270 research outputs found

    Semi-classical limitations for photon emission in strong external fields

    Full text link
    The semi-classical heuristic emission formula of Baier-Katkov [Sov. Phys. JETP \textbf{26}, 854 (1968)] is well-known to describe radiation of an ultrarelativistic electron in strong external fields employing the electron's classical trajectory. To find the limitations of the Baier-Katkov approach, we investigate electron radiation in a strong rotating electric field quantum mechanically using the Wentzel-Kramers-Brillouin approximation. Except for an ultrarelativistic velocity, it is shown that an additional condition is required in order to recover the widely used semi-classical result. A violation of this condition leads to two consequences. First, it gives rise to qualitative discrepancy in harmonic spectra between the two approaches. Second, the quantum harmonic spectra are determined not only by the classical trajectory but also by the dispersion relation of the effective photons of the external field

    Arbitrage, Clientele Effects, and the Term Structure of Interest Rates

    Get PDF
    This paper derives a new and intuitive estimation procedure for the term structure under potential tax arbitrage. No a priori assumptions regarding the equality of the prices and present values of bonds are made. The data are employed to determine whether this equality holds, and an appropriate estimator is thereby endogenously derived. The suggested estimator is based on the optimizing behavior of an investor in a market with frictions, and emerges directly from the solution of the dual of the no-arbitrage optimization problem. In addition, the proposed estimator benefits from being both theoretically sound and straightforward to apply

    Utilization of complimentary and alternative medicine in primary care : what are the relations between it and conventional medicine?

    Get PDF
    Backgroud: Complementary and alternative medicine (CAM) utilization among various groups of patients in western countries is increasing. Objectives: To describe the utilization of various CAM methods in parallel with conventional pri- mary care medicine and the relations between it and conventional medicine. Study Design: Four hundred and eighty patients in two primary care clinics participated in the survey. The participants answered a structured questionnaire, which included socio-demographic information and details of CAM therapy utilization. Results: Eighty percent of those seeking CAM therapy received conventional medical treatment for the same complaint as well. When asked if CAM should be funded 69% agreed, 14% disagreed and 8.3% were undecided. The most frequent causes for using CAM therapy were insufficient improve- ment by conventional treatment (36%), a reluctance to take medications (19%) and willingness to try a new modality (13%). Most of those who received CAM therapy felt it was beneficial and claim they would return to use it in the future under similar circumstances. Conclusions: We found that the term complementary is more appropriate as most patients use CAM in parallel to conventional medicine. Patients using CAM are satisfied and intend to use CAM in the future.peer-reviewe

    Paradoxes of neutrino oscillations

    Get PDF
    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss, in the framework of the wave packet approach, a number of such issues, including the relevance of the "same energy" and "same momentum" assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the production/detection and propagation coherence conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, the applicability limits of the stationary source approximation, and Lorentz invariance of the oscillation probability. We also develop a novel approach to calculation of the oscillation probability in the wave packet picture, based on the summation/integration conventions different from the standard one, which gives a new insight into the oscillation phenomenology. We discuss a number of apparently paradoxical features of the theory of neutrino oscillations.Comment: LaTeX, 45 pages, no figures. v2: references adde

    Localization of the SFT inspired Nonlocal Linear Models and Exact Solutions

    Full text link
    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function F()F(\Box), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.Comment: 20 pages, 3 figures, published in the proceedings of the VIII International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, Russia, July 29 - August 3, 2009, http://theor.jinr.ru/~sqs09

    On the dynamical generation of the Maxwell term and scale invariance

    Full text link
    Gauge theories with no Maxwell term are investigated in various setups. The dynamical generation of the Maxwell term is correlated to the scale invariance properties of the system. This is discussed mainly in the cases where the gauge coupling carries dimensions. The term is generated when the theory contains a scale explicitly, when it is asymptotically free and in particular also when the scale invariance is spontaneously broken. The terms are not generated when the scale invariance is maintained. Examples studied include the large NN limit of the CPN1CP^{N-1} model in (2+ϵ)(2+\epsilon) dimensions, a 3D gauged ϕ6\phi^6 vector model and its supersymmetric extension. In the latter case the generation of the Maxwell term at a fixed point is explored. The phase structure of the d=3d=3 case is investigated in the presence of a Chern-Simons term as well. In the supersymmetric ϕ6\phi^6 model the emergence of the Maxwell term is accompanied by the dynamical generation of the Chern-Simons term and its multiplet and dynamical breaking of the parity symmetry. In some of the phases long range forces emerge which may result in logarithmic confinement. These include a dilaton exchange which plays a role also in the case when the theory has no gauge symmetry. Gauged Lagrangian realizations of the 2D coset models do not lead to emergent Maxwell terms. We discuss a case where the gauge symmetry is anomalous.Comment: 38 pages, 4 figures; v2 slightly improved, typos fixed, references added, published versio

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution

    Is it possible to assign physical meaning to field theory with higher derivatives?

    Full text link
    To overcome the difficulties with the energy indefiniteness in field theories with higher derivatives, it is supposed to use the mechanical analogy, the Timoshenko theory of the transverse flexural vibrations of beams or rods well known in mechanical engineering. It enables one to introduce the notion of a "mechanical" energy in such field models that is wittingly positive definite. This approach can be applied at least to the higher derivative models which effectively describe the extended localized solutions in usual first order field theories (vortex solutions in Higgs models and so on). Any problems with a negative norm ghost states and unitarity violation do not arise here.Comment: 16 pp, LaTeX, JINR E2-93-19

    Equivalence of Hamiltonian and Lagrangian Path Integral Quantization: Effective Gauge Theories

    Full text link
    The equivalence of correct Hamiltonian and naive Lagrangian (Faddeev--Popov) path integral quantization (Matthews's theorem) is proven for gauge theories with arbitrary effective interaction terms. Effective gauge-boson self-interactions and effective interactions with scalar and fermion fields are considered. This result becomes extended to effective gauge theories with higher derivatives of the fields.Comment: 14 pages LaTeX, BI-TP 93/40, August 199

    Effective Lagrangians with Higher Order Derivatives

    Full text link
    The problems that are connected with Lagrangians which depend on higher order derivatives (namely additional degrees of freedom, unbound energy from below, etc.) are absent if effective Lagrangians are considered because the equations of motion may be used to eliminate all higher order time derivatives from the effective interaction term. The application of the equations of motion can be realized by performing field transformations that involve derivatives of the fields. Using the Hamiltonian formalism for higher order Lagrangians (Ostrogradsky formalism), Lagrangians that are related by such transformations are shown to be physically equivalent (at the classical and at the quantum level). The equivalence of Hamiltonian and Lagrangian path integral quantization (Matthews's theorem) is proven for effective higher order Lagrangians. Effective interactions of massive vector fields involving higher order derivatives are examined within gauge noninvariant models as well as within (linearly or nonlinearly realized) spontaneously broken gauge theories. The Stueckelberg formalism, which relates gauge noninvariant to gauge invariant Lagrangians, becomes reformulated within the Ostrogradsky formalism.Comment: 17 pages LaTeX, BI-TP 93/2
    corecore