3,318 research outputs found
Fluorine-doped ZnO thin films deposited by spray pyrolysis technique
Fluorine doped ZnO thin films (FZO) are prepared onto glass substrates at 350 degrees C by the chemical spray pyrolysis technique. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane along c-axis) and does not vary the lattice parameters. Therefore, F introduction in lattice is by the substitution of O(-2) ions by F(-1) ions. Any variation is observed in transmittance and reflectance measurements in 400-2000 nm wavelength range when samples present F dopant; they have transmittance around 80% in the near infrared and visible zones. The FZO films are degenerate and exhibit n-type electrical conductivity. The best resistivity and mobility are 7.6 x 10(-3) Omega cm and 3.77 cm(2) V(-1) s(-1) respectively. The calculated values of the mean free path are very small compared to the grain sizes calculated using XRD measurements. Therefore, we suggest that ionized impurity and/or neutral impurity scattering are the dominant scattering mechanisms in these films
Position resolution and particle identification with the ATLAS EM calorimeter
In the years between 2000 and 2002 several pre-series and series modules of
the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon
and pion beams. The performance of the calorimeter with respect to its finely
segmented first sampling has been studied. The polar angle resolution has been
found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection
has been measured to be about 3.5 for 90% photon selection efficiency at pT=50
GeV/c. Electron-pion separation studies have indicated that a pion fake rate of
(0.07-0.5)% can be achieved while maintaining 90% electron identification
efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM
All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope
Advanced LIGO detected a significant gravitational wave signal (GW170104)
originating from the coalescence of two black holes during the second
observation run on January 4, 2017. An all-sky high-energy
neutrino follow-up search has been made using data from the ANTARES neutrino
telescope, including both upgoing and downgoing events in two separate
analyses. No neutrino candidates were found within s around the GW
event time nor any time clustering of events over an extended time window of
months. The non-detection is used to constrain isotropic-equivalent
high-energy neutrino emission from GW170104 to less than
erg for a spectrum
Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam
A module of the ATLAS electromagnetic barrel liquid argon calorimeter was
exposed to the CERN electron test-beam at the H8 beam line upgraded for
precision momentum measurement. The available energies of the electron beam
ranged from 10 to 245 GeV. The electron beam impinged at one point
corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of
phi=0.28 in the ATLAS coordinate system. A detailed study of several effects
biasing the electron energy measurement allowed an energy reconstruction
procedure to be developed that ensures a good linearity and a good resolution.
Use is made of detailed Monte Carlo simulations based on Geant which describe
the longitudinal and transverse shower profiles as well as the energy
distributions. For electron energies between 15 GeV and 180 GeV the deviation
of the measured incident electron energy over the beam energy is within 0.1%.
The systematic uncertainty of the measurement is about 0.1% at low energies and
negligible at high energies. The energy resolution is found to be about 10%
sqrt(E) for the sampling term and about 0.2% for the local constant term
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration
Papers on the searches for dark matter and exotics, neutrino oscillations and
detector calibration, prepared for the 35th International Cosmic Ray Conference
(ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio
The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program
Papers on the ANTARES multi-messenger program, prepared for the 35th
International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the
ANTARES Collaboratio
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES IceCube and the Pierre Auger Observatory
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ñ 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle
- âŠ