digital perception and performance data should then also be associated with the
capacity data to gain a more complete understanding from daily function.

With the performance and perception assessments, patients can effectively mon-
itor themselves and the healthcare professional will eventually be able to monitor
the patient mainly from distance. The healthcare professional can decide to sched-
ule clinical visits based on changes in the performance and perception data. The
regular performance and perception assessments make it possible to detect problems
early on. During the scheduled clinical visit, these changes can be discussed and the
capacity can be measured to check whether this has changed as well. Based on these
results from different contexts the treatment can be adjusted to keep the quality of
life as good as possible.

Conclusion

This dissertation contributed to our understanding of the influence of the context
on mobility. The first study (Chapter 3) revealed that supervised capacity and
unsupervised performance measures can substantially differ from each other. Con-
sequently, both measures provide complementary information that can be used to
gain a better understanding of daily function. During both, supervised and unsu-
pervised assessments, context plays a substantial, and currently not well understood
role. This is demonstrated, as an example, in Chapter 5: The effect of dopaminer-
gic medication on arm swing in patients with PD is influenced by medication state
and task complexity. We therefore highly recommend to assess patients in differ-
ent contexts to get a better understanding of the effect of treatment or the disease
progression. More validated algorithms, like the arm swing algorithm in Chapter
4, are required to analyse the wearable sensor data from different contexts. With
the dataset introduced in Chapter 6, an indefinite number of additional movement
and mobility algorithms can be developed and validated. The development and val-
idation of these algorithms can further move our understanding of the influence of
context on mobility forward.
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Summaries

Deutsche Zusammenfassung

Der Einfluss des Kontexts auf die Mobilität bei neurologischen
Erkrankungen - ein tragbarer Technologie-Ansatz

Allgemeine Einführung

Wir befinden uns mitten in einer digitalen Transformation, die große Auswirkungen
auf das Gesundheitswesen mit sich bringt. Digitaler Fortschritt und neue Tech-
nologien beeinflussen die Diagnose, Prävention, Überwachung und Behandlung von
Krankheiten. Medizinisches Fachpersonal kann technologiegestützte Entscheidun-
gen treffen, was zu einer stärker personalisierten Behandlung führen kann. Es gibt
eine wachsende Anzahl von tragbaren Technologien, die zur Analyse von Mobilität
beitragen. Solche tragbaren Sensoren ermöglichen es, die Mobilität auch außerhalb
der Klinik und über längere Zeiträume zu messen und auszuwerten. Diese Informa-
tionen haben ein hohes Potenzial, die Gesundheitsversorgung weiter zu verbessern.

Mobilitätsbezogene Aktivitäten erfordern einen gewissen Kraftaufwand. Mit
steigendem Alter und dem Auftreten von Alters-assoziierten Erkrankungen nimmt
die Kraft ab, was häufig zu Einschränkungen der Mobilität führt. Mobilitätsein-
schränkungen haben einen großen Einfluss auf die Lebensqualität. Medizinisches
Fachpersonal bewertet Mobilitätseinschränkungen häufig mittels Fragebögen und
der Beurteilung von einer kurzen Gehstrecke im Rahmen der klinischen Unter-
suchung. Die Fragen, die die Patientin bzw. der Patient beantwortet, liefern In-
formationen über die eigene Wahrnehmung (perception). Das Testen von Gehen
im klinischen Kontext liefert (vornehmlich) Informationen über die Kapazität (ca-
pacity), d.h. was die Patientin bzw. der Patient in der Lage ist zu tun. Was
sich damit aber schlecht darstellen lässt, ist was die Patientinnen und Patienten im
täglichen Leben können. Dies wird in dieser Arbeit als Performance bezeichnet. Die
Verbesserung der Performance dürfte für viele Patientinnen und Patienten wichtiger
sein als die Verbesserung der Kapazität, da sie relevanter für die Alltagsbewälti-
gung sein dürfte. Es ist auch davon auszugehen, dass die kombinierte Bewertung
von Wahrnehmung, Kapazität und Performance ein sehr realistisches Maß für die
Mobilität im Alltag (Alltagsfunktion) einer Patientin oder eines Patienten liefert [3].

Diese Arbeit befasst sich mit dem Einfluss von Kontext auf Mobilität, welche
mit tragbaren Sensoren erfasst wird. Diese Sensoren lassen eine objektive Erfassung
der Mobilität in verschiedenen Umgebungen und unter verschiedenen Umständen
zu. Diese Arbeit soll zeigen, dass der Kontext in der Mobilität gemessen wird,
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bei älteren Erwachsenen und Patientinnen und Patienten mit neurodegenerativen
Erkrankungen von entscheidender Bedeutung für die Ergebnisse ist.

Theoretischer Hintergrund

Mobilität bezeichnet die Fähigkeit, sich selbstständig oder mit Hilfe von Hilfsmitteln
von einem Ort zu einem anderen, oder von einer Körperposition in eine andere zu
bewegen. Einschränkungen der Mobilität führen zu einer Verminderung von Selb-
ständigkeit und Lebensqualität [5, 6]. Zu den häufigsten Mobilitätseinschränkun-
gen gehören Defizite in Gang und Gleichgewicht, die wiederum mit einem erhöhten
Sturzrisiko [7, 8], Krankenhausaufenthalten [9, 10], Mortalität [9, 11], Angstzustän-
den [12], Einschränkungen der kognitiven Funktionen [13] und sozialer Isolation
[14] verbunden sind. Gang- und Gleichgewichtsdefizite lassen eine Unterscheidung
zwischen gesunden Erwachsenen und Patientinnen und Patienten mit neurodegener-
ativen Erkrankungen [17, 18] und zwischen verschiedenen Subtypen von neurodegen-
erativen Erkrankungen zu [19–21] und erfüllen damit die Kriterien von Biomarker
[15, 16]. Weiter haben sie das Potenzial, neurodegenerative Erkrankungen in einem
präklinischen Stadium erkennbar zu machen [15, 18, 22].

