363 research outputs found

    Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability

    Get PDF
    Eisenhut M, Bräutigam A, Timm S, et al. Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability. Molecular Plant. 2017;10(1):47-61.The photorespiratory pathway or photorespiration is an essential process in oxygenic photosynthetic organisms, which can reduce the efficiency of photosynthetic carbon assimilation and is hence frequently considered as a wasteful process. By comparing the response of the wild-type plants and mutants impaired in photorespiration to a shift in ambient CO2 concentrations, we demonstrate that photorespiration also plays a beneficial role during short-term acclimation to reduced CO2 availability. The wild-type plants responded with few differentially expressed genes, mostly involved in drought stress, which is likely a consequence of enhanced opening of stomata and concomitant water loss upon a shift toward low CO2. In contrast, mutants with impaired activity of photorespiratory enzymes were highly stressed and not able to adjust stomatal conductance to reduced external CO2 availability. The transcriptional response of mutant plants was congruent, indicating a general reprogramming to deal with the consequences of reduced CO2 availability, signaled by enhanced oxygenation of ribulose-1,5-bisphosphate and amplified by the artificially impaired photorespiratory metabolism. Central in this reprogramming was the pronounced reallocation of resources from growth processes to stress responses. Taken together, our results indicate that unrestricted photorespiratory metabolism is a prerequisite for rapid physiological acclimation to a reduction in CO2 availability

    Comparative safety of mRNA COVID-19 vaccines to influenza vaccines: A pharmacovigilance analysis using WHO international database.

    Get PDF
    Funder: New faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0049).Two messenger RNA (mRNA) vaccines developed by Pfizer-BioNTech and Moderna are being rolled out. Despite the high volume of emerging evidence regarding adverse events (AEs) associated with the COVID-19 mRNA vaccines, previous studies have thus far been largely based on the comparison between vaccinated and unvaccinated control, possibly highlighting the AE risks with COVID-19 mRNA vaccination. Comparing the safety profile of mRNA vaccinated individuals with otherwise vaccinated individuals would enable a more relevant assessment for the safety of mRNA vaccination. We designed a comparative safety study between 18 755 and 27 895 individuals who reported to VigiBase for adverse events following immunization (AEFI) with mRNA COVID-19 and influenza vaccines, respectively, from January 1, 2020, to January 17, 2021. We employed disproportionality analysis to rapidly detect relevant safety signals and compared comparative risks of a diverse span of AEFIs for the vaccines. The safety profile of novel mRNA vaccines was divergent from that of influenza vaccines. The overall pattern suggested that systematic reactions like chill, myalgia, fatigue were more noticeable with the mRNA COVID-19 vaccine, while injection site reactogenicity events were more prevalent with the influenza vaccine. Compared to the influenza vaccine, mRNA COVID-19 vaccines demonstrated a significantly higher risk for a few manageable cardiovascular complications, such as hypertensive crisis (adjusted reporting odds ratio [ROR], 12.72; 95% confidence interval [CI], 2.47-65.54), and supraventricular tachycardia (adjusted ROR, 7.94; 95% CI, 2.62-24.00), but lower risk of neurological complications such as syncope, neuralgia, loss of consciousness, Guillain-Barre syndrome, gait disturbance, visual impairment, and dyskinesia. This study has not identified significant safety concerns regarding mRNA vaccination in real-world settings. The overall safety profile patterned a lower risk of serious AEFI following mRNA vaccines compared to influenza vaccines

    Dichtigkeit von koronalen Restaurationen nach endodontischer Therapie - eine In-vitro-Langzeitanalyse über 365 Tage im Bakterienpenetrationsmodell

    No full text
    Ein dauerhafter bakteriendichter Verschluss der Wurzelkanaleingänge und die damit einhergehende Versiegelung des Pulpakammerbodens nach vorangegangener Obturation des Wurzelkanals sind die Ziele der endodontischen Therapie. Im Laufe der letzten Jahre traten auf dem Gebiet der koronalen Restauration die adhäsiven Kompositmaterialien immer mehr in den Vordergrund. Allerdings gibt es in diesem Themenbereich noch immer viele ungeklärte Fragestellungen hinsichtlich ihrer Effizienz. In der vorliegenden Arbeit sollte im Rahmen einer Langzeitanalyse über 365 Tage die Dichtigkeit von koronalen Restaurationen nach erfolgter Wurzel-kanalfüllung in einem Bakterienpenetrationsmodell in vitro untersucht werden

    Generation of Targeted Knockout Mutants in Arabidopsis thaliana Using CRISPR/Cas9

    No full text
    Hahn F, Eisenhut M, Mantegazza O, Weber A. Generation of Targeted Knockout Mutants in Arabidopsis thaliana Using CRISPR/Cas9. Bio-protocol . 2017;7(13)

    Generation of Targeted Knockout Mutants in Arabidopsis thaliana Using CRISPR/Cas9

    No full text
    The CRISPR/Cas9 system has emerged as a powerful tool for gene editing in plants and beyond. We have developed a plant vector system for targeted Cas9-dependent mutagenesis of genes in up to two different target sites in Arabidopsis thaliana. This protocol describes a simple 1-week cloning procedure for a single T-DNA vector containing the genes for Cas9 and sgRNAs, as well as the detection of induced mutations in planta. The procedure can likely be adapted for other transformable plant species

    Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting

    No full text
    The CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell’s own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral replicons did not yield any trichome-bearing plants

    An Efficient Visual Screen for CRISPR/Cas9 Activity in Arabidopsis thaliana

    Get PDF
    The CRISPR/Cas9 system enables precision editing of the genome of the model plant Arabidopsis thaliana and likely of any other organism. Tools and methods for further developing and optimizing this widespread and versatile system in Arabidopsis would hence be welcomed. Here, we designed a generic vector system that can be used to clone any sgRNA sequence in a plant T-DNA vector containing an ubiquitously expressed Cas9 gene. With this vector, we explored two alternative marker systems for tracking Cas9-mediated gene-editing in vivo: BIALAPHOS RESISTANCE (BAR) and GLABROUS1 (GL1). BAR confers resistance to glufosinate and is widely used as a positive selection marker; GL1 is required for the formation of trichomes. Reversion of a frameshift null BAR allele to a functional one by Cas9-mediated gene editing yielded a higher than expected number of plants that are resistant to glufosinate. Surprisingly, many of those plants did not display reversion of the BAR gene through the germline. We hypothesize that few BAR revertant cells in a highly chimeric plant likely provide system-wide resistance to glufosinate and thus we suggest that BAR is not suitable as marker for tracking Cas9-mediated gene-editing. Targeting the GL1 gene for disruption with Cas9 provided clearly visible phenotypes of partially and completely glabrous plants. 50% of the analyzed T1 plants produced descendants with a chimeric phenotype and we could recover fully homozygous plants in the T3 generation with high efficiency. We propose that targeting of GL1 is suitable for assessing and optimizing Cas9-mediated gene-editing in Arabidopsis.Peer Reviewe
    corecore