Während sich das physiologische Altern allein bereits negativ auf die Mobilität
auswirkt [24, 25], haben neurodegenerative Erkrankungen wie Morbus Parkinson
und Multiple Sklerose einen noch stärkeren Einfluss auf die Mobilität [33, 37, 60].
Morbus Parkinson ist eine neurodegenerative Erkrankung, die durch einen fortschrei-
tenden Verlust von dopaminergen und anderen Neuronen in verschiedenen Bereichen
des Gehirns, bevorzugt im Mittelhirn, verursacht wird und zu einer Reihe von mo-
torischen und nicht-motorischen Symptomen führt [31, 32]. Einer der prominen-
testen Faktoren des Morbus Parkinson sind Gangstörungen, die zu Einschränkun-
gen der Mobilität und einem erhöhten Sturzrisiko führen [33]. Da es sich bei
Morbus Parkinson um eine progressive Erkrankung handelt, werden die Mobil-
itätseinschränkungen mit der Zeit immer gravierender. Die Erkrankung wird in
der Regel mit dopaminergen Medikamenten behandelt [43]. Sie sind hochwirksam,
insbesondere bei der Verbesserung motorischer Symptome [44, 45]. Dopaminerge
Medikamente verbessern auch einige Aspekte des Gangs, welcher jedoch im Ver-
gleich zu gesunden Kontrollpersonen meist auch unter optimaler Therapie beein-
trächtigt bleibt [39, 46, 47]. Multiple Sklerose ist eine neuroinflammatorische und
-degenerative Erkrankung, die zu einem Verlust der Myelinscheiden der Nerven-
fasern und damit zu einer abnorm veränderten Nervenleitung führt [57, 58]. Je
nach Lokalisation der Schädigungen kann die Krankheit z.B. zu Spastik, Schmerzen,
Müdigkeit, Sehstörungen und verminderter Sensibilität führen [59]. Die Spastik,
oft in Kombination mit der verminderten Sensibilität, macht es für die Patientin-
nen und Patienten schwieriger, Bewegungen zu koordinieren. Die Veränderung des
Gangbildes ist bereits bei Patientinnen und Patienten mit einem relativ geringen
Krankheitsschweregrad zu beobachten. Die verfügbaren Behandlungen können die
Schübe reduzieren, aber oft das Fortschreiten der Krankheit nicht substantiell ver-
langsamen [58, 63].

Mit Hilfe von tragbaren Sensoren lässt sich die Mobilität innerhalb und außer-
halb des Labors quantifizieren. Die Art von Sensorik, die häufig zur Quantifizierung
von Bewegung verwendet wird, sind Inertialmesseinheiten (inertial measurement
units, IMUs) [67]. Die Rohdaten dieser Sensoren (Beschleunigungs- und Gyroskop-
daten) werden mit Algorithmen analysiert, um bewegungsbezogene Parameter zu ex-
trahieren [67, 68]. Die tragbaren Sensoren in Kombination mit validierten Algorith-
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men können in der Klinik zur Quantifizierung der Kapazität und in der natürlichen
Umgebung zur Quantifizierung der Performance eingesetzt werden. Allerdings muss
der Kontext, in dem Kapazität und Performance gemessen werden, berücksichtigt
werden, da dieser einen erheblichen Einfluss auf die Mobilität haben kann.

Der Kontext wird imWörterbuch definiert als "die Umgebung, die Umstände, das
Umfeld, der Hintergrund oder das Setting, welche(r) die Bedeutung eines Ereignisses
oder eines anderen Vorgangs bestimmen, spezifizieren oder klären" [78]. Der Kon-
text kann das menschliche Verhalten beeinflussen. Allein das Wissen, dass die
eigenen Bewegungen analysiert werden, verändert die Mobilität bereits mit großer
Sicherheit. Außerdem ist ein gut beleuchteter offener Raum ohne viele Störfaktoren
während einer klinischen Untersuchung nicht mit Bewegungen vergleichbar, wie sie
im täglichen Leben üblich sind. Selbst innerhalb klinischer Untersuchungen lassen
sich Unterschiede zwischen Single- und Dual-Task-Aufgaben [87, 88] sowie Medika-
tionsstatus [39, 91, 92] feststellen. Im Rahmen dieser Dissertation wird der Einfluss
des Kontexts auf die Mobilität analysiert. Speziell wird untersucht, wie sich der
Kontext (z. B. Diagnose, Setting, Aufgabenkomplexität, Medikationsstatus) auf
Kapazität und Performance der Mobilität bei älteren Gesunden und Personen mit
neurodegenerativen Erkrankungen auswirkt.

Langzeit-Mobilitätsbeurteilung bei Bewegungsstörungen

Mobilitätsdefizite sind bei neurologischen Patientinnen und Patienten weit verbreitet
und beeinträchtigen z.B. die Aktivitäten des täglichen Lebens, die Arbeit und die
sozialen Aktivitäten [4]. Mobilitätsdefizite sind auch Prädiktoren für erhöhte Mor-
bidität, eingeschränkte kognitive Leistungsfähigkeit und erhöhte Mortalität [101–
104]]. Sie wirken sich negativ auf die Lebensqualität aus, insbesondere bei Pati-
entinnen und Patienten mit neurologischen Bewegungsstörungen [5, 6]. Daher ist es
für das medizinische Fachpersonal von entscheidender Bedeutung, eine vollständige
und objektive Bewertung der Mobilität einer Patientin bzw. eines Patienten als
Grundlage für eine individuell zugeschnittene klinische Entscheidungsfindung und
Prognose zu erhalten. Derzeit werden Mobilitätsbeurteilungen hauptsächlich beauf-
sichtigt in einem Labor oder Krankenhaus mit standardisierten, meist qualitativen
oder halbstandardisierten Tests durchgeführt [106–108]. Viele Patientinnen und Pa-
tienten zeigen jedoch (paradoxerweise, unbewusst und ungewollt) gute Leistungen,
wenn sie wissen, dass sie beobachtet werden. Darüber hinaus sind verschiedene
klinisch relevante Symptome während dieser Momentaufnahme schwer zu erfassen,
entweder weil sie über lange Zeiträume stattfinden (z. B. Umfang der körperlichen
Aktivität), selten sind (z. B. Stürze), nachts auftreten (z. B. Schlafstörungen) oder
komplexe fluktuierende Muster aufweisen (z. B. die Reaktion auf eine dopaminerge
Behandlung). Um solche Ereignisse zuverlässig zu bewerten, ist es notwendig, Pati-
entinnen und Patienten über längere Zeiträume zu messen, während sie sich frei und
unbeaufsichtigt in ihrem täglichen Lebensumfeld bewegen. Dies kann mit tragbaren
Sensoren geschehen [110, 111]. Die Langzeit Mobilitätsbeurteilung kann im Vergle-
ich zur klinischen Beurteilung zusätzliche und teilweise ergänzende Informationen
liefern. Dabei sind jedoch Unterschiede zur herkömmlichen klinischen Untersuchung
zu beachten.

Die erste in der Dissertation vorgestellte Arbeit ist ein systematisches Review,
welches die (schwache) Assoziation zwischen standardisierten (d.h. im klinischen
Kontext) und nicht-standardisierten (d.h. im häuslichen Umfeld) Assessments von
Mobilität aufzeigt. Dabei wird auch aufgezeigt, dass verschiedene Kontexte die
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erhobenen Mobilitätsdaten substantiell beeinflussen können. Es werden Vorschläge
zur Implementierung von Langzeit-Mobilitätserfassungen in die klinische Versorgung
und die zukünftige Forschung erarbeitet.

Im Detail fanden sich folgende Ergebnisse: Wenn die selben Mobilitätsparameter
von identischen Teilnehmerinnen und Teilnehmer (ältere Erwachsene, Patientinnen
und Patienten mit Morbus Parkinson und Patientinnen und Patienten mit Mul-
tiple Sklerose) zwischen standardisierten und nicht-standardisierten Bedingungen
verglichen wurden, zeigten sich Unterschiede von -40% bis 180% (Abbildung 8.1).
Diese Unterschiede sind deutlich größer als die, die nach Interventionen beobachtet
werden. Somit können kleine und moderate Behandlungseffekte durch Variation von
Kontext im Rauschen untergehen und damit unbeobachtet bleiben.

Abbildung 8.1: Prozentuale Änderung von Parametern, die unter nicht-standardisierten Bedin-
gungen gemessen wurden, im Vergleich zu standardisierten Bedingungen. Für weitere Informatio-
nen siehe Kapitel 3.

Wir gehen davon aus, dass eine Langzeit-Mobilitätsbeurteilung in Zukunft Vo-
raussetzung für klinische Studien und die klinische Entscheidungsfindung sein wer-
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den. Es gibt jedoch noch einige Aspekte, die angegangen werden müssen, bevor
die Langzeit-Mobilitätsbeurteilung in die klinische Routineversorgung implemen-
tiert werden kann. Die Algorithmen, die zur Berechnung der Mobilitätsparameter
verwendet werden, sollten so weit wie möglich sowohl unter standardisierten als auch
unter nicht-standardisierten Bedingungen validiert werden. Besonderes Augenmerk
muss auf eine differenziertere Datenanalyse von nicht-standardisierten Daten gelegt
werden. Neue Analysemethoden sollten erforscht werden und wir müssen evaluieren,
ob relevante Maße aus den Daten extrahiert werden können. Um die klinische Rele-
vanz von Ergebnissen der Langzeit-Mobilitätsbeurteilung besser zu verstehen, sollten
zukünftige Arbeiten die Beziehung zwischen diesen objektiven digitalen Messwerten
untersuchen und mit Ergebnissen von Fragebögen (sowohl für Patientinnen und Pa-
tienten wie auch deren Betreuende) in Zusammenhang bringen.

Quantifizierung des Armschwungs beim Gehen bei gesunden Erwachse-
nen und Patientinnen und Patienten mit Morbus Parkinson: Entwicklung
und Validierung eines Algorithmus auf Basis eines tragbaren Sensors

Eine schwingende Bewegung der Arme charakterisiert den Gang. Eine Verringerung
oder Asymmetrie des Armschwungs wird häufig bei Patientinnen und Patienten mit
Morbus Parkinson beobachtet [38, 170, 171] und könnte damit auch ein potenzieller
Prodromal- und Progressionsmarker für Morbus Parkinson sein [22, 170]. Dies un-
terstreicht den Bedarf an einem genauen Beurteilungsinstrument für Armschwung.
Ziel dieser zweiten Arbeit war es, einen Algorithmus zu entwickeln und zu vali-
dieren, der den Armschwung bei Patientinnen und Patienten mit Morbus Parkinson
während des Gehens quantifiziert und der sowohl in der Klinik als auch im Alltag
eingesetzt werden kann, und damit eine Testung des Einflusses von Kontext auf den
Armschwung ermöglichen kann.

Von 13 Patientinnen und Patienten mit Morbus Parkinson wurden mit Hilfe eines
Laufbands Gangdaten bei bevorzugter Geschwindigkeit erhoben, und von 15 gesun-
den Teilnehmerinnen und Teilnehmern bei drei verschiedenen Geschwindigkeiten.
Jeweils ein IMU und drei reflektierende Marker (optisches Bewegungserfassungssys-
tem, das als Referenzsystem dient) wurden an den Handgelenken der Teil-
nehmenden angebracht. Aus den Rohdaten der IMUs wurden Hauptamplitude,
Spitzenwinkelgeschwindigkeit, Seitwärtsamplitude, Regelmäßigkeit, Koordination
und Asymmetrie des Armschwungs berechnet. Eine Hauptkomponentenanalyse
wurde durchgeführt, um die Parameter in der Hauptschwungrichtung zu berechnen
und den Algorithmus robust gegenüber unterschiedlichen Tragepositionen am Unter-
arm zu machen. Die Maxima der ersten Hauptkomponente wurden detektiert, um
die Spitzenwinkelgeschwindigkeit zu erhalten. Die Daten wurden integriert und mit
einem gleitenden Mittelwertfilter gefiltert, um den Winkel zu erhalten, der für die
Berechnung der Amplitude verwendet wurde. Die Regelmäßigkeit des Armschwungs
wurde auf der Grundlage der Autokorrelation der Winkelgeschwindigkeit berech-
net, was ein Maß für die Ähnlichkeit zwischen aufeinanderfolgenden Armschwüngen
darstellt. Die Koordination zwischen linkem und rechtem Arm basiert auf einer
normalisierten Kreuzkorrelation, die Informationen über den zeitlichen Versatz der
linken und rechten Armschwünge liefert. Die Asymmetrie zwischen beiden Armen
wurde aus der durchschnittlichen Armschwungamplitude jedes Arms extrahiert.

Die Ergebnisse des Algorithmus wurden mit den Ergebnissen des optischen Bewe-
gungserfassungssystems verglichen. Die systematischen Fehler für gesunde Erwach-
sene und Patientinnen und Patienten mit Morbus Parkinson lagen im Bereich von 0,1
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bis 0,5° für die Amplitude und -0,3 bis 0,3°/s für die Spitzenwinkelgeschwindigkeit
der verschiedenen Geschwindigkeiten. Der Zufallsfehler der Amplitude lag zwischen
2,2 und 3,8° und der Zufallsfehler der Spitzenwinkelgeschwindigkeit zwischen 4,2 und
6,8°/s. Die absoluten Fehler lagen bei 0,9 bis 1,1° für die Amplitude und 1,4 bis 2,0°
für die Spitzenwinkelgeschwindigkeit. Damit sind die Ergebnisse des Algorithmus,
die auf den IMU-Daten beruhen, sehr gut vergleichbar mit den Ergebnissen vom
Referenzsystem. Der IMU-basierte Algorithmus kann daher als sehr akkurat beze-
ichnet werden. Armschwungamplitude und Spitzenwinkelgeschwindigkeit können
alle mit einem sehr kleinen systematischen Fehler im Vergleich zum Referenzsystem
extrahiert werden. Die zufälligen Fehler sind bei der Parkinson-Gruppe etwas höher
als bei der Gruppe der gesunden Erwachsenen. Dies kann - zumindest teilweise -
auf die weniger fließende Bewegung der Arme bei Patientinnen und Patienten mit
Morbus Parkinson zurückzuführen sein.

In einem vorläufigen Vergleich wurden die Armschwungparameter aus dem Al-
gorithmus zwischen gesunden Erwachsenen und Patientinnen und Patienten mit
Morbus Parkinson verglichen. Es zeigten sich signifikante Unterschiede in den Arm-
schwungparametern zwischen den Gruppen, was darauf hindeutet, dass der Algo-
rithmus sensitiv genug ist, um Gruppenunterschiede zu erkennen.

Der Armschwungalgorithmus liefert zusätzliche Informationen zur klassischen
Ganganalyse, die typischerweise nur Bewegungen des unteren Körpers misst. Der
Algorithmus kann sowohl in der Klinik als auch im häuslichen Umfeld angewen-
det werden, ein Bereich, den wir bisher noch nicht sehr detailliert untersuchen und
verstehen konnten. Dann sollte er aber mit einem Gangerkennungsalgorithmus kom-
biniert werden [182, 183].

Ansprechen des Armschwungs auf die dopaminerge Medikation bei Mor-
bus Parkinson hängt von der Komplexität der Aufgabe ab

Das Ansprechverhalten dopaminerger Medikation auf Gangparameter bei Patientin-
nen und Patienten mit Morbus Parkinson ist widersprüchlich [39, 46, 92, 192, 194].
Nur Ganggeschwindigkeit, Schrittlänge und Schrittgeschwindigkeit zeigen eine
Verbesserung durch die Medikation [39, 44, 77]. Der Medikationseffekt auf andere
Gangparameter ist jedoch weiterhin ungeklärt. Es ist bekannt, dass sich die Gehir-
naktivität sowohl bei der Komplexität von Gangaufgaben als auch bei neurologischen
Pathologien unterscheidet [98]. Daher stellten wir für die dritte Arbeit dieser Dis-
sertation die Hypothese auf, dass das Ansprechen von Armschwungparametern auf
dopaminerge Medikation durch die unterschiedliche Komplexität der Gehaufgaben
beeinflusst werden kann.

Bei 45 Patientinnen und Patienten mit Morbus Parkinson (alle ohne Dyskine-
sien) wurde der Armschwung beim Gehen mit bevorzugter Geschwindigkeit, mit
schneller Geschwindigkeit und beim Gehen mit einer kognitiven Dual Task-Aufgabe
(Subtraktion in 7er-Schritten) analysiert. Die Teilnehmerinnen und Teilnehmer gin-
gen eine Minute lang 20 Meter in einem Korridor auf und ab. Alle Teilnehmerinnen
und Teilnehmer führten diese Gangparadigmen sowohl ohne als auch mit dopamin-
erger Medikation durch. Eine Gruppe von Kontrollpersonen (gematcht nach Alter
und Geschlecht) führte die gleichen Gangparadigmen einmalig über eine Strecke
von 20 Metern durch. Während der Untersuchung trugen die Teilnehmerinnen und
Teilnehmer jeweils einen tragbaren Sensor an beiden Handgelenken. Der validierte,
öffentlich verfügbare Algorithmus, der in der zuvor erwähnten Arbeit vorgestellt
wurde, wurde hier verwendet, um die Armschwungparameter zu extrahieren. Die
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Armschwungparameter wurden für die Gehgeschwindigkeit korrigiert, da bekannt
ist, dass die Ganggeschwindigkeit den Armschwung beeinflusst [27, 204, 205].

Bei bevorzugter Geschwindigkeit, und noch mehr bei schneller Geschwindigkeit,
verbesserten sich die Armschwungparameter mit der Medikation (Abbildung 8.2).
Allerdings war der Effekt der dopaminergen Medikation auf die meisten Arm-
schwungparameter während der Dual Task-Aufgabe deutlich reduziert. Bei
bevorzugter Geschwindigkeit und bei der Dual Task-Aufgabe waren die Unterschiede
zwischen den Patientinnen und Patienten mit Morbus Parkinson und den Kontrollen
relativ gering. Bei schneller Geschwindigkeit unterschieden sich jedoch alle Param-
eter signifikant zwischen den Patientinnen und Patienten mit Morbus Parkinson
mit und ohne Medikation im Vergleich zu der gesunden Kontrollgruppe. Inter-
essanterweise waren die medikamentenbedingten Veränderungen des Armschwungs
nicht relevant mit den Veränderungen von klinischen Skalen für die Erfassung von
dopaminerger Wirkung korreliert.

Abbildung 8.2: Ansprechbarkeit der Armschwungungparameter und der kognitiven Subtrak-
tionsaufgabe bei dopaminerger Medikation. Ein positiver standardisierter Response-Mittelwert
(SRM) zeigt eine Verbesserung mit Medikation und ein negativer SRM eine Verschlechterung
mit Medikation an. 0.20 ≤ SRM < 0.50 steht für ein geringes, 0.50 ≤ SRM < 0.80 für ein
moderates und SRM ≥ 0.80 für ein großes Ansprechen auf dopaminerge Medikation [39]. * =
signifikant verschieden von bevorzugter Geschwindigkeit; # = signifikant verschieden von schneller
Geschwindigkeit/Einzelaufgabenbedingung.

Diese Arbeit konnte damit zeigen, dass das Ansprechen des Armschwungs auf

93



8

8. Summaries

die dopaminerge Medikation bei Morbus Parkinson wesentlich durch den Kontext
beeinflusst wird. Weiter führte die dopaminerge Medikation nicht dazu, dass die
Armschwünge der Patientinnen und Patienten mit Morbus Parkinson sich jenen
der Kontrollgruppe stark annäherten (also dass der Armschwung "normal" wurde).
Es kam vielmehr dazu, dass während des schnellen Gehens unter Medikation die
Patientinnen und Patienten mit Morbus Parkinson bessere Werte aufwiesen als die
Kontrollgruppe. Dies könnte dadurch erklärt werden, dass Patientinnen und Patien-
ten mit Morbus Parkinson die Energie des Armschwungs nutzen, um den Körper
vorwärts zu bewegen. Es könnte möglicherweise auch dadurch erklärt werden, dass
durch eine erhöhte sensorische Dämpfung, die bei Patientinnen und Patienten mit
Morbus Parkinson verändert ist und durch die dopaminerge Medikation verstärkt
wird [207], eine reduzierte Wahrnehmung (und damit Kontrolle) des Armschwungs
eintritt. Die Gangaufgabe mit zusätzlicher kognitiver Aufgabe zeigte relativ geringe
Unterschiede zwischen den Kontrollen und Patientinnen und Patienten mit Mor-
bus Parkinson. Letztendlich lässt diese Arbeit vermuten, dass die dopaminerge
Medikation für den Armschwung im Alltag nicht sehr vorteilhaft ist. Weitere Stu-
dien müssen diese Ergebnisse bestätigen und, falls sie sich bestätigen lassen, unter-
suchen ob dieser (fehlende) Effekt auch bei anderen alltagsrelevanten Bewegungen
zu beobachten ist. Dies hätte potentiell nachhaltigen Einfluss auf die Gestaltung
der Therapie insbesondere beim fortgeschrittenen Parkinsonsyndrom.

Detaillierte Mobilitätsmessungen mit Inertialmesseinheiten (IMUs) und
optischer Bewegungserfassung bei gesunden Erwachsenen und neurolo-
gischen Patientinnen und Patienten für zukünftige Validierungsstudien:
Ein Studienprotokoll

Gesunde Erwachsene und neurologische Patientinnen und Patienten zeigen einzi-
gartige Mobilitätsmuster im Laufe ihres Lebens bzw. ihrer Erkrankungen.
Die Quantifizierung dieser Bewegungsmuster könnte die Diagnose [17, 222], den
Krankheitsverlauf [106] und die Messung des Ansprechens auf eine Behandlung
[39, 121] unterstützen. Diese Quantifizierung kann mit tragbarer Technologie,
wie IMUs, durchgeführt werden. Bevor die IMUs zur Quantifizierung der Mobil-
ität verwendet werden können, muss immer ein Algorithmus entwickelt und va-
lidiert werden, welcher die Rohdaten entsprechend "interpretiert". Da sich Mo-
bilitätsmuster über die Lebensspanne und zwischen verschiedenen neurologischen
Erkrankungen unterscheiden, muss diese Validierung in verschiedenen Altersgrup-
pen und mit krankheitsspezifischen Datensätzen durchgeführt werden. Diese vierte
Arbeit stellt ein Studienprotokoll für einen "Ganzkörper-Mobilitätsdatensatz" von
gesunden jungen und älteren Teilnehmerinnen und Teilnehmer und neurologischen
Patientinnen und Patienten vor. Alle Teilnehmerinnen und Teilnehmer werden gle-
ichzeitig mit multiplen IMUs, verteilt über den gesamten Körper, und einem optis-
chen 3D-Bewegungserfassungssystem gemessen. Diese Studie soll einen bis dato in
diesem Ausmaß nicht erhältlichen Datensatz liefern, der für die Entwicklung und
Validierung von IMU-basierten Mobilitätsalgorithmen für gesunde Erwachsene und
neurologische Patientinnen und Patienten entscheidende Impulse setzen kann.

Die Studie wird gesunde jüngere Erwachsene (18-60 Jahre), gesunde ältere
Erwachsene (>60 Jahre), Patientinnen und Patienten mit Morbus Parkinson, Pa-
tientinnen und Patienten mit Multiple Sklerose, Patientinnen und Patienten mit
einem kürzlich erlittenen Schlaganfall und Patientinnen und Patienten mit chronis-
chen Schmerzen im unteren Rückenbereich umfassen. Spezifische klinische Skalen
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und Fragebögen über die kognitive Funktion, Aktivitäten des täglichen Lebens,
Müdigkeit und Lebensqualität werden zusätzlich erhoben. Alle Teilnehmerinnen
und Teilnehmer werden sowohl standardisierte Mobilitätsaufgaben als auch nicht-
standardisierte Aktivitäten des täglichen Lebens durchführen. Die standardisierten
Mobilitätsaufgaben umfassen Gehen unter Single- und Dual Tasking Bedingungen,
das Überschreiten eines Hindernisses, Drehbewegungen, Transferbewegungen vom
Sitzen zum Stehen und vom Stehen zum Sitzen sowie Gleichgewichtsübungen. Die
nicht-standardisierten Assessments umfassen das Decken eines Tisches, Bewegun-
gen beim Essen und Trinken, das Reinigen eines Tisches, Bügeln, Lesen, Heben
und Auswechseln von Gegenständen. Während der standardisierten und nicht-
standardisierten Bewegungsanalyse tragen alle Teilnehmerinnen und Teilnehmer
mindestens 15 IMUs und 47 reflektierende Marker, die vom optischen System er-
fasst werden.

Die gesammelten Daten können zur Entwicklung und Validierung von Algorith-
men für verschiedene Bewegungen und Symptome in unterschiedlichen Alters- und
Krankheitsgruppen verwendet werden. Die standardisierten komplexeren Gehauf-
gaben und die nicht standardisierten Aktivitäten des täglichen Lebens können ins-
besondere zur Entwicklung und Validierung von Algorithmen für die Analyse der
Performance in der natürlichen Umgebung der Patientin bzw. des Patienten verwen-
det werden. Die vielen IMUs, die an verschiedenen Körperteilen positioniert sind,
werden es auch möglich machen, zu definieren, welche IMU-Position die beste ist,
um eine bestimmte Bewegung zu quantifizieren.

Mit den Daten aus den verschiedenen Gruppen wird es potentiell auch möglich
sein, krankheitsspezifische Bewegungsmuster zu analysieren und diese zwischen den
Gruppen zu vergleichen. Außerdem kann damit analysiert werden, wie sich die Mo-
bilitätsmuster mit dem Schweregrad der Erkrankung oder mit der Medikation verän-
dern. Insgesamt können die Daten genutzt werden, um Algorithmen zu entwickeln,
die die Mobilität innerhalb und außerhalb der Klinik objektiv quantifizieren können,
um letztlich den Krankheitsverlauf besser verfolgen und eine individuellere Behand-
lung anbieten zu können.

Allgemeine Diskussion

Das Ziel dieser Dissertation war es, den Einfluss des Kontextes auf die Mobilität
bei älteren Erwachsenen und Patientinnen und Patienten mit neurodegenerativen
Erkrankungen besser zu verstehen. Ein systematisches Review (Kapitel 3) kon-
nte zeigen, dass unterschiedliche Kontexte bei Kapazität und Performance unter-
schiedliche Ergebnisse bei Mobilitätsparametern liefern können. Verbesserungen im
Kapazitätsbereich deuten nicht automatisch auf einer Verbesserung im Performance-
bereich hin. Das ist eine wichtige Beobachtung, insbesondere da die Patientinnen
und Patienten die meiste Zeit im häuslichen Umfeld und nicht in der Klinik bzw.
einer klinischen Untersuchung verbringen. Daher sollten Performance-Assessments
in Zukunft in die klinische Praxis und in die Assessment-Panels von klinischen Stu-
dien implementiert werden.

Kapazität und Performance sind zwei unterschiedliche Maße, die allerdings auch
miteinander in Verbindung stehen [262, 263]. Sowohl Kapazität als auch Perfor-
mance werden durch den Kontext beeinflusst. Die mit einfachen klinischen Tests
gemessene Kapazität älterer Erwachsener korreliert -wenig überraschend- am besten
mit den oberen Bereichen der Performancewerte [120, 132, 148]. Auf der anderen
Seite scheinen komplexe Kapazitätsaufgaben eher mit den Performancewerten um
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den Bereich des Mittelwertes / Medians zu korrelieren. Diese komplexeren Kapaz-
itätsaufgaben bilden möglicherweise reale Lebenssituationen besser ab [89, 90]. Es
könnte daher im Rahmen der klinischen Untersuchung sinnvoll sein, eine komplexere
Untersuchung von Mobilität durchzuführen, die z.B. auch kognitive Elemente bein-
haltet. Dies könnte dem medizinischen Personal zumindest eine grobe Vorstellung
davon geben, wie sich Mobilität im realen Alltag der Patientin bzw. des Patienten
abbildet.

Für die Behandlung von neurodegenerativen Erkrankungen sollte Mobilität als
ein Grundpfeiler des menschlichen Seins konsequent erfasst werden, und am besten
mit Kapazitäts-, Wahrnehmungs- und Performanceparametern [3]. Dabei sollte da-
rauf geachtet werden, dass für den Kontext, in dem die Untersuchungen durchgeführt
werden, so gut wie möglich kontrolliert wird. Darauf deuten v.a. die in der dritten
Arbeit vorgestellten Ergebnisse hin: Für den Armschwung ergaben sich bei kom-
plexen, jedoch nicht bei einfachen Aufgaben geringe und manchmal sogar negative
Effekte der dopaminergen Medikation bei Patientinnen und Patienten mit Morbus
Parkinson (Kapitel 5). Ähnliche Ergebnisse wurden bereits für Gleichgewichtspa-
rameter berichtet [39, 48, 190, 214]. Da wir im täglichen Leben kaum "einfache"
Aufgaben durchführen, könnte es daher z.B. sein, dass im Alltag die dopamin-
erge Medikation bei Patientinnen und Patienten mit Morbus Parkinson viel weniger
Vorteile bietet, als dies unter standardisierten Bedingungen, wie sie in einer Klinik
vorherrschen, gemessen wird. Diese Schlussfolgerung muss sicherlich, wie schon oben
erwähnt, mit zukünftigen prospektiven Studien kritisch überprüft werden.

Es ist wiederholt überzeugend nachgewiesen worden, dass Behandlungen wie
Physiotherapie und Krafttraining Kapazitätsparameter bei Patientinnen und Pa-
tienten mit hier untersuchten Erkrankungen verbessern können [264, 265]. Es ist je-
doch weitgehend unklar, wie gut sich dies auf Performancewerte überträgt. Im Sport
muss das Training der jeweiligen Disziplin angepasst sein, damit Verbesserungen in
der sportlichen Leistung erreicht werden können [264]. Wettkampfnahe Trainingssi-
tuationen sind der Schlüssel für erfolgreiche sportliche Leistungen. Dies könnte auch
für Patientinnen und Patienten mit neurodegenerativen Erkrankungen gelten: spez-
ifische bewegungsbezogene Therapien könnten helfen, die Performance im Alltag zu
verbessern. Die Trainingssituationen in der Klinik stimmen oftmals nicht mit der
tatsächlichen Umgebung im häuslichen Umfeld überein. Somit ist es wichtig, dass
die Kontextinformationen mit in die Therapie eingebunden werden. So sollten z.B.
Türschwellen, geschlossene Türen oder enge unübersichtliche räumliche Verhältnisse
in Therapiekonzepte mit einbezogen werden.

Die Anzahl an Algorithmen, die zur Analyse von Performancedaten von trag-
baren Sensoren zur Verfügung steht, ist begrenzt. Es müssen mehr Open Source
Algorithmen entwickelt und speziell für die verschiedenen Krankheiten und für
den Einsatz im täglichen Leben validiert werden, bspw. wie der in Kapitel 4
vorgestellte Armschwung-Algorithmus und andere mobilitätsbezogene Algorithmen
[100, 119, 272]. Für die Analyse von Performancedaten kann man sich die hohe
Anzahl von Wiederholungen von Bewegungen zunutze machen, da viele der zu
messenden Bewegungen sehr oft am Tag / während der Woche etc. auftreten. Dabei
kann und sollte z.B. auch die Verteilung der Bewegungen insgesamt und der quan-
titativen Parameter dieser Bewegungen berücksichtigt werden. Andere Methoden
zur Analyse der Daten, wie künstliche Intelligenz und maschinelle Lernalgorithmen
sollten ebenfalls intensiv getestet werden. Selbstverständlich müssen die Ergebnisse
der Algorithmen ausführlich validiert werden, bevor sie in der klinischen Routin-
eversorgung eingesetzt werden können. Aufbauend auf diesen Ergebnissen sollte
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untersucht werden, welche Parameter als Biomarker fungieren können, die eine bes-
timmte Krankheit, Aspekte des Krankheitsverlaufs oder das Ansprechen auf die
Behandlung am besten messen können. Es ist sehr unwahrscheinlich, dass ein Pa-
rameter all diese verschiedenen Aspekte erfüllen kann, selbst innerhalb eines bes-
timmten Mobilitätsmaßes [15]. In Zukunft sollte auch darüber nachgedacht werden,
wie die gesammelten Daten nicht nur dem medizinischen Personal, sondern auch
(und möglicherweise vor allem) den Patientinnen und Patienten präsentiert werden
können, sodass diese die Daten entsprechend interpretieren und daraus relevante
Schlüsse ziehen können. Die Ergebnisse sollten z.B. mit der (potentiell bald um-
fassend zur Verfügung stehenden) elektronischen Gesundheitsakte verknüpft werden
können [282]. Sobald Performancedaten Teil der klinischen Versorgung sind, kön-
nen Patientinnen und Patienten diese nicht nur im Rahmen von Visiten mit dem
medizinischen Personal verwenden, sondern auch mit anderen Gruppen teilen.

Es ist festzuhalten, dass Interpretationen von mobilitätsbezogenen Performance-
daten aktuell vorsichtig vorgenommen werden sollten, da der Kontext praktisch
alle Parameter substantiell beeinflussen kann, und wir bis heute noch nicht wissen,
inwieweit wir "Kontext" bereits adäquat und umfassend verstanden und definiert
haben. Zum Beispiel könnte eine über eine gewisse Zeitspanne beobachtete Re-
duktion der Schrittlänge während des Gehens ein Hinweis auf ein Prodromalsta-
dium eines Morbus Parkinson sein [15], kann aber auch auf (chronische) Müdigkeit,
Sturzangst aufgrund eines erstmalig aufgetretenen Sturzes, Umzug in eine andere
Gegend / Wohnung, anderes soziales Umfeld (z.B. hat der Partner eine Erkrankung,
und die regelmäßigen gemeinsamen Spaziergänge fallen damit langsamer aus),
Berentung, etc. zurückzuführen sein.

In dieser Dissertation sind nur IMUs zum Einsatz gekommen, um mobilitätsbe-
zogene Aspekte zu messen. Es ist gut denkbar, dass auch andere Sensorsysteme
Mobilität im Bereich Performance adäquat erfassen können. Ein Beispiel sind sta-
tionäre Sensoren (Sensoren, die sich an einem festen Ort in einem Raum befinden
und z. B. Bewegungen von Personen in diesem Raum verfolgen können) [287, 288].
Da diese Sensoren immer in der gleichen Umgebung messen, verringert sich der
Einfluss des Kontexts auf die Mobilität.

Smartphones und Smartwatches können zur Messung der Performance, aber auch
zur Messung der Wahrnehmung eingesetzt werden. Applikationen werden entwick-
elt, bei denen Patientinnen und Patienten regelmäßig Fragen zu ihrer Gesundheit
beantworten können [175]. Auf diese Weise können zusätzliche, z.B. nicht-motorische
Symptome verfolgt werden, da die meisten von ihnen nicht direkt mit IMUs gemessen
werden können. Der Zusammenhang zwischen diesen digitalen Fragebögen, von
Kapazitäts- und von Performanceparametern sollte weiter detailliert untersucht wer-
den, um ein vollständigeres Verständnis der Alltagsfunktion zu erhalten.

Zusammenfassend lässt sich sagen, dass verschiedene Kontexte, wie Diagnose,
Umgebung, Aufgabenkomplexität und Medikamentenstatus einen Einfluss auf die
Mobilität in den hier untersuchten Gruppen haben. Daher sollte die Mobilität in
verschiedenen Kontexten beurteilt werden, um mehr Informationen über die Alltags-
funktion zu erhalten. Diese Informationen können für eine individuellere Behandlung
verwendet werden.
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English summary

The influence of the context on mobility in neurological disor-
ders – a wearable technology approach

The current digital transformation is changing healthcare rapidly. There is a growing
amount of wearable technology available that contribute to the analysis of mobility.
Mobility can be used to discriminate healthy adults from patients with neurodegen-
erative diseases [17, 18], to differentiate between different subtypes of neurodegen-
erative diseases [19–21] and have potential to detect neurodegenerative diseases in a
preclinical stage [15, 18, 22]. Mobility limitations have a large impact on the quality
of life. Healthcare professionals evaluate mobility limitations often by letting the
patient answering questions about their mobility limitations (perception) and by
taking a qualitative look at how the patient walks. The walk provides information
about the capacity, what a patient is able to do (generally close to their maxi-
mal ability when performed under supervision). The healthcare professional has
however not obtained any information about what the patient actually does during
daily living, the performance. The combined assessment of perception, capacity and
performance provides a measure of the daily function of a patient [3].

Wearable sensors can be used to objectively quantify mobility in different set-
tings and under different circumstances. There is an increasing amount of literature
that shows that mobility might be influenced by the context (surroundings, circum-
stances, environment or setting) it is measured in. It is however still unclear how
the mobility measures obtained in different contexts relate to each other. The aim
of this dissertation is to better understand the influence of the context on mobility
in older adults and patients with neurodegenerative disorders.

A systematic evaluation of studies that compared the same mobility parameters
measured in supervised and unsupervised contexts with each other in older adults,
patients with Parkinson’s disease (PD) and multiple sclerosis (MS) revealed -40%
to 180% change between the two contexts. These differences are much larger than
the effects usually measured after interventions. Thus, small and even moderate
treatment effects might be buried under the variations introduced by the measure-
ment techniques themselves if the differences between supervised and unsupervised
assessments are not appropriately considered.

A swinging motion of the arms characterizes gait. A reduction or asymmetry in
the swinging motion is often seen in patients with PD [38, 170, 171] and could be
a potential prodromal and progression marker of PD [22, 170]. In Chapter 4, the
development of an algorithm to quantify arm swing during walking from wearable
sensor data from the wrist was described. The algorithm was validated for healthy
adults and patients with PD. The algorithm is highly accurate. In a preliminary
analysis, arm swing parameters were compared between healthy adults and patients
with PD. Significant differences in arm swing parameters were found between the
groups, indicating that the algorithm is sensitive enough to detect differences be-
tween healthy adults and patients with PD.

The arm swing algorithm was used to analyse the effect of dopaminergic medi-
cation on arm swing in patients with PD during walking tasks with different com-
plexity. Arm swing during straight walking at preferred speed, at fast speed and
during dual-tasking was analysed both OFF and ON dopaminergic medication. Arm
swing showed moderate improvements with dopaminergic medication at preferred
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walking speed. Large improvements with medication were found for several arm
swing parameters at fast walking speed. However, the responsiveness of arm swing
to medication during dual-tasking was small or even negative. Arm swing parame-
ters could be used in PD as an easily and frequently detectable marker for disease
progression and treatment response in clinical routine and clinical trials.

To continue the development and validation of mobility-related algorithms in
different contexts, a study protocol for a full-body wearable sensor dataset with
simultaneously recorded optical motion capture data was introduced. Mobility data
will be collected under standardized conditions (reflecting the typical assessment in
the clinical and laboratory environment) and non-standardized conditions (reflecting
daily life performance). Data will be collected from healthy adults (18-60 years) and
healthy older adults (>60 years), as well as PD, MS, stroke and chronic low back
pain patients. Specific clinical scales and questionnaires will be collected about the
cognitive function, activities of daily living, fatigue and quality of life. This study
protocol will result, to our best knowledge, in a unique dataset worldwide of this
extent and granularity that can be used by the research community to validate
mobility algorithms in different contexts.

Unsupervised performance assessments provide complementary information to
the supervised capacity assessments. Improvements in capacity measured in the
laboratory might not automatically indicate an improvement in performance. Since
improvements in performance might be most relevant to patients, performance as-
sessments should be implemented into clinical practice and as outcome in clinical
trials. It remains important to regularly measure the capacity in a standardized
setting, where you can control for influencing factors like the context.

The context has an influence on both capacity and performance measures. Simple
tasks to measure the capacity seem to correspond best with the more extreme per-
formance values during daily living [120, 132, 148]. Whereas the capacity measures
of more complex tasks correspond better with the average performance [89, 90].

The response to treatment is also affected by the context. During simple tasks,
there is a positive effect of dopaminergic medication on mobility in patients with
PD. However, during more complex tasks, there were only small and sometimes even
negative effects of dopaminergic medication. This is seen in arm swing (Chapter 5),
gait [197] and balance [39, 48, 190, 214]. Since more complex tasks represent daily
living more closely, it could be that dopaminergic medication is not beneficial during
daily living. To understand the effect of treatment during daily living, a first step
would be to additionally assess the capacity during tasks with a higher complexity.
In the future, the performance assessments should also be implemented to be able to
directly assess the effect of treatment on the performance. For the implementation of
unsupervised performance assessments in clinical routine and research, a few factors
need to be taken into account. More mobility-related algorithms should be developed
and validated in both settings as far as possible. Data analysis of unsupervised
performance data should make use of the high amount of movement repetitions
measured, e.g. by taking the distribution into account and not only average values.
The mobility-related parameters obtained from the algorithms should be analysed
to see which parameters provide relevant disease progression and treatment response
markers.

When performance assessments become part of clinical care, patients can besides
discussing their problems with a healthcare professional, also share their objective
performance data with them. Together with the clinical examination, the healthcare
professional has then information about the capacity, performance and perception
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at their disposal. With this information, it will become easier to correctly diagnose
patients in an earlier disease stage, track the disease progression and response to
treatment. This will make it possible to provide more individualized treatment and
increase the quality of life of patients.
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